JP3145286B2 - Blow molding method - Google Patents

Blow molding method

Info

Publication number
JP3145286B2
JP3145286B2 JP29387495A JP29387495A JP3145286B2 JP 3145286 B2 JP3145286 B2 JP 3145286B2 JP 29387495 A JP29387495 A JP 29387495A JP 29387495 A JP29387495 A JP 29387495A JP 3145286 B2 JP3145286 B2 JP 3145286B2
Authority
JP
Japan
Prior art keywords
air
mold
pressure
hollow molded
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29387495A
Other languages
Japanese (ja)
Other versions
JPH09131784A (en
Inventor
著 野々村
健二 一ノ戸
憲一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP29387495A priority Critical patent/JP3145286B2/en
Priority to PCT/JP1997/000539 priority patent/WO1998038027A1/en
Priority to EP97904640A priority patent/EP0919355B1/en
Priority claimed from PCT/JP1997/000539 external-priority patent/WO1998038027A1/en
Priority to TW086102421A priority patent/TW316871B/zh
Publication of JPH09131784A publication Critical patent/JPH09131784A/en
Application granted granted Critical
Publication of JP3145286B2 publication Critical patent/JP3145286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/66Cooling by refrigerant introduced into the blown article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/62Venting means
    • B29C2049/6271Venting means for venting blowing medium, e.g. using damper or silencer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C2049/6606Cooling the article
    • B29C2049/6607Flushing blown articles
    • B29C2049/6615Flushing blown articles and exhausting through the blowing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6604Thermal conditioning of the blown article
    • B29C2049/6606Cooling the article
    • B29C2049/6607Flushing blown articles
    • B29C2049/6646Flushing blown articles while keeping the final blowing pressure in the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • B29C2049/7832Blowing with two or more pressure levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック製品
のブロー成形に関し、詳しくは、金型および中空成形品
の内部から冷却を行うブロー成形方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to blow molding of plastic products, and more particularly to a blow molding method for cooling a mold and a hollow molded product from the inside.

【0002】[0002]

【従来の技術】ブロー成形は、押出機から出たパリソン
と呼ばれる筒状の溶融樹脂を半割りした金型で挟み込ん
だ後、ブローピンにてエアをパリソン内に吹き込み、膨
らませて金型キャビティ形状を付与して、該金型にて冷
却・固化させて、所望の中空成形品を得るものである。
2. Description of the Related Art In blow molding, after a cylindrical molten resin called a parison coming out of an extruder is sandwiched between halves of a mold, air is blown into the parison with a blow pin to expand the mold cavity shape. It is applied and cooled and solidified in the mold to obtain a desired hollow molded article.

【0003】上記ブロー成形においては、ボトル等の如
き中空成形品の外側は、冷水が循環するようになされた
金型に接するため冷却されるが、内側は断熱状態となり
冷却されない。このように、上記中空成形品内部の冷却
を行わない場合には、該中空成形品内部の圧力は導入す
るエアの元圧となり、該中空成形品を金型に密着させて
冷却させることができるが、金型からの冷却効果しか得
られないため、冷却効率が悪い。
In the above blow molding, the outside of a hollow molded article such as a bottle is cooled because it contacts a mold in which cold water is circulated, but the inside is insulated and not cooled. As described above, when the inside of the hollow molded article is not cooled, the pressure inside the hollow molded article becomes the original pressure of the air to be introduced, and the hollow molded article can be cooled by being brought into close contact with the mold. However, since only the cooling effect from the mold can be obtained, the cooling efficiency is poor.

【0004】そこで、冷却時間を短縮するために、中空
成形品内の圧力を所定圧力に保持し、該中空成形品内に
エアを吹込ながら排気することにより、中空成形品を内
部からも冷却するようにした方法が、特開平3−133
13号公報に開示されている。
Therefore, in order to shorten the cooling time, the pressure in the hollow molded article is maintained at a predetermined pressure, and the hollow molded article is evacuated while blowing air into the hollow molded article, thereby cooling the hollow molded article from the inside. The method described above is disclosed in Japanese Patent Laid-Open No. 3-133.
No. 13 discloses this.

【0005】また、特開平3−222714号公報に
は、内部冷却効率をさらに向上させるために、エアを導
入するエア吹込管と中空成形品内部のエアを排出する排
出管の位置を離すことにより、中空成形品全体にエアが
流れるようにしたものが開示されている。さらに、特開
平5−104615号公報には、エア吹込口が吹込エア
圧力により回転することにより、該エアを中空成形品全
体に吹き付けるようにしたものが開示されている。
Japanese Patent Laid-Open Publication No. Hei 3-222714 discloses that, in order to further improve the internal cooling efficiency, the position of an air blowing pipe for introducing air and a position of a discharging pipe for discharging air inside a hollow molded product are increased. A configuration in which air flows through the entire hollow molded article is disclosed. Further, Japanese Patent Application Laid-Open No. 5-104615 discloses a configuration in which an air blowing port is rotated by blowing air pressure to blow the air to the entire hollow molded article.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、エアを
吹込みながら排気を行った場合は、中空成形品内部の圧
力はエアの元圧より低くなる。このため、パリソンを金
型に押しつける力は、内部冷却を行わない場合に比べて
小さくなり、該金型からの冷却効果は、内部冷却を行わ
ない場合よりも低下してしまう。
However, when the air is exhausted while blowing air, the pressure inside the hollow molded article becomes lower than the original pressure of the air. Therefore, the force for pressing the parison against the mold is smaller than when the internal cooling is not performed, and the cooling effect from the mold is lower than when the internal cooling is not performed.

【0007】つまり、これまでの内部冷却方法では、内
部からの冷却効果が加わる反面、金型からの冷却効果が
低下し、充分な冷却効果を得ることができない。
That is, in the conventional internal cooling method, a cooling effect from the inside is added, but a cooling effect from the mold is reduced, and a sufficient cooling effect cannot be obtained.

【0008】従って、本発明の目的は、金型からの冷却
効果と中空成形品内部からの冷却効果を共に有効なもの
として、大きな冷却効果を得て中空成形品をブロー成形
することができるブロー成形方法を提供することにあ
る。
[0008] Accordingly, an object of the present invention is to provide a blow molding that can obtain a large cooling effect and blow-mold a hollow molded article by making the cooling effect from the mold and the cooling effect from the inside of the hollow molded article both effective. It is to provide a molding method.

【0009】[0009]

【課題を解決するための手段】本願出願人は、上記の目
的を達成すべく、鋭意検討した結果、中空成形品の内部
ガス圧力をある範囲に設定することで、金型からの冷却
効果を低下させることなく、しかも規定量以上のエア等
の冷却ガスで内部冷却することにより、中空成形品の内
外からの冷却効果を効率よくかつ充分に発揮させること
ができることを知見した。
Means for Solving the Problems The applicant of the present invention has conducted intensive studies in order to achieve the above object, and as a result, by setting the internal gas pressure of a hollow molded product within a certain range, the cooling effect from the mold has been reduced. It has been found that the cooling effect from the inside and outside of the hollow molded article can be efficiently and sufficiently exhibited by cooling the inside of the hollow molded article with the specified amount or more of cooling gas such as air without lowering.

【0010】本発明は、上記知見に基づいてなされたも
ので、金型内でパリソンにガスを吹き込み、該パリソン
を膨らませて金型成形部に密着させることにより中空成
形品を成形し、該中空成形品内部のガスの排気及び該金
型の冷却により、該中空成形品を冷却するようにしたブ
ロー成形方法において、上記中空成形品の内部ガス圧力
を5〜8kgf/cm2 (G)に設定するとともに、F
≧10×W[F:ガス流量(Nl/min) W:中空
成形品重量(g)]を満たす該ガスを吹込ながら排気す
ることを特徴とするブロー成形方法を提供するものであ
る。
[0010] The present invention has been made based on the above findings, and blows a gas into a parison in a mold, inflates the parison, and makes the parison adhere to a mold forming portion to form a hollow molded product. Exhaust of gas inside molded articles and gold
In a blow molding method in which the hollow molded article is cooled by cooling the mold, the internal gas pressure of the hollow molded article is set to 5 to 8 kgf / cm 2 (G), and F
≧ 10 × W [F: gas flow rate (Nl / min) W: hollow molded article weight (g)] The blow molding method is characterized in that the gas is exhausted while blowing the gas.

【0011】中空成形品の内部ガス圧力およびガス流量
を上述の範囲とするのは、次の実験結果に基づく。
The reason why the internal gas pressure and the gas flow rate of the hollow molded article are set in the above ranges is based on the following experimental results.

【0012】図2は、内部冷却を行わず、エアの元圧
(ブロー圧力)を変更して、中空成形品の取出温度を測
定したものである。成形条件は、次のとおりである。 ボトル容量 200ml ボトル重量 20g 樹脂 高密度ポリエチレン(HDPE) 樹脂厚み 胴部0.5〜1.5mm、底部1〜3mm ブロー時間 6秒 排気時間 1秒 吹込エア温度 20℃ 金型冷却水温度 17℃
FIG. 2 shows the measurement of the removal temperature of a hollow molded product by changing the original pressure of air (blow pressure) without performing internal cooling. The molding conditions are as follows. Bottle capacity 200 ml Bottle weight 20 g Resin High-density polyethylene (HDPE) Resin thickness Body 0.5-1.5 mm, bottom 1-3 mm Blow time 6 seconds Exhaust time 1 second Blow air temperature 20 ° C Mold cooling water temperature 17 ° C

【0013】図2に示すように、ボトル内の圧力が低い
ほどパリソンを金型に押しつける力が低下するため、該
金型との有効接触面積が少なくなる。また、冷却が進行
して成形品が収縮するため、成形品と金型との隙間が大
きくなる。このように、エアの元圧が低くなると、金型
からの冷却効果が低下し、取出温度が高くなる傾向を示
す。
As shown in FIG. 2, the lower the pressure in the bottle, the lower the force of pressing the parison against the mold, and the smaller the effective contact area with the mold. Further, since the molded product shrinks as the cooling proceeds, the gap between the molded product and the mold becomes large. As described above, when the source pressure of the air decreases, the cooling effect from the mold decreases, and the removal temperature tends to increase.

【0014】そこで本願出願人は、この結果から、エア
の元圧(ブロー圧力)を5〜8kgf/cm2 (G)以
上に設定すれば、金型からの冷却効果は一定になること
を見出した。これは、樹脂を金型に押しつける力が5〜
8kgf/cm2 (G)以上では、溶融状態の樹脂では
金型との有効接触面積は変わらなくなり、また、成形品
が収縮しても該成形品が金型から離れなくなると考えら
れるため、該金型からの冷却効果は一定になる。
From this result, the applicant of the present application has found that if the original pressure of air (blow pressure) is set to 5 to 8 kgf / cm 2 (G) or more, the cooling effect from the mold becomes constant. Was. This means that the force to press the resin against the mold is 5
At 8 kgf / cm 2 (G) or more, the molten resin does not change the effective contact area with the mold, and the molded article does not separate from the mold even if the molded article shrinks. The cooling effect from the mold becomes constant.

【0015】図3と図4は、いずれも内部冷却を行った
場合に、エアの元圧を5kgf/cm2 (G)又は10
kgf/cm2 (G)とし、ボトル内の圧力を変更し
て、取出温度を測定したものである。なお、図3及び図
4において、エアの元圧5kgf/cm2 (G)におい
て、ボトル内の圧力5kgf/cm2 (G)の場合は、
内部冷却しない状態であり、エア元圧は10kgf/c
2 (G)において、ボトル内の圧力10kgf/cm
2 (G)の場合は、内部冷却しない状態である。
FIGS. 3 and 4 show that when the internal cooling is performed, the original pressure of the air is reduced to 5 kgf / cm 2 (G) or 10 kgf / cm 2 (G).
kgf / cm 2 (G), the extraction temperature was measured by changing the pressure in the bottle. In FIGS. 3 and 4, when the original pressure of air is 5 kgf / cm 2 (G) and the pressure in the bottle is 5 kgf / cm 2 (G),
No internal cooling, air source pressure is 10kgf / c
In m 2 (G), the pressure in the bottle is 10 kgf / cm
In the case of 2 (G), the internal cooling is not performed.

【0016】まず、ボトル元圧が、5kgf/cm
2 (G)の場合について見てみる。ボトル内の圧力が2
〜5kgf/cm2 (G)までは、内部からの冷却効果
が金型からの冷却効果の低下よりまさるため取出温度は
低くなる。例えば、ボトル内の圧力4kgf/cm
2 (G)にして、エアを100Nl/minにした場合
の取出温度は、内部冷却を行わない場合より、10〜1
5℃低くなる。
First, the original pressure of the bottle is 5 kgf / cm
Let's look at the case of 2 (G). The pressure in the bottle is 2
Up to kg5 kgf / cm 2 (G), the cooling effect from the inside is better than the cooling effect from the mold, and the removal temperature is lower. For example, the pressure inside the bottle is 4 kgf / cm
2 (G), the extraction temperature when the air is set to 100 Nl / min is 10 to 1 times higher than when the internal cooling is not performed.
5 ° C lower.

【0017】ボトル内の圧力が2kgf/cm2 (G)
以下になると、エアは、200〜230Nl/min流
れているが、内部からの冷却効果が金型からの冷却効果
の低下に相殺されるため見掛けでは取出温度は変わらな
い。この場合、取出温度は内部冷却しない場合より、1
5℃低くなる。
The pressure inside the bottle is 2 kgf / cm 2 (G)
Below this, the air is flowing at 200 to 230 Nl / min, but the removal temperature does not change apparently because the cooling effect from the inside is offset by the decrease in the cooling effect from the mold. In this case, the extraction temperature is 1
5 ° C lower.

【0018】しかし、エアの元圧を10kgf/cm2
(G)まで高くして、ボトル内の圧力を6kgf/cm
2 (G)に保持した状態にて、エアを300Nl/mi
n流した場合には、取出温度は内部冷却しない場合よ
り、20℃〜30℃低くすることができた。ただし、ボ
トル内の圧力を4kgf/cm2 (G)に保持した状態
にした場合には、金型からの冷却効果が低下するため、
エアを360Nl/min流しても取出温度は変わらな
いことから、エアの無駄使いとなる。
However, when the original pressure of the air is 10 kgf / cm 2
(G), and the pressure inside the bottle is increased to 6 kgf / cm.
2 While holding at (G), supply air at 300 Nl / mi
When n-flow was performed, the removal temperature could be lowered by 20 ° C. to 30 ° C. as compared with the case where the internal cooling was not performed. However, when the pressure in the bottle is maintained at 4 kgf / cm 2 (G), the cooling effect from the mold is reduced.
Even if the air is flowed at 360 Nl / min, the extraction temperature does not change, so that the air is wasted.

【0019】即ち、ボトル内の圧力を金型からの冷却効
率が最大となるように設定した状態にてボトル内部に多
量のエアを吹込、排気することにより、エアを無駄なく
使用して大きな冷却効果が得られるのである。
That is, a large amount of air is blown into and exhausted from the inside of the bottle while the pressure inside the bottle is set so that the cooling efficiency from the mold is maximized. The effect is obtained.

【0020】次に、内部冷却に必要なエア流量について
考える。図5は、図3及び図4におけるエア流量と吹込
エアと排気エアの温度差の関係を示したものである。エ
アによる内部冷却を行った場合の樹脂からエアへの熱移
動速度は、樹脂からエアの熱伝達率および樹脂表面の温
度とエアの温度差により決まる。
Next, consider the air flow required for internal cooling. FIG. 5 shows the relationship between the air flow rate and the temperature difference between the blown air and the exhaust air in FIGS. The heat transfer speed from the resin to the air when the internal cooling is performed by the air is determined by the heat transfer coefficient from the resin to the air, the temperature of the resin surface, and the temperature difference of the air.

【0021】よって、エア流量を増加させると、樹脂表
面近傍の境膜が薄くなり、樹脂からエアへの熱移動量が
増加して、エアの温度上昇量は大きくなるが、樹脂表面
の温度とエアの温度差も小さくなることから、エア温度
上昇量は25℃でほぼ一定、即ち排気エア温度は45℃
でほぼ一定となる。
Therefore, when the air flow rate is increased, the boundary film near the resin surface becomes thinner, the amount of heat transfer from the resin to the air increases, and the temperature rise of the air increases. Since the temperature difference of the air is also small, the amount of increase in the air temperature is almost constant at 25 ° C, that is, the exhaust air temperature is 45 ° C
Becomes almost constant.

【0022】また、何秒内部冷却したら取出温度はどれ
ほど低下するかということは、中空成形品の肉厚や中空
成形品の容量等と関係するものであるが、肉厚が0.5
〜3mmまでのボトルでは、内部冷却を7秒前後行った
場合の取出温度は、内部冷却を行わない場合の取出温度
より20〜30℃低くなる。
The number of seconds after internal cooling and how much the take-out temperature decreases depends on the thickness of the hollow molded product, the capacity of the hollow molded product, and the like.
For bottles up to 〜3 mm, the removal temperature when internal cooling is performed for about 7 seconds is 20-30 ° C. lower than the removal temperature when internal cooling is not performed.

【0023】以上より、エアと樹脂の熱収支から必要な
エア流量を考える。
From the above, the necessary air flow rate is considered from the heat balance between the air and the resin.

【0024】即ち、エアが系外に持ち去る熱量は次のよ
うになる。 エアの比熱 0.25cal/g−℃ エア密度 1.2×10-3g/cm3 エア温度上昇量 25℃ 金型内冷却時間 7秒 エア流量 F Nl/min とした場合 0.25cal/g−℃×1.2×10-3g/cm3 ×F Nl/min×2 5℃×1000cm3 /l×7秒÷60s/min ・・・・・(1)式 一方、樹脂から奪われた熱量は、 樹脂の比熱を0.5cal/g−℃ 対象とするボトルの重量をWg 内部冷却によりボトルの取出温度が20℃低下するとし
た場合、 0.5cal/g−℃×Wg×20℃ ・・・・・(2)式 以上より、(1)式と(2)式が等しいことから、必要
なエア流量は次のようになる。 F≧10×W ・・・・・(3)式 例えば、本事例の場合には、W=20gであるので、F
≧200Nl/minとなる。そして、また、図5にお
いて、F≧200Nl/minあれば、エア温度上昇量
が一定となり、単位体積当たりのエアが樹脂から熱を奪
い取る能力が最大となっていることがわかる。
That is, the amount of heat that the air carries out of the system is as follows. Specific heat of air 0.25 cal / g- ° C Air density 1.2 × 10 -3 g / cm 3 Air temperature rise amount 25 ° C Cooling time in mold 7 seconds Air flow rate F Nl / min 0.25 cal / g − ° C. × 1.2 × 10 −3 g / cm 3 × F Nl / min × 25 5 ° C. × 1000 cm 3 / l × 7 seconds ÷ 60 s / min Formula (1) On the other hand, deprived of the resin The specific heat of the resin is 0.5 cal / g- ° C. The weight of the target bottle is Wg. Assuming that the removal temperature of the bottle is reduced by 20 ° C due to internal cooling, 0.5 cal / g- ° C × Wg × 20 ° C ... (2) From the above, since equations (1) and (2) are equal, the required air flow rate is as follows. F ≧ 10 × W Equation (3) For example, in this case, W = 20 g, so F
≧ 200 Nl / min. Further, in FIG. 5, it can be seen that if F ≧ 200 Nl / min, the air temperature rise amount is constant, and the ability of air per unit volume to remove heat from the resin is maximum.

【0025】これまでのブロー成形では、エア元圧は4
〜7kgf/cm2 (G)で使用されていた。よって、
内部冷却を行う場合にボトルの内部ガス圧力を5〜8k
gf/cm2 (G)に設定した場合には、エア流量が少
なすぎて、十分な内部冷却効果を得ることができなかっ
た。一方、多量のエアを吹込・排気した場合には、ボト
ル内の圧力が低下して、金型からの冷却効率が悪くなっ
ていた。
In the conventional blow molding, the air source pressure is 4
77 kgf / cm 2 (G). Therefore,
When performing internal cooling, set the internal gas pressure of the bottle to 5 to 8k.
When it was set to gf / cm 2 (G), the air flow rate was too small, and a sufficient internal cooling effect could not be obtained. On the other hand, when a large amount of air is blown and exhausted, the pressure in the bottle is reduced, and the cooling efficiency from the mold is deteriorated.

【0026】元来、4〜7kgf/cm2 (G)のエア
元圧を使用していた場合に、ボトルの内部ガス圧力を5
〜8kgf/cm2 (G)に設定して、(3)式を満た
すような多量のエアを流すことはできなかったのであ
る。
Originally, when an air source pressure of 4 to 7 kgf / cm 2 (G) was used, the internal gas pressure of the bottle was reduced to 5%.
It was not possible to flow a large amount of air satisfying the expression (3) by setting the pressure to に 8 kgf / cm 2 (G).

【0027】そこで、例えば、エア元圧を10kgf/
cm2 (G)まで上げたりすることにより、ボトル内部
の圧力を5〜8kgf/cm2 (G)の状態にて、
(3)式を満たすようなエアを流すことにより、ボトル
の内外から効率よくかつ大きな冷却効果を得ることがで
きるため、取出温度をより低くすることが可能となる。
Therefore, for example, the air source pressure is set to 10 kgf /
By raising up cm 2 (G), at a pressure inside the bottle 5~8kgf / cm 2 of (G) state,
By flowing air that satisfies the expression (3), a large and effective cooling effect can be obtained efficiently from inside and outside of the bottle, so that the discharge temperature can be further lowered.

【0028】尚、本発明においては、エア温度が20℃
の室温エアを用いた場合であるが、冷凍エアを用いた場
合には、取出温度を更に低くすることができる。
In the present invention, the air temperature is 20 ° C.
This is the case where room temperature air is used, but when frozen air is used, the extraction temperature can be further lowered.

【0029】[0029]

【発明の実施の形態】以下、本発明のブロー成形方法の
一実施形態について、図面を参照して説明する。図1は
本実施形態のブロー成形方法に用いた内部冷却装置のエ
ア回路図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the blow molding method of the present invention will be described below with reference to the drawings. FIG. 1 is an air circuit diagram of the internal cooling device used in the blow molding method of the present embodiment.

【0030】本実施形態のブロー成形方法は、図1に示
すように、金型7内でパリソンにガスを吹き込み、該パ
リソンを膨らませて金型成形部に密着させることにより
中空成形品6を成形し、該中空成形品6内部のガスを排
気して冷却するようにしたブロー成形方法である。
In the blow molding method of the present embodiment, as shown in FIG. 1, a gas is blown into a parison in a mold 7, and the parison is inflated to form a hollow molded article 6 by being in close contact with a mold forming section. This is a blow molding method in which the gas inside the hollow molded article 6 is exhausted and cooled.

【0031】本実施形態のブロー成形方法について更に
詳しく説明する。図1に示すエア回路は、主としてエア
等のガスをパリソンに吹き込む吹込側の経路と、パリソ
ンに吹き込まれたガスを排気する排気側の経路からなっ
ている。吹込側の経路は、エア供給元1と金型7のノズ
ル部8に打ち込まれたブローピン5とに亘って設けられ
る第1の吹込側経路14a、第2の吹込側経路14b、
第3の吹込側経路14cよりなる。
The blow molding method of the present embodiment will be described in more detail. The air circuit shown in FIG. 1 mainly includes a path on the blowing side for blowing gas such as air into the parison, and a path on the discharging side for discharging gas blown into the parison. The blow-side path includes a first blow-side path 14a, a second blow-side path 14b provided between the air supply source 1 and the blow pin 5 driven into the nozzle portion 8 of the mold 7.
The third blowing path 14c is provided.

【0032】第1の吹込側経路14aと第2の吹込側経
路14bの間には、電磁弁3が設けられている。また、
第2の吹込側経路14bと第3の吹込側経路14cの間
には、中空成形品6内及び配管内のエアの排気時間を短
縮するためのクイックイグゾースト4が設けられてい
る。そして、上記エア供給元1と電磁弁3との間には、
エアの導入を防止する止め弁2が設けられている。
The solenoid valve 3 is provided between the first blowing side path 14a and the second blowing side path 14b. Also,
A quick exhaust 4 is provided between the second blow-side path 14b and the third blow-side path 14c to reduce the time required to exhaust air in the hollow molded product 6 and in the piping. And between the said air supply source 1 and the solenoid valve 3,
A stop valve 2 for preventing the introduction of air is provided.

【0033】排気側の経路は、ブローピン5とサイレン
サー11とに亘って設けられる排気経路15からなる。
この排気経路15には、上記サイレンサー11に近接し
た位置に、中空成形品6内の圧力を一定範囲内に保つた
めのリリーフ弁10が設けられている。
The exhaust path includes an exhaust path 15 provided between the blow pin 5 and the silencer 11.
The exhaust path 15 is provided with a relief valve 10 at a position close to the silencer 11 for keeping the pressure in the hollow molded product 6 within a certain range.

【0034】なお、上記第3の吹込側経路14cの途中
と、排気経路15の途中に、それぞれ圧力センサー12
が設けられている。更に、リリーフ弁10とサイレンサ
ー11の間にはエア流量計13が設けられている。
The pressure sensors 12 are provided in the middle of the third blowing side path 14c and the middle of the exhaust path 15, respectively.
Is provided. Further, an air flow meter 13 is provided between the relief valve 10 and the silencer 11.

【0035】上記した内部冷却装置を備えたブロー成形
装置を用いて、ブロー成形を行うには、次のようにす
る。先ず、押出機から出たパリソン(図示は省略する)
と呼ばれる筒状の溶融樹脂を半割にした金型7で挟み、
カッター(図示は省略する)にて切断する。その後、ブ
ローピン5が金型7のノズル部8に打ち込まれる。な
お、金型7には、冷却水を循環させるための冷却水循環
用孔9が複数設けられている。
In order to perform blow molding using the blow molding apparatus having the above-mentioned internal cooling device, the following is performed. First, the parison that came out of the extruder (not shown)
Sandwiched by a mold 7 made of half of a cylindrical molten resin called
Cut with a cutter (not shown). Thereafter, the blow pin 5 is driven into the nozzle portion 8 of the mold 7. The mold 7 is provided with a plurality of cooling water circulation holes 9 for circulating cooling water.

【0036】そして、電磁弁3が開となり、元圧10k
gf/cm2 (G)のエアがブローピン5の先端よりパ
リソン内に吹き込まれる。すると、パリソンが膨らみ金
型成形部に押しつけられて、中空成形品6が成形され
る。中空成形品6内の圧力がリリーフ弁10の設定値ま
で達すると、該中空成形品6内に吹き込まれたエアは排
気側経路15を通って、リリーフ弁10によりサイレン
サー11から排気される。本発明では、リリーフ弁10
の圧力は、5〜8kgf/cm2 (G)に設定される。
Then, the solenoid valve 3 is opened, and the original pressure of 10 k
Air of gf / cm 2 (G) is blown into the parison from the tip of the blow pin 5. Then, the parison swells and is pressed against the mold forming section, whereby the hollow molded article 6 is formed. When the pressure in the hollow molded product 6 reaches the set value of the relief valve 10, the air blown into the hollow molded product 6 passes through the exhaust side path 15 and is exhausted from the silencer 11 by the relief valve 10. In the present invention, the relief valve 10
Is set to 5 to 8 kgf / cm 2 (G).

【0037】また、中空成形品6内の圧力は、第1の吹
込側経路14a、第2の吹込側経路14b、第3の吹込
側経路14c、或いは排気側経路15に設けられた圧力
センサー12が5〜8kgf/cm2 (G)となるよう
に、バルブ等の流量調整弁の開度が調整される。
The pressure in the hollow molded article 6 is measured by a pressure sensor 12 provided in the first blowing side path 14a, the second blowing side path 14b, the third blowing side path 14c, or the exhaust side path 15. Is adjusted to be 5 to 8 kgf / cm 2 (G).

【0038】そして、所定時間、エアが吹込まれながら
排気された後、電磁弁3が閉となる。上記第2の吹込側
経路内14bの圧力が低下すると、第3の吹込側経路内
14cとの圧力差によりクイックイグゾースト4が作動
して、該第3の吹込側経路14cと中空成形品6及び排
気側経路15に存在するエアが排気される。
Then, after the air is exhausted while being blown in for a predetermined time, the solenoid valve 3 is closed. When the pressure in the second blow-side passage 14b decreases, the quick exhaust 4 operates due to the pressure difference between the third blow-side passage 14c and the third blow-side passage 14c and the hollow molded article. 6 and the air existing in the exhaust side path 15 are exhausted.

【0039】そして、中空成形品6内の圧力が大気圧ま
で低下した後、金型7のノズル部8に打ち込まれていた
ブローピン5が金型7から離れ、該金型7が開いて中空
成形品6が取り出される。
After the pressure in the hollow molded article 6 has been reduced to the atmospheric pressure, the blow pin 5 that has been driven into the nozzle 8 of the mold 7 separates from the mold 7 and the mold 7 opens to form the hollow mold. Article 6 is taken out.

【0040】[0040]

【実施例】次に、上述した内部冷却装置を用いて、実際
にボトルを成形した。成形条件は、以下の通りである。 ボトル容量 200ml ボトル重量 20g 樹脂 高密度ポリエチレン(HDPE) 樹脂厚み 胴部0.5〜1.5mm、底部1〜3mm 吹込エア温度 20℃ 金型冷却水温度 17℃
EXAMPLE Next, a bottle was actually formed using the above-described internal cooling device. The molding conditions are as follows. Bottle capacity 200ml Bottle weight 20g Resin High-density polyethylene (HDPE) Resin thickness Body 0.5-1.5mm, bottom 1-3mm Blow air temperature 20 ℃ Mold cooling water temperature 17 ℃

【0041】図6は、内部冷却を行わない場合、エアの
元圧を5kgf/cm2 (G)、ボトル内の圧力を4k
gf/cm2 (G)、エア流量100Nl/minに設
定して内部冷却を行った場合及びエアの元圧を10kg
f/cm2 (G)、ボトル内の圧力を6kgf/cm2
(G)、エア流量300Nl/minに設定して内部冷
却を行った場合の冷却時間(ブロー時間+排気時間)と
底部の取出温度の結果を示す。
FIG. 6 shows that when the internal cooling is not performed, the original pressure of the air is 5 kgf / cm 2 (G) and the pressure in the bottle is 4 kf / cm 2.
gf / cm 2 (G), when the internal flow rate is set to 100 Nl / min and the internal cooling is performed, and when the original pressure of the air is 10 kg
f / cm 2 (G), the pressure in the bottle is 6 kgf / cm 2
(G) shows the results of the cooling time (blow time + evacuation time) and the temperature at the bottom when the internal cooling is performed at an air flow rate of 300 Nl / min.

【0042】これより、内部冷却を行わない場合と比較
して、エアの元圧を5kgf/cm 2 (G)、ボトル内
の圧力を4kgf/cm2 (G)、エア流量100Nl
/minにて内部冷却を行った場合には、冷却時間は約
15%(取出温度105℃を基準にした場合、7秒から
6.1秒に短縮)短縮されるが、エアの元圧10kgf
/cm2 (G)、ボトル内の圧力を6kgf/cm
2 (G)、エア流量300Nl/minに設定して内部
冷却を行った場合には、冷却時間は40%(7秒から
4.4秒に短縮)近くまで短縮される。
From this, it is compared with the case where the internal cooling is not performed.
And the original pressure of air is 5kgf / cm Two(G) inside the bottle
Pressure of 4kgf / cmTwo(G), air flow rate 100Nl
/ Min, the cooling time is about
15% (from 7 seconds based on 105 ° C extraction temperature)
6.1 seconds), but the original pressure of air is 10kgf
/ CmTwo(G), the pressure in the bottle is 6 kgf / cm
Two(G), set the air flow rate to 300Nl / min and
When cooling, the cooling time is 40% (from 7 seconds)
(Shortened to 4.4 seconds).

【0043】上記実験結果からも明らかなように、中空
成形品の内部ガス圧力を5〜8kgf/cm2 (G)の
状態にて、前記(3)式を満たすようなエア流量、即ち
上記実験の場合では、200Nl/min以上のエア流
量を吹込ながら排気することによって、金型からの冷却
効果を最大にすることができ、しかも中空成形品の内部
からの冷却も効率よく行え、冷却時間を大幅に短縮する
ことができる。
As is clear from the above experimental results, when the internal gas pressure of the hollow molded article is 5 to 8 kgf / cm 2 (G), the air flow rate satisfying the above equation (3), In the case of (1), by exhausting while blowing an air flow rate of 200 Nl / min or more, the cooling effect from the mold can be maximized, and the cooling from the inside of the hollow molded product can be efficiently performed, and the cooling time can be reduced. It can be greatly reduced.

【0044】本発明のブロー成形方法は、上述した実施
形態に限定されることなく、本発明の趣旨を逸脱しない
限り適宜変更が可能である。例えば、上述の実施形態で
は、圧力調整弁としてリリーフ弁10を用いたが、バル
ブ等の流量調整弁を用いても同様に中空成形品6内の圧
力を調整することができる。なお、この場合には、パリ
ソン内に吹き込まれたエアは吹込直後より逐次排気され
る。
The blow molding method of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, in the above-described embodiment, the relief valve 10 is used as the pressure adjusting valve, but the pressure in the hollow molded article 6 can be similarly adjusted by using a flow rate adjusting valve such as a valve. In this case, the air blown into the parison is sequentially exhausted immediately after blowing.

【0045】[0045]

【発明の効果】以上の説明からも明らかなように、本発
明のブロー成形法によれば、中空成形品の内部ガス圧力
を5〜8kgf/cm2 (G)に保持することにより、
金型からの冷却効果を最大に保持した状態にすることが
できる。また、この内部ガス圧力に加えて、F≧10×
W[F:エア流量(Nl/min) W:中空成形品重
量(g)]を満たすエアを吹込ながら排気することによ
り、成形品内部からの大きな冷却を得ることができる。
As is apparent from the above description, according to the blow molding method of the present invention, by maintaining the internal gas pressure of the hollow molded product at 5 to 8 kgf / cm 2 (G),
The cooling effect from the mold can be kept at the maximum. In addition to the internal gas pressure, F ≧ 10 ×
By exhausting while blowing air that satisfies W [F: air flow rate (Nl / min) W: hollow molded article weight (g)], large cooling from inside the molded article can be obtained.

【0046】従って、本発明によれば、中空成形品の外
側からは金型により、中空成形品の内側からはエアによ
り、各々十分な冷却効果を引き出すことができるため、
エアを無駄に使用することもなく、大きな冷却効果を得
ることができ、冷却時間を大幅に短縮させて生産性の向
上をはかることができる。
Therefore, according to the present invention, a sufficient cooling effect can be obtained from the outside of the hollow molded article by the mold and from the inside of the hollow molded article by the air.
A large cooling effect can be obtained without wasteful use of air, and the cooling time can be significantly shortened to improve productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のブロー成形方法に用いた内部冷却装置
におけるエア回路図である。
FIG. 1 is an air circuit diagram in an internal cooling device used in a blow molding method of the present invention.

【図2】エアの吹込・排気のない場合の取出温度とブロ
ー圧力の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between an extraction temperature and a blow pressure when air is not blown or exhausted.

【図3】エアを吹込・排気した場合のボトル内の圧力と
ボトル胴部分の取出温度の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a pressure inside a bottle and a temperature at which a bottle body is taken out when air is blown and exhausted.

【図4】エアを吹込・排気した場合のボトル内の圧力と
ボトル底部分の取出温度の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing the relationship between the pressure inside the bottle and the outlet temperature at the bottom of the bottle when air is blown and exhausted.

【図5】エア流量とエアの温度上昇量の関係を示す特性
図である。
FIG. 5 is a characteristic diagram showing a relationship between an air flow rate and an air temperature rise amount.

【図6】冷却時間と取出温度の関係を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing a relationship between a cooling time and an extraction temperature.

【符号の説明】[Explanation of symbols]

1 エア供給元 2 止め弁 3 電磁弁 4 クイックイグゾースト 5 ブローピン 6 中空成形品 7 金型 8 ノズル部 9 水管 10 リリーフ弁 11 サイレンサー 12 圧力センサー 13 流量計 14a、14b、14c 吹込経路 15 排気経路 DESCRIPTION OF SYMBOLS 1 Air supply source 2 Stop valve 3 Solenoid valve 4 Quick exhaust 5 Blow pin 6 Hollow molded product 7 Die 8 Nozzle part 9 Water pipe 10 Relief valve 11 Silencer 12 Pressure sensor 13 Flow meter 14a, 14b, 14c Blow path 15 Exhaust path

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−112624(JP,A) 特開 平4−77231(JP,A) 特開 平7−137117(JP,A) 特開 平5−92476(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 49/00 - 49/80 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-112624 (JP, A) JP-A-4-77231 (JP, A) JP-A-7-137117 (JP, A) JP-A-5-137 92476 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B29C 49/00-49/80

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金型内でパリソンにガスを吹き込み、該
パリソンを膨らませて金型成形部に密着させることによ
り中空成形品を成形し、該中空成形品内部のガスの排気
及び該金型の冷却により、該中空成形品を冷却するよう
にしたブロー 成形方法において、上記中空成形品の内部ガス圧力を5
〜8kgf/cm2 (G)に設定するとともに、 F≧10×W [F:ガス流量(Nl/min) W:中空成形品重量
(g)] を満たす該ガスを吹込ながら排気するようにしたことを
特徴とするブロー成形方法。
A hollow molded article is formed by blowing gas into a parison in a mold, inflating the parison and bringing the parison into close contact with a mold forming section, and exhausting gas inside the hollow molded article.
And a blow molding method for cooling the hollow molded article by cooling the mold, wherein the internal gas pressure of the hollow molded article is set to 5%.
88 kgf / cm 2 (G) and exhaust gas while blowing the gas satisfying F ≧ 10 × W [F: gas flow rate (Nl / min) W: hollow molded article weight (g)] A blow molding method characterized by the above-mentioned.
JP29387495A 1995-11-13 1995-11-13 Blow molding method Expired - Fee Related JP3145286B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29387495A JP3145286B2 (en) 1995-11-13 1995-11-13 Blow molding method
PCT/JP1997/000539 WO1998038027A1 (en) 1995-11-13 1997-02-25 Blow molding method
EP97904640A EP0919355B1 (en) 1995-11-13 1997-02-25 Blow molding method
TW086102421A TW316871B (en) 1995-11-13 1997-02-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29387495A JP3145286B2 (en) 1995-11-13 1995-11-13 Blow molding method
PCT/JP1997/000539 WO1998038027A1 (en) 1995-11-13 1997-02-25 Blow molding method

Publications (2)

Publication Number Publication Date
JPH09131784A JPH09131784A (en) 1997-05-20
JP3145286B2 true JP3145286B2 (en) 2001-03-12

Family

ID=17800279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29387495A Expired - Fee Related JP3145286B2 (en) 1995-11-13 1995-11-13 Blow molding method

Country Status (2)

Country Link
JP (1) JP3145286B2 (en)
TW (1) TW316871B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69723707T2 (en) * 1997-02-25 2004-01-29 Kao Corp blow molding
JP5072269B2 (en) * 2006-06-16 2012-11-14 ユキワ精工株式会社 Rotary table device
WO2020075267A1 (en) 2018-10-11 2020-04-16 株式会社青木固研究所 Stretch blow molding device and blow molding method

Also Published As

Publication number Publication date
JPH09131784A (en) 1997-05-20
TW316871B (en) 1997-10-01

Similar Documents

Publication Publication Date Title
US3814783A (en) Method for manufacturing sterile containers
JP3795276B2 (en) Method for the continuous production of double-walled tubes with tube sockets and apparatus for carrying out this method
WO2005123357A3 (en) Methods and systems for cooling molds
JP3145286B2 (en) Blow molding method
US3579620A (en) Blow molding
WO1998038027A1 (en) Blow molding method
EP0623448A1 (en) Thermoplastic resin molding process
JP3255485B2 (en) Blow molding machine
JPH08503431A (en) Method and apparatus for producing blow molded plastic products
JPH06297552A (en) Manufacture of resin blow molding container and molding die
JP2005028626A (en) Method and apparatus for molding resin sheet
JP3859330B2 (en) Method for producing molded body having high density skin layer
JP3005198B2 (en) In-mold label blow molding method
JP2530494B2 (en) Method for producing hollow plastic body
JPS634940A (en) Method for molding olefinic resin foamed particles in mold
JP2817437B2 (en) Blow molding method
JP2002529283A (en) Method for producing a filled rigid plastic container
JPH02225022A (en) Method and apparatus for blow molding
JP2928936B2 (en) Cooling method for blow molded products
WO1992002358A1 (en) Foam-molded item of olefinic synthetic resin and method of manufacturing the same
JPH032154Y2 (en)
JPH0541761U (en) Method for cooling parison for biaxial stretch blow molding
JPH0133318Y2 (en)
JPH1034753A (en) Manufacture of molding having high density skin layer
JP3636247B2 (en) Blow molding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees