JP3152272B2 - Alumina coating composition and fluorescent lamp coated with the same - Google Patents

Alumina coating composition and fluorescent lamp coated with the same

Info

Publication number
JP3152272B2
JP3152272B2 JP08031194A JP8031194A JP3152272B2 JP 3152272 B2 JP3152272 B2 JP 3152272B2 JP 08031194 A JP08031194 A JP 08031194A JP 8031194 A JP8031194 A JP 8031194A JP 3152272 B2 JP3152272 B2 JP 3152272B2
Authority
JP
Japan
Prior art keywords
alumina
fluorescent lamp
protective film
coating composition
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08031194A
Other languages
Japanese (ja)
Other versions
JPH07288103A (en
Inventor
▲禎▼仁 畭尾
敬治 一ノ宮
祐司 斎
修 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP08031194A priority Critical patent/JP3152272B2/en
Publication of JPH07288103A publication Critical patent/JPH07288103A/en
Application granted granted Critical
Publication of JP3152272B2 publication Critical patent/JP3152272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルミナ塗布組成物及び
それを塗布した蛍光ランプに関し、更に詳しくは、蛍光
ランプガラス管の内表面のアルミナ保護膜を形成すべき
アルミナ塗布組成物およびそれを用いた蛍光ランプに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina coating composition and a fluorescent lamp coated with the same, and more particularly, to an alumina coating composition for forming an alumina protective film on the inner surface of a fluorescent lamp glass tube and the use thereof. Related to fluorescent lamps.

【0002】[0002]

【従来の技術】蛍光ランプは長時間の点灯によりその光
束が低下する。その原因の一つはガラス管に含まれるナ
トリウムと蛍光ランプ内に封入された水銀との反応によ
り、黒褐色の水銀アマルガムが形成され、それがガラス
管内面に付着することによるためである。
2. Description of the Related Art Luminous flux of a fluorescent lamp is reduced by prolonged lighting. One of the causes is that a reaction between sodium contained in the glass tube and mercury sealed in the fluorescent lamp forms black-brown mercury amalgam, which adheres to the inner surface of the glass tube.

【0003】従来より、ガラス管の内表面と蛍光体層の
間に保護膜層を設け、蛍光ランプの着色防止、光束維持
率の改善に応用していた。通常、特開昭57−4495
9号公報に開示されるように、粒径が20nm程度の微
粒子のγアルミナを、ニトロセルロース/酢酸ブチル溶
液に懸濁させた塗布液をつくり、これをガラス管内面に
塗布して、保護膜層を形成することが一般的に行われて
いた。
Conventionally, a protective film layer has been provided between the inner surface of a glass tube and a phosphor layer to prevent coloration of a fluorescent lamp and to improve the luminous flux maintenance rate. Usually, JP-A-57-4495
As disclosed in Japanese Patent Publication No. 9, a coating solution is prepared by suspending fine gamma-alumina having a particle size of about 20 nm in a nitrocellulose / butyl acetate solution, and applying the coating solution to the inner surface of a glass tube to form a protective film. Forming layers was commonly performed.

【0004】ところが、上記した微粒子のγアルミナ
を、環形蛍光ランプあるいはコンパクト型蛍光ランプの
ような、特に700℃以上の高温で加工する工程を含む
蛍光ランプに使用した場合、蛍光ランプのガラス管が割
れやすくなる傾向がある。それは、γアルミナ表面が7
00℃以上の高温焼成により激しく活性化し、ガラス表
面のシラノール基と反応し、ガラス表面に吸着して剥が
れ難くなり、その後2層目の蛍光体層を形成し、γ−ア
ルミナの吸着しているガラス表面とガラス内部との伸縮
率の差が生じ、また熱的歪みも生じるためガラス管が割
れやすくなるという問題である。
However, when the above-mentioned fine particle γ-alumina is used for a fluorescent lamp such as a ring-shaped fluorescent lamp or a compact fluorescent lamp, particularly including a step of processing at a high temperature of 700 ° C. or more, the glass tube of the fluorescent lamp becomes It tends to break easily. It has a gamma alumina surface of 7
Violently activated by baking at a high temperature of 00 ° C. or higher, reacting with silanol groups on the glass surface, adsorbing on the glass surface, making it difficult to peel off, and then forming a second phosphor layer and adsorbing γ-alumina There is a problem that a difference in expansion ratio between the glass surface and the inside of the glass occurs, and thermal distortion also occurs, so that the glass tube is easily broken.

【0005】一方、近年蛍光塗料は火災発生防止、作業
環境の改善等への配慮から、有機溶剤から、カルボキシ
メチルセルロース、アンモニウムポリメタアクリレート
或いはポリエチレンオキサイドのような水溶性バインダ
ーに代わりつつあるが、上記した問題は、特に、水溶性
バインダーを用いて塗布した場合、目立つ傾向にあり、
高温で加工する蛍光ランプの水性塗布への移行の大きな
障害になっていた。
On the other hand, in recent years, fluorescent paints have been replacing organic solvents with water-soluble binders such as carboxymethylcellulose, ammonium polymethacrylate or polyethylene oxide in consideration of fire prevention and improvement of working environment. The problem was particularly noticeable when applied using a water-soluble binder,
This has been a major obstacle to the migration of fluorescent lamps processed at high temperatures to aqueous coatings.

【0006】[0006]

【発明が解決しようとする課題】従って本発明の目的
は、ガラス管の内部表面に保護膜を有し、その上に蛍光
体層を備える蛍光ランプにおいて、最適なアルミナの保
護膜を形成するアルミナ塗布組成物を提供し、それを用
いることにより、ガラス管の割れによる製造時の歩留ま
りが低下しない蛍光ランプを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fluorescent lamp having a protective film on the inner surface of a glass tube and a phosphor layer thereon to form an optimum alumina protective film. An object of the present invention is to provide a coating composition and to provide a fluorescent lamp which does not lower the production yield due to cracking of a glass tube by using the coating composition.

【0007】[0007]

【課題を解決するための手段】本発明者は上記課題を解
決する目的で鋭意試験をした結果、蛍光ランプの保護膜
の形成材料であるアルミナ塗布組成物に着目し、これが
小粒子のαアルミナと大粒子のαアルミナの混合物と、
低融点物質としてホウ酸を含むことを特徴とすることで
問題を解決できることを新たに見いだした。
Means for Solving the Problems The inventors of the present invention have conducted intensive tests for the purpose of solving the above-mentioned problems, and as a result, focused on an alumina coating composition which is a material for forming a protective film of a fluorescent lamp. And a mixture of large particles of α-alumina,
It was newly found that the problem could be solved by including boric acid as a low melting point material.

【0008】αアルミナの粒径は特に重要であり、平均
粒径が0.05μm以下の小粒子のαアルミナと、平均
粒径が0.3μm以上2.0μm以下である大粒子αア
ルミナを混合することがより効果がある。ここで、平均
粒径は空気透過法によるフィッシャー・サブ−シーブ・
サイザーを使用し測定した。また、小粒子αアルミナと
大粒子αアルミナの配合割合は、2:8から8:2の範
囲が適当である。
The particle size of α-alumina is particularly important. A mixture of small-particle α-alumina having an average particle diameter of 0.05 μm or less and large-particle α-alumina having an average particle diameter of 0.3 μm to 2.0 μm is mixed. Is more effective. Here, the average particle size is determined by a Fischer sub-sieve.
The measurement was performed using a sizer. The mixing ratio of the small-particle α-alumina to the large-particle α-alumina is appropriately in the range of 2: 8 to 8: 2.

【0009】さらに、ホウ酸はオルトホウ酸、メタホウ
酸、次ホウ酸、無水ホウ酸の内の少なくとも1種が有効
であり、その量はアルミナの総重量に対し、0.5%以
上、5%以下であることが好ましい。
Further, boric acid is effective in at least one of orthoboric acid, metaboric acid, hypoboric acid and boric anhydride, and the amount thereof is 0.5% or more and 5% or more based on the total weight of alumina. The following is preferred.

【0010】本発明のアルミナ塗布組成物はアルミナ等
微粒子を懸濁させる通常の方法で得られる。例えば小粒
子のαアルミナ、大粒子のαアルミナおよび低融点物質
のホウ酸を粉砕媒体といっしょにセラミックポットに入
れ、水、あるいは酢酸ブチル等の有機溶媒を入れボール
ミルにより懸濁液を得るのも一つの方法である。
The alumina coating composition of the present invention can be obtained by a usual method of suspending fine particles such as alumina. For example, small particles of α-alumina, large particles of α-alumina, and boric acid of a low-melting substance are put into a ceramic pot together with a grinding medium, and water or an organic solvent such as butyl acetate is added to obtain a suspension by a ball mill. One way.

【0011】[0011]

【作用】保護膜に従来より使用されていたγアルミナに
替えて、αアルミナを選択したのは、αアルミナは高温
で焼成されて生成する高温型の結晶構造を持ち、表面化
学的、物理的にも安定であるからである。高温型である
αアルミナの表面は不活性であり、前記したガラス管表
面のシラノール基との反応を起こし難くなり、結果とし
て、蛍光ランプの割れ不良低減に効果がある。
[Function] The reason why α-alumina was selected in place of γ-alumina conventionally used for the protective film is that α-alumina has a high-temperature type crystal structure formed by firing at a high temperature and has surface chemical and physical properties. Is also stable. The surface of α-alumina, which is a high-temperature type, is inactive and is less likely to react with the silanol groups on the surface of the glass tube, and as a result, is effective in reducing cracking failure of the fluorescent lamp.

【0012】また、αアルミナの粒径を小粒子と大粒子
との混合物にすることで、小粒子のみを使用していた従
来品に比べ、酸化アルミニウム被膜の高温加熱状態下に
おける、ガラス管の引っ張り加工時の伸びへの追従性を
改善することができる。その結果、冷却後に歪み応力が
残り難くなり、外力によるガラス管の割れは少なくな
る。
Further, by setting the particle size of α-alumina to a mixture of small particles and large particles, compared to the conventional product using only small particles, the glass tube under the high-temperature heating state of the aluminum oxide film can be formed. The ability to follow the elongation during the tensile processing can be improved. As a result, a strain stress hardly remains after cooling, and cracks in the glass tube due to external force are reduced.

【0013】小粒子の最適粒径範囲は0.05μm以下
であり、粒径がこれより大きくなると、蛍光体層との付
着強度が小さくなり、蛍光体層の剥離が起こりやすくな
る問題がある。
The optimum particle size range of the small particles is 0.05 μm or less, and if the particle size is larger than this, there is a problem that the adhesion strength to the phosphor layer is reduced and the phosphor layer is liable to peel off.

【0014】大粒子の適当な粒径範囲は0.3〜2.0
μmであり、0.3μmより小さくなると、大粒子とし
ての効果がみられなくなる。2.0μmより大きくなる
と、ガラス管の加熱加工時の伸びへの追随性は改善する
が、蛍光体層との付着強度が減少し、蛍光体層の剥離が
大きくなる問題がある。
A suitable size range of the large particles is 0.3 to 2.0.
μm, and if it is smaller than 0.3 μm, the effect as large particles cannot be seen. When the thickness is larger than 2.0 μm, the followability of the glass tube to elongation during heat processing is improved, but there is a problem that the adhesion strength to the phosphor layer is reduced and the detachment of the phosphor layer is increased.

【0015】また、大粒子のαアルミナの配合量は保護
膜中の全アルミナに占める重量が20%から80%まで
が適当であり、20%より少ないと、大粒子を添加した
効果がみられなくなり、また、80%より多いと、蛍光
ランプは外力による割れに強くなるが、保護膜が粗くな
り、その結果、本来の保護膜の機能であるガラス管中の
ナトリウムの熱拡散防止の効果が少なくなり好ましくな
い。
The amount of the large particles of α-alumina is suitably from 20% to 80% of the total alumina in the protective film, and if less than 20%, the effect of adding the large particles is observed. If it is less than 80%, the fluorescent lamp is more resistant to cracking due to external force, but the protective film becomes coarse, and as a result, the effect of preventing the thermal diffusion of sodium in the glass tube, which is the original function of the protective film, is obtained. It is not preferable because it decreases.

【0016】また、ホウ酸はオルトホウ酸、メタホウ
酸、次ホウ酸、無水ホウ酸の内の少なくとも1種が使用
できるのは、保護膜を形成したガラス管は700℃以上
の高温下にさらされるため、これらの何れであっても溶
融し、アルミナと化合し、適当な保護膜を形成するため
であり、結果として、アルミナの活性を緩和する作用が
あり、アルミナ被膜のガラス管への追従性を改善し、ガ
ラス管の割れを防止する。
As for boric acid, at least one of orthoboric acid, metaboric acid, hypoboric acid, and boric anhydride can be used. The glass tube having the protective film formed thereon is exposed to a high temperature of 700 ° C. or more. Therefore, any of these is melted and combined with alumina to form an appropriate protective film. As a result, there is an action of relaxing the activity of alumina, and the ability of the alumina coating to follow the glass tube. And prevent cracking of the glass tube.

【0017】ホウ酸の量は、アルミナの重量和に対し、
0.5%以上、5%以下であることが望ましい。0.5
%より少なくなると、アルミナの活性を緩和する効果が
少なくなり、その上、保護膜のガラス管への接着力が小
さくなり、その結果、加熱加工の後に保護膜層、及び蛍
光体層がガラス管から剥離してしまうからである。
The amount of boric acid is based on the total weight of alumina,
It is desirable that it is 0.5% or more and 5% or less. 0.5
%, The effect of relaxing the activity of alumina is reduced, and the adhesion of the protective film to the glass tube is reduced. As a result, after the heat treatment, the protective film layer and the phosphor layer are separated from the glass tube. This is because they are peeled off from.

【0018】逆に、ホウ酸の量が5%よりも多くなる
と、低融点物質が多すぎることに起因するガラス管強度
低下を引き起こし、また同時に蛍光ランプの光束維持率
の低下をまねく。それは、蛍光体或いは保護膜のアルミ
ナを分散している有機バインダー物質を500〜600
℃で酸化し、焼き飛ばす工程があるが、ホウ酸が低融点
物質であるため、これが多いと有機バインダーを抱き込
んだ状態で溶融してしまい、完成した蛍光ランプにそれ
が残り、蛍光ランプの光束維持率低下を引き起こすため
である。
Conversely, when the amount of boric acid is more than 5%, the strength of the glass tube is reduced due to too much low-melting-point substance, and at the same time, the luminous flux maintenance factor of the fluorescent lamp is reduced. That is, the organic binder material in which the phosphor or the alumina of the protective film is dispersed is 500-600.
There is a process of oxidizing at ℃ and burning it out, but since boric acid is a low melting point substance, if it is too much, it will melt with the organic binder in it, and it will remain in the completed fluorescent lamp, This is to cause a decrease in the luminous flux maintenance rate.

【0019】他のホウ酸系の化合物として、カルシウム
バリウムボレート等アルカリ土類元素のホウ酸塩、La
BO3 等の希土類元素のホウ酸塩があるが、これはホウ
酸に比べ、アルミナの表面の活性点を不活性化する効果
に乏しく好ましくない。
Other boric compounds include borates of alkaline earth elements such as calcium barium borate, La
There is a borate of a rare earth element such as BO 3 , which is not preferable because it has a poorer effect of inactivating the active sites on the surface of alumina than boric acid.

【0020】[0020]

【実施例】本発明の実施例を環形蛍光ランプ(FCL3
0W)の製作を基に図1を参考に説明する。 [実施例1] 小粒子のαアルミナとして、昭和電工株式会社製UA−
5015(平均粒径0.05μm)を、大粒子αアルミ
ナとして、昭和電工株式会社製UA−5035(平均粒
径0.5μm)を選び、小粒子、大粒子アルミナをそれ
ぞれ100gと、オルトホウ酸を2g(アルミナに対し
て1%)、及び純水800gを2000mlのセラミッ
クポットに入れ、粉砕媒体として10mmφのアルミナ
ボールを1kg入れ、蓋を閉めローラーの上で60rp
mで24時間ローリングさせて本発明のアルミナ塗布組
成物を得た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG.
0W) will be described with reference to FIG. [Example 1] As small particles of α-alumina, UA- manufactured by Showa Denko KK
5015 (average particle size 0.05 μm) was selected as large particle α alumina, UA-5035 (average particle size 0.5 μm) manufactured by Showa Denko KK, and 100 g each of small particle and large particle alumina, and orthoboric acid were selected. 2 g (1% based on alumina) and 800 g of pure water are put into a 2000 ml ceramic pot, 1 kg of alumina balls of 10 mmφ are put as a grinding medium, the lid is closed, and 60 rpm is set on a roller.
m for 24 hours to obtain an alumina coating composition of the present invention.

【0021】得られたアルミナスラリーを管径30mm
φ、管長600mmのソーダライムガラス管(1)に塗布
し、温風を吹き込み乾燥させ、アルミナの保護膜(2)を
形成させた。保護膜形成前後のガラス管の重量を計量
し、差し引きで保護膜塗布量は50mgであった。
The obtained alumina slurry was used to prepare a tube having a diameter of 30 mm.
It was applied to a soda lime glass tube (1) having a diameter of 600 mm and a tube length of 600 mm, and dried by blowing hot air to form an alumina protective film (2). The weight of the glass tube before and after the formation of the protective film was weighed, and the amount of the applied protective film was 50 mg by deduction.

【0022】青色蛍光体として、ユーロピウム付活アル
カリ土類燐酸クロロアパタイト蛍光体(SCA)、緑色
発光蛍光体として、セリウムテルビウム共付活オルト燐
酸ランタン蛍光体(LAP)、及び赤色発光蛍光体とし
て、ユーロピウム付活酸化イットリウム蛍光体(YO
X)の混合物を、1%ポリエチレンオキサイドバインダ
ー中に加え、結着剤、分散剤を添加し、撹拌すること
で、蛍光体塗布スラリーを得た。
As a blue phosphor, europium-activated alkaline earth phosphate chloroapatite phosphor (SCA), as a green light-emitting phosphor, cerium terbium co-activated lanthanum orthophosphate phosphor (LAP), and as a red light-emitting phosphor, Europium activated yttrium oxide phosphor (YO
The mixture of X) was added to a 1% polyethylene oxide binder, a binder and a dispersant were added, and the mixture was stirred to obtain a phosphor coating slurry.

【0023】得られた蛍光体懸濁スラリーを、保護膜を
形成したガラス管(1)に一様に流し込み、温風により乾
燥させ、蛍光体層(3)を形成した。蛍光体の塗布量を測
定すると1.9gであった。次に、580℃の電気炉で
10分間ベーキングし、フィラメント(4)を装着した
後、排気等の通常の工程を経て、800℃に加熱された
状態でガラス管をドラムに弱い力で引っ張りながら巻き
付け、最後にNe,Ar,Krの混合ガスを2Torr
及び、水銀20mgを封じ込み、口金(5)を付けて本発
明の環形蛍光ランプ(FCL30W)を作製した。
The obtained phosphor suspension slurry was uniformly poured into a glass tube (1) on which a protective film had been formed, and dried with warm air to form a phosphor layer (3). The measured amount of the phosphor applied was 1.9 g. Next, the glass tube is baked in an electric furnace at 580 ° C. for 10 minutes, and the filament (4) is attached. After a normal process such as exhaustion, the glass tube is heated to 800 ° C. while pulling the glass tube to the drum with a weak force. Winding, and finally a mixed gas of Ne, Ar, Kr at 2 Torr
Then, 20 mg of mercury was sealed therein, and a base (5) was attached thereto to produce a ring-shaped fluorescent lamp (FCL30W) of the present invention.

【0024】[比較例1] 保護膜アルミナ材料として、小粒子のγアルミナであ
る、デグサ社製のアロンCを選び、これを200gと、
カルシウムバリウムボレート(CBB)を2g、及び純
水800gを2000mlのセラミックポットに入れ、
粉砕媒体として10mmφのアルミナボールを1kg入
れ、蓋を閉めローラーの上で60rpmで24時間ロー
リングさせてアルミナ分散スラリーを得た。
Comparative Example 1 Aron C manufactured by Degussa Co., Ltd., which is a small particle of γ-alumina, was selected as an alumina material for the protective film.
2 g of calcium barium borate (CBB) and 800 g of pure water are put into a 2000 ml ceramic pot,
1 kg of 10 mmφ alumina balls were put as a pulverizing medium, the lid was closed, and rolling was performed at 60 rpm on a roller for 24 hours to obtain an alumina dispersed slurry.

【0025】以下[実施例1]と同じ方法でアルミナの
保護膜を形成し、同じ方法で蛍光体層を形成し、同じ方
法で環形蛍光ランプを得た。
An alumina protective film was formed by the same method as in [Example 1], a phosphor layer was formed by the same method, and a ring-shaped fluorescent lamp was obtained by the same method.

【0026】このようにして得られた環形蛍光ランプの
強度を次の方法で比較をした。環形蛍光ランプを鉛直方
向に釣り下げ、口金(5)と反対側(6)を下に向け、最下端
が高さXcmの高さから、厚さ1mmのゴムを敷いたコ
ンクリート床の上に落下させた。落下試験は高さ10c
mから始め、ガラス管が割れるまで5cmずつ高さを上
げ、最初に割れた高さを記録した。結果を表1にまとめ
た。
The intensities of the ring-shaped fluorescent lamps thus obtained were compared by the following method. Hang the ring-shaped fluorescent lamp in the vertical direction, turn the base (5) and the opposite side (6) downward, and drop the lowest end from a height of X cm on a concrete floor covered with rubber with a thickness of 1 mm. I let it. Drop test height 10c
m, the height was increased by 5 cm until the glass tube broke, and the height at which the glass tube was first broken was recorded. The results are summarized in Table 1.

【0027】[実施例2〜8] 保護膜アルミナ材料として、小粒子および大粒子αアル
ミナを使い、その内で大粒子のαアルミナ、および低融
点物質のホウ酸量が蛍光体に対し表1に示す割合で混合
されているアルミナ塗布組成物を実施例と同じ方法で調
製し、同じ方法で環形蛍光ランプを作製し割れ試験を行
った。
Examples 2 to 8 Small particles and large particles of α-alumina were used as the alumina material for the protective film. Was prepared by the same method as in the example, and a ring-shaped fluorescent lamp was prepared by the same method and subjected to a crack test.

【0028】[比較例2〜4] アルミナに小粒子のγアルミナを用い、低融点物質とし
てホウ酸の代わりにアルカリ土類あるいは希土類のホウ
酸塩を用い、実施例1と同じ方法でアルミナ塗布組成物
を調製し、それを用いて環形蛍光ランプを作製した。
[Comparative Examples 2 to 4] Alumina was coated in the same manner as in Example 1 by using γ-alumina of small particles as the alumina and using an alkaline earth or rare earth borate instead of boric acid as the low melting point substance. A composition was prepared and used to make a ring-shaped fluorescent lamp.

【0029】[0029]

【表1】 [Table 1]

【0030】これらを表1で比較したところ、保護膜の
形成に本発明のアルミナ塗布組成物を用いた本発明の蛍
光ランプは落下試験でも割れにくいことが分かり、大粒
子のαアルミナと小粒子のαアルミナ及びホウ酸を組み
合わせて使用することが効果的であることが分かる。さ
らに、2000時間の光束維持率についても本発明の実
施例は比較例に対し同等であり、アルミナ塗布組成物の
組成の最適化により、光束維持率のより優れた範囲に設
定することも可能である。
When these were compared in Table 1, it was found that the fluorescent lamp of the present invention using the alumina coating composition of the present invention for forming a protective film was hardly cracked even in a drop test. It is found that it is effective to use α alumina and boric acid in combination. Furthermore, the luminous flux maintenance rate of 2000 hours is the same as that of the example of the present invention with respect to the comparative example, and it is possible to set the luminous flux maintenance rate in a more excellent range by optimizing the composition of the alumina coating composition. is there.

【0031】本発明の実施例を水性塗布による保護膜の
形成について説明したが、アルミナ塗布組成物は油性塗
布であっても有効である。水溶性塗布であっても有効で
あるが、特に、水溶性塗布において効果が大きいことが
試験により分かっている。
Although the embodiment of the present invention has been described with respect to the formation of a protective film by aqueous coating, the alumina coating composition is effective even in oil-based coating. Tests have shown that water-soluble coatings are effective, but are particularly effective in water-soluble coatings.

【0032】[0032]

【発明の効果】以上述べたように、ガラス管の内部表面
に保護膜を有し、製造工程に700℃以上の高温で加工
する工程を含む蛍光ランプに、従来より使用している小
粒子のγアルミナの保護膜を使用すると、ガラス管が割
れやすくなることによる歩留まり低下をまねいたが、本
発明によるアルミナ塗布組成物を用い保護膜を形成した
蛍光ランプは、保護膜を形成した蛍光ランプの本来の品
質を維持した状態で、ガラス管の強度を低下させず、結
果として蛍光ランプの製造工程の歩留まりを向上する効
果がある。
As described above, the fluorescent lamp having the protective film on the inner surface of the glass tube and including the step of processing at a high temperature of 700 ° C. or more in the manufacturing process can be used for the fluorescent lamp conventionally used. The use of a protective film of γ-alumina resulted in a decrease in yield due to the fact that the glass tube was easily broken, but the fluorescent lamp formed with the protective film using the alumina coating composition according to the present invention is the same as the fluorescent lamp formed with the protective film. With the original quality maintained, the strength of the glass tube is not reduced, and as a result, the yield of the fluorescent lamp manufacturing process is improved.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のアルミナ塗布組成物を使用する本発
明の蛍光ランプを部分断面により示す正面図である。
FIG. 1 is a front view showing a partial cross section of a fluorescent lamp of the present invention using an alumina coating composition of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・ガラス管 2・・・・・保護膜 3・・・・・蛍光体層 4・・・・・フィラメント 5・・・・・口金 6・・・・・口金の反対側 1 ... Glass tube 2 ... Protective film 3 ... Phosphor layer 4 ... Filament 5 ... Base 6 ... Back side of base

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−22556(JP,A) 特開 昭63−298955(JP,A) 特開 平2−223146(JP,A) 特開 平4−229943(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 61/35 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-22556 (JP, A) JP-A-63-298955 (JP, A) JP-A-2-223146 (JP, A) JP-A-4- 229943 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 61/35

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蛍光ランプガラス管の内表面のアルミナ
保護膜を形成すべきアルミナ塗布組成物において、その
組成が、少なくとも平均粒径の値が0.05μm以下で
ある小粒子αアルミナと平均粒径の値が0.3μm以上
2.0μm以下である大粒子αアルミナの混合物、およ
び低融点物質のホウ酸を含んでなることを特徴とするア
ルミナ塗布組成物。
1. An alumina coating composition for forming an alumina protective film on the inner surface of a fluorescent lamp glass tube, the composition comprising at least a small particle α-alumina having an average particle size of 0.05 μm or less and an average particle size An alumina coating composition comprising a mixture of large-particle α-alumina having a diameter of 0.3 μm or more and 2.0 μm or less, and boric acid as a low-melting substance.
【請求項2】 前記小粒子αアルミナと前記大粒子αア
ルミナの配合割合が、2:8から8:2の範囲であり、
前記ホウ酸の含有量が、αアルミナの総重量に対し、
0.5%以上、5%以下であることを特徴とする請求項
1に記載のアルミナ塗布組成物。
2. The compounding ratio of the small particle α-alumina and the large particle α-alumina is in a range of 2: 8 to 8: 2,
The content of the boric acid is, based on the total weight of α-alumina,
The alumina coating composition according to claim 1, wherein the content is 0.5% or more and 5% or less.
【請求項3】 水懸濁液であることを特徴とする請求項
1に記載のアルミナ塗布組成物。
3. The alumina coating composition according to claim 1, which is an aqueous suspension.
【請求項4】 ガラス管内面にアルミナの保護膜有し7
00℃以上の温度で加熱加工されて得られる蛍光ランプ
において、前記アルミナの保護膜が少なくとも平均粒径
の値が0.05μm以下である小粒子αアルミナと平均
粒径の値が0.3μm以上2.0μm以下である大粒子
αアルミナの混合物と、ホウ酸を含んでなることを特徴
とする蛍光ランプ
4. A protective film of alumina is provided on the inner surface of the glass tube.
In a fluorescent lamp obtained by heating at a temperature of 00 ° C. or more, the protective film of alumina has a small particle α-alumina having an average particle diameter of at least 0.05 μm or less and an average particle diameter of 0.3 μm or more. A fluorescent lamp comprising a mixture of large-particle α-alumina having a size of 2.0 μm or less and boric acid.
JP08031194A 1994-04-19 1994-04-19 Alumina coating composition and fluorescent lamp coated with the same Expired - Fee Related JP3152272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08031194A JP3152272B2 (en) 1994-04-19 1994-04-19 Alumina coating composition and fluorescent lamp coated with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08031194A JP3152272B2 (en) 1994-04-19 1994-04-19 Alumina coating composition and fluorescent lamp coated with the same

Publications (2)

Publication Number Publication Date
JPH07288103A JPH07288103A (en) 1995-10-31
JP3152272B2 true JP3152272B2 (en) 2001-04-03

Family

ID=13714727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08031194A Expired - Fee Related JP3152272B2 (en) 1994-04-19 1994-04-19 Alumina coating composition and fluorescent lamp coated with the same

Country Status (1)

Country Link
JP (1) JP3152272B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496464B2 (en) * 2003-03-31 2010-07-07 東芝ライテック株式会社 Fluorescent lamp and lighting device
EP1524683A3 (en) * 2003-09-24 2008-02-27 Toshiba Lighting & Technology Corporation Fluorescent lamp and lighting appliance using thereof
JP4775642B2 (en) * 2005-06-17 2011-09-21 東芝ライテック株式会社 Fluorescent lamp and lighting device
US7481963B2 (en) * 2005-06-28 2009-01-27 Osram Sylvania Inc. Method of reducing magnesium loss during sintering of aluminum oxide articles

Also Published As

Publication number Publication date
JPH07288103A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
US6576156B1 (en) Phosphors with nanoscale grain sizes and methods for preparing the same
JP5036975B2 (en) Nitrogen-containing phosphor, method for producing the same, and light-emitting device
KR100717936B1 (en) Process for preparing novel blue phosphor with improved mobility for reducing color coordination variation of BLU Lamp and blue phosphor prepared therefrom
US4121132A (en) Phosphor coating method and resulting fluorescent lamp
JP3152272B2 (en) Alumina coating composition and fluorescent lamp coated with the same
JP4702565B2 (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP3430971B2 (en) Manufacturing method of fluorescent lamp
JP2760202B2 (en) Phosphor coating solution and fluorescent lamp
JPH10330746A (en) Vacuum ultraviolet ray exciting emission phosphor and its production
JP3391362B2 (en) Binder slurry and immediate lighting fluorescent lamp using the same
JPS62132990A (en) Production of fluorescent material
JP4311016B2 (en) Binder and fluorescent lamp using the same
JP2637145B2 (en) Phosphors and fluorescent lamps
JP3137683B2 (en) Fluorescent lamp
JP3915508B2 (en) Compact fluorescent lamp
JP3779409B2 (en) Phosphor particles and fluorescent lamp
JP2008123829A (en) Binder and fluorescent lamp using the same
CN115536439B (en) Luminous ceramic tile sintered at one time at high temperature and preparation method thereof
JPH10298548A (en) Light-emitting fluorescent material when subjected to vacuum ultraviolet excitation and its production
JP3915482B2 (en) Method for producing inorganic phosphor
KR100431458B1 (en) Blue phosphor of a high performance according to site selectively chemical reaction and method for preparing the same
JP3965838B2 (en) Color fluorescent lamp
JP3755285B2 (en) Iron-activated lithium aluminate phosphor and its fluorescent lamp
JP2002038147A (en) Green phosphor and light-emitting device using the same
JP2601348B2 (en) High color rendering fluorescent lamp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees