JP3130708B2 - Sample defect evaluation method - Google Patents

Sample defect evaluation method

Info

Publication number
JP3130708B2
JP3130708B2 JP05209251A JP20925193A JP3130708B2 JP 3130708 B2 JP3130708 B2 JP 3130708B2 JP 05209251 A JP05209251 A JP 05209251A JP 20925193 A JP20925193 A JP 20925193A JP 3130708 B2 JP3130708 B2 JP 3130708B2
Authority
JP
Japan
Prior art keywords
sample
measured
photothermal displacement
defect
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05209251A
Other languages
Japanese (ja)
Other versions
JPH06265496A (en
Inventor
伸吾 住江
弘行 高松
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP05209251A priority Critical patent/JP3130708B2/en
Publication of JPH06265496A publication Critical patent/JPH06265496A/en
Application granted granted Critical
Publication of JP3130708B2 publication Critical patent/JP3130708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は試料の欠陥評価方法に係
り,詳しくは試料に周期的に強度変調した励起光を照射
し,これにより生じる試料表面の熱膨張振動を測定して
試料の欠陥等を評価する試料の欠陥評価方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a defect of a sample, and more particularly to a method of irradiating a sample with excitation light whose intensity is periodically modulated, and measuring the thermal expansion vibration of the sample surface caused by the irradiation. The present invention relates to a method for evaluating a defect of a sample for evaluating the like.

【0002】[0002]

【従来の技術】試料に周期的に強度変調した励起光を照
射すると,試料はこの光の吸収により発熱し,これによ
り熱膨張する。照射光は周期的に強度変調しているた
め,発熱による試料の温度変化は周期的となり,試料は
熱膨張振動をおこす。これらの熱応答を計測することに
より試料を評価する手法は光音響法ないしは光熱変位法
として知られている(特願平2−70967号等)。図
8は,上記光熱変位法による従来の試料の欠陥評価装置
A0の一例における概略構成を示す模式図である。図8
に示す如く,従来の試料の欠陥評価装置A0による評価
方法では,試料4に光熱変位をあたえる励起レーザとし
て半導体レーザ1を用いる。そして,半導体レーザ1へ
の注入電流の変化により,出射光を周波数Fで強度変調
する。この出射光をダイクロイックミラー2で反射さ
せ,レンズ3で集光し,試料4に照射する。この照射部
における試料4の光熱変位をレーザ光干渉計で計測す
る。レーザ光干渉計用レーザとしては,He−Neレー
ザ5を用い,この出射光を光周波数シフタ(音響光学変
調器)6により周波数差がFB なるビーム1,ビーム2
を生成する。ビーム1は,偏光ビームスプリッタ7,1
/4波長板8,ダイクロイックミラー2を透過し,レン
ズ3で集光し,試料4に入射する。ビーム1の試料4か
らの反射光は,再度1/4波長板8を通過することによ
り,偏光面が90度変化するため偏光ビームスプリッタ
7で今度は反射する。同様に,ビーム2は偏光ビームス
プリッタ7を透過する。これらのレーザ光は直交してい
るため偏光板9を透過させることにより,これらのビー
ムを干渉させ,この干渉光を光電変換器10で受光す
る。光電変換器10からの出力Vをフィルタ11を通
し,干渉光におけるビート波信号E1 を取り出す。信号
1 は次式で与えられる。 E1 =Acos(2πFB t+P(t)+φ(t)) …(1) ここで,Aは試料4や干渉光学系等に依存する値,P
(t)は試料4の光熱変位によるビーム1の位相変化,
φ(t)はP(t)が零(光熱変位無し)のときのビー
ム1,ビーム2間の光路長差による位相差である。試料
4の光熱変位の振幅L,位相をqとすると位相差P
(t)は次式で表わされる。 P(t)=(4π/λ)・Lsin(2πFt+q) …(2) 次に,信号E1 の値を零レベル(しきい値)と比較し,
信号E1 が零レベル以上ならばE1 =V,信号E1 が零
レベル以下ならばE1 =−Vとなるようにコンパレータ
12で波形変換を行う。この波形変換後の信号E2 は次
式で表わされる。 E2 =(4V/π)・cos(2πFB t+P(t)+φ(t))+(高周波 成分) …(3) 信号E2 は上記値Aを含まないため位相項におけるP
(t)を,位相検出回路13で検出することにより,試
料4の正確な光熱変位を検出することができた。
2. Description of the Related Art When a sample is irradiated with an excitation light whose intensity is periodically modulated, the sample generates heat due to absorption of the light, thereby expanding thermally. Since the intensity of the irradiation light is periodically modulated, the temperature change of the sample due to heat generation becomes periodic, and the sample causes thermal expansion vibration. A method for evaluating a sample by measuring its thermal response is known as a photoacoustic method or a photothermal displacement method (Japanese Patent Application No. 2-70967). FIG. 8 is a schematic diagram showing a schematic configuration of an example of a conventional sample defect evaluation apparatus A0 based on the photothermal displacement method. FIG.
As shown in (1), in the conventional evaluation method using the sample defect evaluation apparatus A0, the semiconductor laser 1 is used as an excitation laser for giving a photothermal displacement to the sample 4. Then, the intensity of the emitted light is modulated at the frequency F by a change in the injection current to the semiconductor laser 1. The emitted light is reflected by the dichroic mirror 2, condensed by the lens 3, and irradiated on the sample 4. The photothermal displacement of the sample 4 at the irradiation section is measured by a laser light interferometer. As the laser for laser light interferometer, using a He-Ne laser 5, beam 1 frequency difference becomes F B this emitted light by an optical frequency shifter (acousto-optic modulator) 6, Beam 2
Generate Beam 1 is polarized beam splitters 7, 1
The light passes through the / wavelength plate 8 and the dichroic mirror 2, is condensed by the lens 3, and enters the sample 4. The reflected light of the beam 1 from the sample 4 is again reflected by the polarization beam splitter 7 because it passes through the quarter-wave plate 8 again and changes the polarization plane by 90 degrees. Similarly, the beam 2 passes through the polarizing beam splitter 7. Since these laser beams are orthogonal to each other, they pass through the polarizing plate 9 so that these beams interfere with each other, and the interference light is received by the photoelectric converter 10. The output V from the photoelectric converter 10 through the filter 11 extracts the beat wave signal E 1 at the interference light. Signal E 1 is given by the following equation. E 1 = Acos (2πF B t + P (t) + φ (t)) ... (1) where, A is the value that depends on the sample 4 and the interference optical system and the like, P
(T) is a phase change of the beam 1 due to the photothermal displacement of the sample 4,
φ (t) is a phase difference caused by an optical path length difference between the beams 1 and 2 when P (t) is zero (no photothermal displacement). Assuming that the amplitude L and the phase of the photothermal displacement of the sample 4 are q, the phase difference P
(T) is represented by the following equation. Compared to P (t) = (4π / λ) · Lsin (2πFt + q) ... (2) Then, the value of the signal E 1 zero level (threshold),
Signal E 1 is the waveform conversion by the comparator 12 as if zero level or E 1 = V, signal E 1 is if it E 1 = -V zero level or less. The signal E 2 after the waveform conversion is expressed by the following equation. E 2 = (4V / π) · cos (2πF B t + P (t) + φ (t)) + P in the phase term for (high-frequency components) ... (3) signal E 2 is free from said value A
By detecting (t) with the phase detection circuit 13, the photothermal displacement of the sample 4 could be accurately detected.

【0003】[0003]

【発明が解決しようとする課題】上記従来の試料の欠陥
評価装置A0による評価方法では,試料4の正確な光熱
変位を検出することができるものの,この検出値のみか
らでは試料4の欠陥の程度等の絶対値が得られない。こ
のため,相対評価しかできなかった。本発明は試料の欠
陥評価方法を改良し,試料の欠陥等について絶対評価を
行い得る試料の欠陥評価方法を提供することを目的とす
る。
According to the above-described evaluation method using the conventional sample defect evaluation apparatus A0, although the accurate photothermal displacement of the sample 4 can be detected, the degree of the defect of the sample 4 can be determined only from the detected value. Cannot be obtained. For this reason, only relative evaluation was possible. SUMMARY OF THE INVENTION It is an object of the present invention to improve a sample defect evaluation method and to provide a sample defect evaluation method capable of absolutely evaluating a defect or the like of a sample.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は,試料に励起光を照射し,該励起光の照
射による上記試料の光熱変位を光干渉法を用いて測定す
る試料の欠陥評価方法において,欠陥の程度が既知であ
る基準試料の複数の温度条件下での光熱変位を測定し,
上記基準試料の欠陥の程度と上記測定された光熱変位と
の対応関係を予め記憶し,欠陥の程度が未知である被測
定試料の光熱変位及びその時の温度条件を測定し,上記
測定された被測定試料の光熱変位と上記基準試料の対応
関係とを比較することにより該被測定試料の欠陥の程度
を測定してなることを特徴とする試料の欠陥評価方法で
ある。更には,上記被測定試料の測定時の温度条件を複
数とし,該温度条件を上記基準試料の測定時の複数の温
度条件と一致させてなる試料の欠陥評価方法である。第
の発明は,半導体試料に励起光を照射し,該励起光の
照射による上記試料の光熱変位を光干渉法を用いて測定
する半導体試料のイオン注入により生じる結晶欠陥評価
方法において,上記結晶欠陥を生じるイオン注入量が既
知である基準試料の複数の温度条件下での光熱変位を測
定し,上記基準試料のイオン注入量と上記測定された光
熱変位との対応関係を予め記憶し,イオン注入量が未知
である被測定試料の光熱変位及びその時の温度条件を測
定し,上記測定された被測定試料の光熱変位と上記基準
試料の対応関係とを比較することにより該被測定試料の
イオン注入量を測定してなることを特徴とする半導体試
料の結晶欠陥評価方法である。更には,上記被測定試料
の測定時の温度条件を複数とし,該温度条件を上記基準
試料の測定時の複数の温度条件と一致させてなる半導体
試料の結晶欠陥評価方法である。
First invention to achieve the above objects resolving means for the] is irradiated with excitation light to specimen, measured using the optical interference method a photothermal displacement of the sample due to irradiation of the excitation light In the method for evaluating the defect of a sample to be measured, the photothermal displacement of a reference sample whose degree of defect is known under a plurality of temperature conditions is measured,
The correspondence between the degree of defect of the reference sample and the measured photothermal displacement is stored in advance, the photothermal displacement of the measured sample whose degree of defect is unknown and the temperature condition at that time are measured, and the measured A defect evaluation method for a sample, characterized in that the degree of defect of the sample to be measured is measured by comparing the photothermal displacement of the measurement sample with the corresponding relationship of the reference sample. Further, there is provided a defect evaluation method for a sample in which a plurality of temperature conditions are measured at the time of measuring the sample to be measured, and the temperature conditions are made coincident with the plurality of temperature conditions at the time of measuring the reference sample. No.
The invention of claim 2 is a method for evaluating a crystal defect caused by ion implantation of a semiconductor sample, wherein the semiconductor sample is irradiated with excitation light and the photothermal displacement of the sample due to the irradiation of the excitation light is measured using an optical interference method. Measuring the photothermal displacement of the reference sample having a known amount of ion implantation under a plurality of temperature conditions, storing in advance the correspondence between the amount of ion implantation of the reference sample and the measured photothermal displacement, By measuring the photothermal displacement of the sample whose quantity is unknown and the temperature conditions at that time, comparing the measured photothermal displacement of the sample with the corresponding relationship of the reference sample, the ion implantation of the sample is performed. A method for evaluating crystal defects of a semiconductor sample, characterized by measuring the amount. Further, there is provided a method for evaluating crystal defects of a semiconductor sample, wherein a plurality of temperature conditions are set when measuring the sample to be measured, and the temperature conditions are made coincident with the plurality of temperature conditions when measuring the reference sample.

【0005】[0005]

【作用】第の発明によれば,試料の欠陥を評価するに
際し,欠陥の程度が既知である基準試料の光熱変位が複
数の温度条件下で測定され,上記基準試料の欠陥の程度
と上記測定された光熱変位との対応関係が予め記憶され
る。次に,欠陥の程度が未知である被測定試料の光熱変
位及びその時の温度条件が測定される。そして,上記測
定された被測定試料の光熱変位と上記基準試料の対応関
係とを比較することにより該被測定試料の欠陥の程度が
測定される。このように光熱変位の観測時の温度条件を
考慮することにより試料の欠陥の程度についてその絶対
値を精度よく求めることができる。更に,上記被測定試
料の測定時の温度条件を複数とし,該温度条件を上記基
準試料の測定時の複数の温度条件と一致させれば,試料
の欠陥の程度についてその絶対値を一層精度よく求める
ことができる。第の発明によれば,半導体試料の結晶
欠陥を生じるイオン注入量を評価するに際し,上記結晶
欠陥を生じるイオン量が既知である基準試料の光熱変位
が複数の温度条件下で測定され,上記基準試料のイオン
注入量と,上記測定された光熱変位との対応が予め記憶
される。次に,イオン注入量が未知である被測定試料の
光熱変位及びその時の過度条件が測定される。そして,
上記測定された被測定試料の光熱変位と上記基準試料の
対応関係とを比較することにより被測定試料のイオン注
入量が測定される。このように,光熱変位の観測時の温
度条件を考慮することにより,半導体試料のイオン注入
量の絶対値を精度よく求めることができる。更に,上記
被測定試料の測定時の温度条件を複数とし,該温度条件
を上記基準試料の測定時の複数の温度条件と一致させれ
ば,半導体試料のイオン注入量の絶対値を一層精度よく
求めることができる。その結果,試料の欠陥等の絶対評
価を精度よく行い得る試料の欠陥評価方法を得ることが
できる。
According to the first aspect of the present invention, when evaluating the defect of the sample, the photothermal displacement of the reference sample whose degree of defect is known is measured under a plurality of temperature conditions, The correspondence with the measured photothermal displacement is stored in advance. Next, the photothermal displacement of the sample to be measured whose degree of defect is unknown and the temperature condition at that time are measured. Then, the degree of the defect of the measured sample is measured by comparing the measured photothermal displacement of the measured sample with the corresponding relationship of the reference sample. As described above, the absolute value of the degree of the defect of the sample can be accurately obtained by considering the temperature condition at the time of observing the photothermal displacement. Further, if a plurality of temperature conditions at the time of the measurement of the sample to be measured are used and the temperature conditions are made to coincide with the plurality of temperature conditions at the time of the measurement of the reference sample, the absolute value of the degree of the defect of the sample can be more accurately determined. You can ask. According to the second invention, when evaluating the amount of ion implantation that causes crystal defects in the semiconductor sample, the photothermal displacement of the reference sample in which the amount of ions that cause the crystal defects is known is measured under a plurality of temperature conditions. The correspondence between the ion implantation amount of the reference sample and the measured photothermal displacement is stored in advance. Next, the photothermal displacement of the sample to be measured whose ion implantation amount is unknown and the transient condition at that time are measured. And
The amount of ion implantation of the measured sample is measured by comparing the measured photothermal displacement of the measured sample with the corresponding relationship of the reference sample. As described above, the absolute value of the ion implantation amount of the semiconductor sample can be accurately obtained by considering the temperature condition at the time of observing the photothermal displacement. Further, if a plurality of temperature conditions at the time of measurement of the sample to be measured are used and the temperature conditions are made to coincide with the plurality of temperature conditions at the time of measurement of the reference sample, the absolute value of the ion implantation amount of the semiconductor sample can be more accurately determined. You can ask. As a result, it is possible to obtain a sample defect evaluation method capable of accurately performing absolute evaluation of a sample defect or the like.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明(第1
の発明)を具体化した実施例につき説明し,本発明の
理解に供する。尚,以下の実施例は本発明を具体化した
一例であって,本発明の技術的範囲を限定する性格のも
のではない。ここに,図1は第1,第2の発明の基本と
なる発明具体例に係る試料の欠陥評価装置A1の概略
構成を示す模式図,図2は光熱変位と結晶欠陥密度との
対応関係を示す図,図3は光熱変位とイオン注入量との
対応関係を示す図,図4は試料温度と光熱変位との関係
を示す図,図5は第,第の発明の一実施例に係る試
料の欠陥評価装置A2の概略構成を示す模式図,図6は
光熱変位とイオン注入量との対応関係を示す図,図7は
光熱変位の温度勾配とイオン注入量との関係を示す図で
ある。尚,前記図8に示した従来の試料の欠陥評価装置
A0の一例における概略構成を示す模式図と共通する要
素には同一符を使用する。図1に示す如く,第1,第
2の発明の基本となる発明具体例に係る試料の欠陥評
価装置A1は,半導体レーザ1,ダイクロイックミラー
2及びレンズ3からなる励起光照射系と,He−Neレ
ーザ5,光周波数シフタ6,偏光ビームスプリッタ7,
1/4波長板8,偏光板9,光電変換器10,フィルタ
11,コンパレータ12及び位相検出回路13からなる
光干渉系とを備えた従来装置A0に新たに計算機14及
びメモリ15を加えたものである。この装置A1に適用
される試料の欠陥評価方法(第1,第2の発明)では,
励起光照射系により試料4(K1,K2,U1,U2)
に励起レーザ(励起光)を照射し,この励起レーザの照
射による試料4の光熱変位を光干渉系により光干渉法を
用いて測定する点で従来例と同様である。第1の発明の
基本となる発明が特徴とするところは,試料4の欠陥を
評価するに際し欠陥の程度DK1が既知である基準試料
K1の光熱変位PK1を測定し,基準試料K1の欠陥の
程度DK1と測定された光熱変位PK1との対応関係X
1をメモリ15に予め記憶し,欠陥の程度が未知である
被測定試料U1の光熱変位PU1を測定し,測定された
光熱変位PU1とメモリ15に記憶された基準試料K1
の対応関係X1とを計算機14により比較することによ
り被測定試料U1の欠陥の程度DU1を測定する点で
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention (first and second embodiments) will be described with reference to the accompanying drawings.
Embodiment 2 ) will now be described to provide an understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. Here, FIG. 1 shows the basics of the first and second inventions .
FIG. 2 is a schematic view showing a schematic configuration of a sample defect evaluation apparatus A1 according to a specific example of the present invention , FIG. 2 is a view showing a correspondence relationship between photothermal displacement and crystal defect density, and FIG. 3 is a correspondence between photothermal displacement and ion implantation amount. FIG. 4 is a diagram showing the relationship between the sample temperature and the photothermal displacement, FIG. 5 is a schematic diagram showing a schematic configuration of a sample defect evaluation apparatus A2 according to one embodiment of the first and second inventions, FIG. 6 is a diagram showing the correspondence between the photothermal displacement and the ion implantation amount, and FIG. 7 is a diagram showing the relationship between the temperature gradient of the photothermal displacement and the ion implantation amount. Incidentally, using a No. identical marks in common elements and schematic diagram showing a schematic construction of an exemplary defect evaluation apparatus A0 of conventional samples shown in FIG. 8. As shown in FIG. 1, a sample defect evaluation apparatus A1 according to a specific example of the first and second aspects of the present invention includes an excitation light irradiating system including a semiconductor laser 1, a dichroic mirror 2, and a lens 3; -Ne laser 5, optical frequency shifter 6, polarization beam splitter 7,
A conventional apparatus A0 including a quarter-wave plate 8, a polarizing plate 9, a photoelectric converter 10, a filter 11, a light interference system including a comparator 12 and a phase detection circuit 13, and a computer 14 and a memory 15 newly added. It is. In the sample defect evaluation method (first and second inventions) applied to the apparatus A1,
Sample 4 (K1, K2, U1, U2) by the excitation light irradiation system
Is irradiated with an excitation laser (excitation light), and the photothermal displacement of the sample 4 caused by the irradiation of the excitation laser is measured by an optical interference system using an optical interference method, which is the same as the conventional example. Of the first invention
The feature of the basic invention is that when the defect of the sample 4 is evaluated, the photothermal displacement PK1 of the reference sample K1 whose defect degree DK1 is known is measured, and the defect degree DK1 of the reference sample K1 is measured. Correspondence X with photothermal displacement PK1
1 is stored in the memory 15 in advance, the photothermal displacement PU1 of the sample U1 whose degree of defect is unknown is measured, and the measured photothermal displacement PU1 and the reference sample K1 stored in the memory 15 are measured.
Correspondence between X1 and Ru the Oh in that measuring the degree DU1 defects measured sample U1 <br/> by comparing by computer 14.

【0007】この第1の発明の基本となる発明は,光熱
変位の大きさが各試料4(K1,U1)のそれぞれの熱
伝導率に依存し,更にこの熱伝導率は半導体結晶の結晶
性に強く依存するという点に着目してなされたものであ
る。即ち,結晶欠陥が増加するにつれ,熱伝導率は減少
するため励起光による試料の発熱は増大し,光熱変位は
大きくなるという様に,結晶欠陥密度と光熱変位の大き
さには一対一の対応関係が存在する。従って,光熱変位
の観測により結晶欠陥密度の絶対値の測定ができるので
ある。
According to the first invention , the magnitude of the photothermal displacement depends on the thermal conductivity of each sample 4 (K1, U1), and the thermal conductivity depends on the crystallinity of the semiconductor crystal. It is made with a focus on the fact that it strongly depends on. That is, as the number of crystal defects increases, the thermal conductivity decreases and the heat generation of the sample by the excitation light increases, and the photothermal displacement increases. Thus, there is a one-to-one correspondence between the crystal defect density and the magnitude of the photothermal displacement. A relationship exists. Therefore, the absolute value of the crystal defect density can be measured by observing the photothermal displacement.

【0008】以下,この第1の発明の基本となる発明
よってシリコン結晶からなる試料の欠陥評価を行った場
合を例にとって説明する。図2は,シリコン結晶にAS
イオンを注入した基準試料において,結晶欠陥密度(欠
陥の程度に相当)と光熱変位の大きさとの対応関係を示
す特性曲線である。この対応関係はメモリ15に記憶し
ておく。未知の試料について測定された光熱変位は計算
機14によりこの対応関係から結晶欠陥密度に換算さ
れ,この未知の試料の結晶欠陥密度の絶対値が出力され
る。このように光熱変位の観測により試料の欠陥の程度
についてその絶対値を得ることができる。引き続いて,
第2の発明の基本となる発明について説明する。この第
2の発明の基本となる発明が特徴とするところは,半導
体試料の結晶欠陥を生じるイオン注入量を評価するに際
し,結晶欠陥を生じるイオンIK2が既知である基準試
料K2の光熱変位PK2を測定し,基準試料K2のイオ
ン注入量IK2と,測定された光熱変位PK2との対応
関係X2をメモリ15に予め記憶し,イオン注入量が未
知である被測定試料U2の光熱変位PU2を測定し,測
定された光熱変位PU2とメモリ15に記憶された基準
試料K2の対応関係X2とを計算機14により比較する
ことにより被測定試料U2のイオン注入量IU2を測定
する点でる。この第2の発明の基本となる発明はイオ
ン注入においてはイオン注入量の増加とともにイオン注
入による結晶欠陥が増加するという点に着目してなされ
たものである。従って,光熱変位の観測によりイオン注
入量の絶対値の計測ができるのである。
Hereinafter, a description will be given of an example in which a defect evaluation of a sample made of a silicon crystal is performed according to the basic invention of the first invention. Figure 2 shows that the AS
6 is a characteristic curve showing a correspondence relationship between a crystal defect density (corresponding to a degree of a defect) and a magnitude of photothermal displacement in a reference sample into which ions are implanted. This correspondence is stored in the memory 15. The photothermal displacement measured for the unknown sample is converted into a crystal defect density by the computer 14 from this correspondence, and the absolute value of the crystal defect density of the unknown sample is output. As described above, the absolute value of the degree of the defect of the sample can be obtained by observing the photothermal displacement. Subsequently,
The basic invention of the second invention will be described. The feature of the second invention is that the photothermal displacement PK2 of the reference sample K2, in which the ion IK2 causing the crystal defect is known, is evaluated when evaluating the ion implantation amount causing the crystal defect of the semiconductor sample. The relationship X2 between the ion implantation amount IK2 of the reference sample K2 measured and the measured photothermal displacement PK2 is stored in the memory 15 in advance, and the photothermal displacement PU2 of the sample U2 whose ion implantation amount is unknown is measured. , Ru Oh in that for measuring the ion dose IU2 of the measured sample U2 by comparing the relationship X2 of the measured photothermal displacement PU2 and the reference sample K2 stored in the memory 15 by the computer 14. The basic invention of the second invention is made by focusing on the point that crystal defects due to ion implantation increase with an increase in the amount of ion implantation in ion implantation. Therefore, the absolute value of the ion implantation amount can be measured by observing the photothermal displacement.

【0009】以下,この第2の発明の基本となる発明
よってシリコン結晶にBイオンを注入した試料の欠陥評
価を行った場合を例にとって概略説明する。図3は,シ
リコン結晶にBイオンを注入した試料において,イオン
注入量と光熱変位との対応関係を示す特性曲線である。
図よりイオン注入量の増加とともにイオン注入による結
晶欠陥が増加するため光熱変位は増加することが分か
る。この対応関係をメモリ15に記憶しておく。未知量
をイオン注入した試料について測定された光熱変位は,
計算機14によりこの対応関係からイオン注入量に換算
され,このイオン注入量の絶対値が出力される。このよ
うに光熱変位の観測により半導体試料のイオン注入量に
ついて,その絶対値を得ることができる。ところで,光
熱変位量は一般に熱膨張率と熱伝導率との比に比例する
ことが知られている(例えばS.SUMIE et.a
l:Jpn.J.Appl.Phys.31(199
2)3575参照)。熱膨張率と熱伝導率はいずれも表
1に示すような温度依存性があることから,結局光熱変
位量は温度が上昇すると増加する傾向にある。
The following is a brief description of an example in which the defect evaluation of a sample in which B ions are implanted into a silicon crystal according to the invention which is the basis of the second invention is performed. FIG. 3 is a characteristic curve showing the correspondence between the ion implantation amount and the photothermal displacement in a sample in which B ions are implanted into a silicon crystal.
From the figure, it can be seen that the photothermal displacement increases because the crystal defects due to ion implantation increase as the ion implantation amount increases. This correspondence is stored in the memory 15. The photothermal displacement measured for a sample implanted with an unknown amount is
The computer 14 converts the correspondence into an ion implantation amount and outputs the absolute value of the ion implantation amount. As described above, the absolute value of the ion implantation amount of the semiconductor sample can be obtained by observing the photothermal displacement. Incidentally, it is known that the amount of photothermal displacement is generally proportional to the ratio of the coefficient of thermal expansion to the coefficient of thermal conductivity (for example, S. SUMIE et.a.
l: Jpn. J. Appl. Phys. 31 (199
2) 3575). Since both the coefficient of thermal expansion and the coefficient of thermal conductivity have a temperature dependency as shown in Table 1, the amount of photothermal displacement tends to increase as the temperature rises.

【表1】 また,イオンが注入されて半導体試料表面の結晶性が変
化すると,熱膨張率や熱伝導率の温度依存性も変化す
る。つまり,光熱変位量の温度特性はイオン注入量によ
っても変化することになる。図4は様々なイオン注入を
行った半導体試料について,試料温度と光熱変位量との
関係を示したものである。図より光熱変位量の温度勾配
などが試料によって異なっていることがわかる。よって
この特性を利用すると,試料の結晶性ならびにイオン注
入量の絶対値を単一温度で測定した場合より高精度で求
めることが可能である。以下に述べる第,第の発明
はこの点に着目してなされたものである。
[Table 1] Further, when the crystallinity of the surface of the semiconductor sample changes due to ion implantation, the temperature dependence of the coefficient of thermal expansion and the thermal conductivity also changes. In other words, the temperature characteristic of the photothermal displacement changes depending on the ion implantation dose. FIG. 4 shows the relationship between the sample temperature and the amount of photothermal displacement for a semiconductor sample subjected to various ion implantations. From the figure, it can be seen that the temperature gradient of the photothermal displacement amount differs depending on the sample. Therefore Utilizing this characteristic, it is possible to obtain the sample crystallinity and ion implantation amount of the absolute value of the high-precision Ri by if measured at a single temperature. The first and second inventions described below have been made focusing on this point.

【0010】図5に示す如く,第,第の発明の一実
施例に係る試料の欠陥評価装置A2は,半導体レーザ
1,ダイクロイックミラー2及びレンズ3からなる励起
光照射系と,He−Neレーザ5,光周波数シフタ6,
偏光ビームスプリッタ7,1/4波長板8,偏光板9,
光電変換器10,フィルタ11,コンパレータ12及び
位相検出回路13からなる光干渉系とを備えた従来装置
A0に新たに計算機14,メモリ15,ヒータなどの試
料温度変化手段16及び試料温度測定器17を加えたも
のである。この装置A2に適用される試料の欠陥方法
(第,第の発明)では,励起光照射系により試料4
(K1,K2,U1,U2)に励起レーザ(励起光)を
照射し,この励起レーザの照射による試料4の光熱変位
を光干渉系により光干渉法を用いて測定する点で従来例
と同様である。第1の発明が特徴とするところは,試料
4の欠陥を評価するに際し,欠陥の程度DK1が既知で
ある基準試料K1の光熱変位PK1を複数の温度条件下
で測定し,基準試料K1の欠陥の程度DK1と測定され
た光熱変位PK1との対応関係X1をモメリ15に予め
記憶し,欠陥の程度が未知である被測定試料U1の光熱
変位PU1及びその時の温度条件を測定し,測定された
光熱変位PU1とメモリ15に記憶された基準試料K1
の対応関係X1とを計算機14により比較することによ
り被測定試料U1の欠陥の程度DU1を測定する点であ
る。上述したように,光熱変位量は温度が上昇すると増
加する傾向があるため,光熱変位の観測時の温度条件を
考慮することにより試料の欠陥の程度について,その絶
対値を精度よく求めることができる。複数の温度条件は
試料温度変化手段16及び試料温度測定器17を用いて
任意に設定可能であるが,試料の結晶欠陥がアニールさ
れない範囲とする必要がある。また,第の発明が特徴
とするところは,半導体試料の結晶欠陥を生じるイオン
注入量を評価するに際し,結晶欠陥を生じるイオンIK
2が既知である基準試料K2の光熱変位PK2を複数の
温度条件下で測定し,基準試料K2のイオン注入量IK
2と,測定された光熱変位PK2との対応関係X2をメ
モリ15に予め記憶し,イオン注入量が未知である被測
定試料U2の光熱変位PU2及びその時の温度条件を測
定し,測定された光熱変位PU2とメモリ15に記憶さ
れた基準試料K2の対応関係X2とを計算機14により
比較することにより被測定試料U2のイオン注入量IU
2を測定する点で従来例と異なる。
As shown in FIG. 5, a sample defect evaluation apparatus A2 according to one embodiment of the first and second aspects of the present invention includes an excitation light irradiation system including a semiconductor laser 1, a dichroic mirror 2, and a lens 3, and a He- Ne laser 5, optical frequency shifter 6,
Polarizing beam splitter 7, quarter-wave plate 8, polarizing plate 9,
A conventional apparatus A0 including a photoelectric converter 10, a filter 11, a comparator 12, and an optical interference system including a phase detection circuit 13 is newly provided with a computer 14, a memory 15, a sample temperature changing means 16 such as a heater, and a sample temperature measuring device 17. Is added. In the sample defect method ( first and second inventions) applied to the apparatus A2, the sample 4 is controlled by the excitation light irradiation system.
(K1, K2, U1, U2) is irradiated with an excitation laser (excitation light), and the photothermal displacement of the sample 4 caused by the irradiation of the excitation laser is measured by an optical interference system using an optical interference method as in the conventional example. It is. A feature of the first invention is that when evaluating the defect of the sample 4, the photothermal displacement PK1 of the reference sample K1 whose degree of defect DK1 is known is measured under a plurality of temperature conditions, and the defect of the reference sample K1 is measured. The correspondence X1 between the degree DK1 and the measured photothermal displacement PK1 is stored in the memory 15 in advance, and the photothermal displacement PU1 of the sample U1 whose degree of defect is unknown and the temperature condition at that time are measured. Photothermal displacement PU1 and reference sample K1 stored in memory 15
Is that the degree of defect DU1 of the sample U1 to be measured is measured by comparing the corresponding relationship X1 with the computer 14 using the computer 14. As described above, since the amount of photothermal displacement tends to increase as the temperature rises, the absolute value of the degree of defect in the sample can be accurately obtained by considering the temperature conditions when observing the photothermal displacement. . The plurality of temperature conditions can be arbitrarily set using the sample temperature changing means 16 and the sample temperature measuring device 17, but they need to be in a range where the crystal defects of the sample are not annealed. Also, the second invention is characterized by
When evaluating the amount of ion implantation that causes crystal defects in a semiconductor sample, the ion IK
2 is measured under a plurality of temperature conditions, and the ion implantation amount IK of the reference sample K2 is measured.
2 and the measured photothermal displacement PK2 are stored in the memory 15 in advance, and the photothermal displacement PU2 of the sample U2 whose ion implantation amount is unknown and the temperature condition at that time are measured. By comparing the displacement PU2 and the correspondence X2 of the reference sample K2 stored in the memory 15 with the computer 14, the ion implantation amount IU of the sample U2 to be measured is obtained.
2 is different from the conventional example.

【0011】この場合も,上記第の発明と同様,光熱
変位の観測時の温度条件を考慮することにより半導体試
料のイオン注入量の絶対値を精度よく求めることができ
る。更に,第,第の発明共,被測定試料PU1(P
U2)の測定時の温度条件を複数とし,これらの温度条
件を基準試料K1(K2)の測定時の複数の温度条件と
一致させてもよい。以下,第の発明によって複数の温
度条件下での被測定試料の光熱変位測定を行い,イオン
注入量の絶対値を求める場合を例にとってより具体的に
説明する。図6に示したように試料温度変化手段16及
び試料温度測定器17を用いて設定された異なる複数の
温度条件T1,T2,…,Tm下にてイオン注入量の既
知な基準試料K2(K21,K22,…,K2n)の光
熱変位PK2を測定する。基準試料K2は1種類とし
て,温度条件だけを変えて光熱変位PK2を測定しても
よい。ただし,ここでも,イオン注入された結晶欠陥が
アニールされないような低い温度範囲に温度条件T1,
T2…,Tmを設定する必要はある。測定された光熱変
位PK2は以下の様に表すことができる。 温度T1:PK21(T1),PK22(T1),…,PK2n(T1) 温度T2:PK21(T2),PK22(T2),…,PK2n(T2) ・ ・ 温度Tm:PK21(Tm),PK22(Tm),…,PK2n(Tm) それぞれの温度で,基準試料のイオン注入量IK2(I
K21,IK22,…,IK2n)と上記光熱変位の対
応関係X2(X21,X22,…,X2m)を求め,メ
モリ15に記憶する。
Also in this case, as in the first aspect , the absolute value of the ion implantation amount of the semiconductor sample can be accurately obtained by considering the temperature condition at the time of observing the photothermal displacement. Further, in both the first and second inventions, the sample to be measured PU1 (P
A plurality of temperature conditions at the time of the measurement of U2) may be set, and these temperature conditions may be matched with the plurality of temperature conditions at the time of the measurement of the reference sample K1 (K2). Hereinafter, a more specific description will be given of an example in which the photothermal displacement measurement of a sample under measurement is performed under a plurality of temperature conditions to obtain the absolute value of the ion implantation amount according to the second invention. As shown in FIG. 6, under a plurality of different temperature conditions T1, T2,..., Tm set using the sample temperature changing means 16 and the sample temperature measuring device 17, the reference sample K2 (K21 , K22,..., K2n) are measured. As one kind of the reference sample K2, the photothermal displacement PK2 may be measured by changing only the temperature condition. However, also in this case, the temperature conditions T1, T1 are set to a low temperature range where the ion-implanted crystal defects are not annealed.
It is necessary to set T2 ..., Tm. The measured photothermal displacement PK2 can be expressed as follows. Temperature T1: PK21 (T1), PK22 (T1), ..., PK2n (T1) Temperature T2: PK21 (T2), PK22 (T2), ..., PK2n (T2) Temperature Tm: PK21 (Tm), PK22 ( Tm), ..., PK2n (Tm) At each temperature, the ion implantation amount IK2 (I
K2 (X21, X22,..., X2m) of the photothermal displacement are obtained and stored in the memory 15.

【0012】次に,イオン注入量の未知な被測定試料U
2を異なる複数の温度条件下にて計測する。測定された
光熱変位PU2は以下の様に表すことができる。 測定された光熱変位PU2(PU2(T1),PU2
(T2),…,PU2(Tm))からそれぞれ対応関係
X2(X21,X22,…,X2m)を用いてイオン注
入量IU2(IU2(T1),IU2(T2),…,I
U2(Tm))を算出することができる。求める被測定
試料のイオン注入量は単純にイオン注入量IU2(IU
2(T1),IU2(T2),…,IU2(Tm))を
算術平均することにより得ても良いし,他の演算処理に
よって算出してもよい。また,図4のようにイオン注入
量によって光熱変位の温度勾配が変化することを利用し
て,その傾きをイオン注入量の検出パラメータとするこ
ともできる(図7参照)。このように被測定試料の測定
時の温度条件を複数とし,これらの温度条件を基準試料
の測定時の複数の温度条件と一致させることにより半導
体試料のイオン注入量の絶対値を一層精度よく求めるこ
とができる。また,第の発明によって複数の温度条件
下での被測定試料の光熱変位測定を行い,試料の欠陥の
絶対値を求める場合も,上記第の発明と同様にして試
料の欠陥の絶対値を一層精度よく求めることができる。
以上のように本発明(第1,第2の発明)によれば,試
料の欠陥等の絶対評価を精度よく行い得る試料の欠陥評
価方法を得ることができる。
Next, the sample to be measured U whose ion implantation amount is unknown
2 is measured under a plurality of different temperature conditions. The measured photothermal displacement PU2 can be expressed as follows. The measured photothermal displacement PU2 (PU2 (T1), PU2
(T2),..., PU2 (Tm)) and the ion implantation amount IU2 (IU2 (T1), IU2 (T2),.
U2 (Tm)) can be calculated. The required ion implantation amount of the sample to be measured is simply the ion implantation amount IU2 (IU
2 (T1), IU2 (T2),..., IU2 (Tm)), or may be obtained by other arithmetic processing. Further, by utilizing the fact that the temperature gradient of the photothermal displacement changes depending on the ion implantation amount as shown in FIG. 4, the inclination can be used as a detection parameter of the ion implantation amount (see FIG. 7). Thus, the absolute value of the ion implantation amount of the semiconductor sample is obtained with higher accuracy by setting a plurality of temperature conditions at the time of measurement of the sample to be measured and matching these temperature conditions with the plurality of temperature conditions at the time of measurement of the reference sample. be able to. In the case where the absolute value of the defect of the sample is obtained by measuring the photothermal displacement of the sample under a plurality of temperature conditions according to the first invention, the absolute value of the defect of the sample is obtained in the same manner as in the second invention. Can be more accurately obtained.
As described above, according to the present invention (first and second inventions), it is possible to obtain a sample defect evaluation method capable of accurately performing absolute evaluation of a sample defect or the like.

【0013】[0013]

【発明の効果】本発明は上記したように構成されている
ため,光熱変位の観測により試料の欠陥の程度,または
半導体試料のイオン注入量についてその絶対値の測定が
でき,しかも,光熱変位観測時の温度条件を考慮するこ
とにより試料の欠陥の程度,または半導体試料のイオン
注入量についてその絶対値を精度よく求めることができ
る。更に,基準試料及び被測定試料の測定時の温度条件
をそれぞれ複数とし,両温度条件を一致させれば,試料
の欠陥の程度,または半導体試料のイオン注入量につい
てその絶対値を一層精度よく求めることができる。その
結果,試料の欠陥等の絶対評価を精度よく行い得る試料
の欠陥評価方法を得ることができる。
Since the present invention is configured as described above , the degree of defect of the sample can be determined by observing the photothermal displacement.
The absolute value of the ion implantation amount of the semiconductor sample can be measured , and the degree of defect of the sample or the ion
The absolute value of the injection amount can be obtained with high accuracy. Furthermore, if the temperature conditions at the time of measurement of the reference sample and the sample to be measured are each set to a plurality, and the two temperature conditions are matched, the absolute value of the degree of defect of the sample or the ion implantation amount of the semiconductor sample is obtained. Can be more accurately obtained. As a result, it is possible to obtain a sample defect evaluation method capable of accurately performing absolute evaluation of a sample defect or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1,第2発明の基本となる発明具体例に
係る試料の欠陥評価装置A1の概略構成を示す模式図。
Figure 1 is a schematic diagram showing a schematic configuration of the first, defect evaluation apparatus A1 of a sample according to embodiments of the underlying invention of the second aspect of the invention.

【図2】 光熱変位と結晶欠陥密度との対応関係を示す
図。
FIG. 2 is a diagram showing a correspondence relationship between photothermal displacement and crystal defect density.

【図3】 光熱変位とイオン注入量との対応関係を示す
図。
FIG. 3 is a diagram showing a correspondence relationship between photothermal displacement and ion implantation amount.

【図4】 試料温度と光熱変位との関係を示す図。FIG. 4 is a diagram showing a relationship between sample temperature and photothermal displacement.

【図5】 第,第の発明の一実施例に係る試料の欠
陥評価装置A2の概略構成を示す模式図。
FIG. 5 is a schematic diagram showing a schematic configuration of a sample defect evaluation apparatus A2 according to one embodiment of the first and second inventions.

【図6】 光熱変位とイオン注入量との対応関係を示す
図。
FIG. 6 is a diagram showing a correspondence relationship between photothermal displacement and ion implantation amount.

【図7】 光熱変位の温度勾配とイオン注入量との関係
を示す図。
FIG. 7 is a diagram showing a relationship between a temperature gradient of photothermal displacement and an ion implantation amount.

【図8】 従来の試料の欠陥評価装置A0の一例におけ
る概略構成を示す模式図。
FIG. 8 is a schematic diagram showing a schematic configuration of an example of a conventional sample defect evaluation apparatus A0.

【符号の説明】[Explanation of symbols]

A1,A2…試料の欠陥評価装置 14…計算機 15…メモリ 16…試料温度変化手段 17…試料温度測定器 A1, A2: Sample defect evaluation device 14: Computer 15: Memory 16: Sample temperature changing means 17: Sample temperature measuring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 勉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 高松弘行、外4名、”レーザ干渉プロ ーブによる光熱変位計測システム”、神 戸製鋼技報、1991年、第41巻、第4号、 p.127−130 (58)調査した分野(Int.Cl.7,DB名) G01N 25/00 - 25/72 G01N 29/00 501 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tsutomu Morimoto 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (56) References Hiroyuki Takamatsu, 4 others, "Photothermal displacement measurement system using laser interference probe", Kobe Steel Engineering Reports, 1991, Vol. 41, No. 4, p. 127-130 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 25/00-25/72 G01N 29/00 501 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料に励起光を照射し,該励起光の照射
による上記試料の光熱変位を光干渉法を用いて測定する
試料の欠陥評価方法において, 欠陥の程度が既知である基準試料の複数の温度条件下で
の光熱変位を測定し,上記基準試料の欠陥の程度と上記
測定された光熱変位との対応関係を予め記憶し, 欠陥の程度が未知である被測定試料の光熱変位及びその
時の温度条件を測定し, 上記測定された被測定試料の光熱変位と上記基準試料の
対応関係とを比較することにより該被測定試料の欠陥の
程度を測定してなることを特徴とする試料の欠陥評価方
法。
1. A defect evaluation method for a sample, comprising irradiating a sample with excitation light and measuring the photothermal displacement of the sample by the irradiation of the excitation light using an optical interference method. Photothermal displacement under a plurality of temperature conditions is measured, and the correspondence between the degree of defect of the reference sample and the measured photothermal displacement is stored in advance, and the photothermal displacement and A sample characterized by measuring the temperature condition at that time, and measuring the degree of defects of the measured sample by comparing the measured photothermal displacement of the measured sample with the corresponding relationship of the reference sample. Defect evaluation method.
【請求項2】 上記被測定試料の測定時の温度条件を複
数とし,該温度条件を上記基準試料の測定時の複数の温
度条件と一致させてなる請求項記載の試料の欠陥評価
方法。
Wherein said temperature conditions at the time of measurement of the measurement sample and a plurality, defect evaluation method of a sample according to claim 1, wherein comprising a temperature condition to match the plurality of temperature conditions at the time of measurement of the reference sample.
【請求項3】 半導体試料に励起光を照射し,該励起光
の照射による上記試料の光熱変位を光干渉法を用いて測
定する半導体試料のイオン注入により生じる結晶欠陥評
価方法において, 上記結晶欠陥を生じるイオン注入量が既知である基準試
料の複数の温度条件下での光熱変位を測定し, 上記基準試料のイオン注入量と上記測定された光熱変位
との対応関係を予め記憶し, イオン注入量が未知である被測定試料の光熱変位及びそ
の時の温度条件を測定し, 上記測定された被測定試料の光熱変位と上記基準試料の
対応関係とを比較することにより該被測定試料のイオン
注入量を測定してなることを特徴とする半導体試料の結
晶欠陥評価方法。
3. A method for evaluating a crystal defect caused by ion implantation of a semiconductor sample, wherein the semiconductor sample is irradiated with excitation light and a photothermal displacement of the sample due to the irradiation of the excitation light is measured using an optical interference method. Measuring the photothermal displacement of the reference sample having a known amount of ion implantation under a plurality of temperature conditions, storing in advance the correspondence between the amount of ion implantation of the reference sample and the measured photothermal displacement, The photothermal displacement of the sample to be measured whose quantity is unknown and the temperature conditions at that time are measured, and the measured photothermal displacement of the sample to be measured is compared with the correspondence between the reference sample and the ion implantation of the sample to be measured. A method for evaluating a crystal defect of a semiconductor sample, comprising measuring the amount.
【請求項4】 上記被測定試料の測定時の温度条件を複
数とし,該温度条件を上記基準試料の測定時の複数の温
度条件と一致させてなる請求項記載の半導体試料の結
晶欠陥評価方法。
4. The evaluation of crystal defects in a semiconductor sample according to claim 3 , wherein a plurality of temperature conditions are set at the time of measurement of the sample to be measured, and the temperature conditions are made coincident with the plurality of temperature conditions at the time of measurement of the reference sample. Method.
JP05209251A 1993-01-13 1993-08-24 Sample defect evaluation method Expired - Fee Related JP3130708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05209251A JP3130708B2 (en) 1993-01-13 1993-08-24 Sample defect evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP414793 1993-01-13
JP5-4147 1993-01-13
JP05209251A JP3130708B2 (en) 1993-01-13 1993-08-24 Sample defect evaluation method

Publications (2)

Publication Number Publication Date
JPH06265496A JPH06265496A (en) 1994-09-22
JP3130708B2 true JP3130708B2 (en) 2001-01-31

Family

ID=26337872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05209251A Expired - Fee Related JP3130708B2 (en) 1993-01-13 1993-08-24 Sample defect evaluation method

Country Status (1)

Country Link
JP (1) JP3130708B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980050105A (en) * 1996-12-20 1998-09-15 독토르 호르스트 아담스 Nondestructive inspection method and apparatus of workpiece
JP4119385B2 (en) * 2004-03-10 2008-07-16 株式会社神戸製鋼所 Photothermal conversion measuring device
KR101911979B1 (en) 2011-07-13 2018-10-25 하마마츠 포토닉스 가부시키가이샤 Heat generation point detection method and heat generation point detection device
JP5743855B2 (en) * 2011-11-07 2015-07-01 浜松ホトニクス株式会社 Exothermic point detection method and exothermic point detector
CN104849305A (en) * 2015-06-12 2015-08-19 合肥市徽腾网络科技有限公司 Test device and test method for thermal shrinkage ratio of chemical fiber filaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高松弘行、外4名、"レーザ干渉プローブによる光熱変位計測システム"、神戸製鋼技報、1991年、第41巻、第4号、p.127−130

Also Published As

Publication number Publication date
JPH06265496A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JPH03252152A (en) Evaluation of quantitative level for ion implantion of semiconductor and device therefor
US7060980B2 (en) Method and system for combined photothermal modulated reflectance and photothermal IR radiometric system
JPS62233711A (en) Method and device for optically detecting surface state of material
JPH01502849A (en) distance measuring device
CN101666626A (en) Method for ellipsometry and device thereof
DE2533906A1 (en) NON-CONTACT SURFACE INSPECTION DEVICE
CN107655599B (en) Method for measuring micro stress of optical element
JP3130708B2 (en) Sample defect evaluation method
CN111665222A (en) Femtosecond pumping detection system and method
JP3304111B2 (en) Apparatus and method for measuring refractive index distribution of refractive index distribution type optical element
US5754298A (en) Method and apparatus for imaging semiconductor device properties
EP0235861A1 (en) Device for detecting a centring error
Tiziani et al. Scanning differential-heterodyne-interferometer with acousto-optic deflectors
JP2004150965A (en) Disturbance measuring device in optical interferometer, and high-precision light interference measuring arrangement
CN109883952B (en) Nonlinear coefficient measuring device based on weak measurement technology and measuring method thereof
JP2672758B2 (en) Sample thermoelasticity evaluation device
US5796482A (en) Apparatus/method for optical measuring a physical amount of a specific component contained in a substance
JP2713190B2 (en) Optical property measuring device
Lo et al. The new circular polariscope and the Senarmont setup with electro-optic modulation for measuring the optical linear birefringent media properties
JP2529901B2 (en) Phase shift Fize-interferometer error correction method
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
Iravani et al. Linear and differential techniques in the scanning optical microscope
JP2001343222A (en) Method and apparatus for measuring three-dimensional shape
JPH0536727B2 (en)
JP4580579B2 (en) Surface shape measuring method and surface shape measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees