JP2735348B2 - Sample evaluation method with a single light source using thermal expansion vibration - Google Patents

Sample evaluation method with a single light source using thermal expansion vibration

Info

Publication number
JP2735348B2
JP2735348B2 JP7096890A JP7096890A JP2735348B2 JP 2735348 B2 JP2735348 B2 JP 2735348B2 JP 7096890 A JP7096890 A JP 7096890A JP 7096890 A JP7096890 A JP 7096890A JP 2735348 B2 JP2735348 B2 JP 2735348B2
Authority
JP
Japan
Prior art keywords
sample
thermal expansion
light
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7096890A
Other languages
Japanese (ja)
Other versions
JPH03269346A (en
Inventor
弘行 高松
善郎 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7096890A priority Critical patent/JP2735348B2/en
Priority to DE4109182A priority patent/DE4109182A1/en
Priority to KR1019910004405A priority patent/KR0168444B1/en
Publication of JPH03269346A publication Critical patent/JPH03269346A/en
Application granted granted Critical
Publication of JP2735348B2 publication Critical patent/JP2735348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試料に周期的に強度変調した励起光を照射
し、これにより生じる試料表面の熱膨張振動を測定して
試料の欠陥等を評価する試料評価方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention irradiates a sample with excitation light whose intensity is periodically modulated, and measures the thermal expansion vibration of the sample surface generated thereby to evaluate a defect or the like of the sample. The sample evaluation method.

〔従来技術〕(Prior art)

試料に周期的に強度変調した励起光を照射すると、試
料はこの光の吸収により発熱し、これにより熱膨張す
る。照射光は周期的に強度変調しているため、発熱によ
る試料の温度変化は周期的となり、試料は熱膨張振動を
おこす。これらの熱応答を計測することにより試料を評
価する手法は光音響計測技術として知られている。
When the sample is irradiated with the excitation light whose intensity is periodically modulated, the sample generates heat due to the absorption of the light, thereby thermally expanding. Since the intensity of the irradiation light is periodically modulated, the temperature change of the sample due to heat generation becomes periodic, and the sample causes thermal expansion vibration. A method for evaluating a sample by measuring these thermal responses is known as a photoacoustic measurement technique.

第3図はマイケルソン型レーザ光干渉法により試料の
熱膨張振動を計測する手法を示したものである(Mirand
a,APPLID OPTICS Vol22,No18,P2882(1983))。ここに
61は被測定試料、62は試料に熱膨張振動を与えるための
励起光源であり、チョッパー63により励起光源62からの
光を強度変調し、試料61に照射する。この熱膨張振動を
レーザ光干渉法により計測する。そのために測定用レー
ザ64からの光を半透鏡65で二分し、一方を、試料の熱膨
張測定点に、他方を空間的に固定した鏡66に照射させ、
これらからの反射光を干渉させ光電変換器67で受光す
る。光電変換器67からの電気出力Eは E=C1+C2cos(P(t)+φ) …(1) ここで、C1,C2及びφは試料61や干渉計の構成や光電
変換係数等に依存する定数、λは測定用レーザの波長で
ある。P(t)は励起光照射による熱膨張振動による試
料の表面変位による位相変化であり、この計測により試
料の熱膨張振動(位相φ及び振幅L)を計測し、試料の
熱弾性的性質を評価する。
FIG. 3 shows a method for measuring the thermal expansion vibration of a sample by Michelson-type laser light interferometry (Mirand
a, APPLID OPTICS Vol22, No18, P2882 (1983)). here
Reference numeral 61 denotes a sample to be measured, and 62 denotes an excitation light source for applying thermal expansion vibration to the sample. The intensity of light from the excitation light source 62 is modulated by a chopper 63 and the sample 61 is irradiated. This thermal expansion vibration is measured by a laser light interference method. For that purpose, the light from the measuring laser 64 is bisected by the semi-transmissive mirror 65, one is irradiated to the thermal expansion measurement point of the sample, and the other is irradiated to the spatially fixed mirror 66,
The reflected lights from these are caused to interfere with each other and received by the photoelectric converter 67. The electrical output E from the photoelectric converter 67 is: E = C 1 + C 2 cos (P (t) + φ) (1) where C 1 , C 2 and φ are the configuration of the sample 61 and the interferometer and the photoelectric conversion coefficient And λ is a wavelength of the measuring laser. P (t) is the phase change due to the surface displacement of the sample due to the thermal expansion vibration caused by the excitation light irradiation. This measurement measures the thermal expansion vibration (phase φ and amplitude L) of the sample and evaluates the thermoelastic properties of the sample. I do.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のような試料の熱膨張振動を計測する手法では、
試料上における励起光と測定光の位置関係が測定結果に
大きく影響を及ぼすため、各種試料間の結果比較やデー
タの定量化において、この位置合わせを厳密におこなわ
なければならない。この場合これらの光の光軸調整、照
射位置の確認が必要となり、測定前の調整に時間がかか
る。さらに光学系の複雑化、コスト高をもたらすといっ
た問題がある。
In the method of measuring the thermal expansion vibration of the sample as described above,
Since the positional relationship between the excitation light and the measurement light on the sample has a great influence on the measurement result, this alignment must be strictly performed in comparing results between various samples and quantifying data. In this case, it is necessary to adjust the optical axis of these lights and check the irradiation position, and it takes time to adjust before measurement. Further, there is a problem that the optical system becomes complicated and cost increases.

また上記マイケルソン型レーザ光干渉により試料の熱
膨張を計測する手法では、前記式(1)における定数
C1,C2の変化が外乱として測定精度を低下させる。
In the method of measuring the thermal expansion of a sample by Michelson-type laser light interference, the constant in equation (1) is used.
Changes in C 1 and C 2 are disturbances and reduce measurement accuracy.

例えば励起光照射による試料の温度変化およびプラズ
マ(電子、ホール)密度の変化(半導体試料の場合)に
より試料の反射率が変化する場合がある。この場合、干
渉光の信号は、反射率変化に伴う外乱信号を含んでいる
ことになり、干渉光の信号から真の熱膨張信号を計測で
きない。
For example, the reflectance of the sample may change due to a change in the temperature of the sample and a change in plasma (electron, hole) density (in the case of a semiconductor sample) due to excitation light irradiation. In this case, the signal of the interference light includes a disturbance signal due to the change in reflectance, and a true thermal expansion signal cannot be measured from the signal of the interference light.

従って本発明が目的とするところは、励起光自身が測
定光を兼ねることにより、両光の光軸合わせ等の手間を
不要として光学系の簡素化、コストの低下を図ると共
に、試料の温度変化、プラズマ密度の変化等による試料
の反射率の変化といった外乱の影響を受けず、試料の真
の熱膨張振動を計測することのできる熱膨張振動による
試料評価方法を提供することである。
Accordingly, the object of the present invention is to simplify the optical system, reduce the cost, and reduce the temperature change of the sample by eliminating the trouble of aligning the optical axes of the two lights by using the excitation light itself as the measurement light. It is another object of the present invention to provide a sample evaluation method based on thermal expansion vibration that can measure the true thermal expansion vibration of a sample without being affected by disturbance such as a change in reflectance of the sample due to a change in plasma density or the like.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明は、試料に周期的
(周波数:F)に強度変調した励起光を照射し、これによ
って生じる試料表面の熱膨張振動を測定して試料を評価
する方法において、周波数Fで強度変調した、振動周波
数F1なる測定光(ビーム1)を照射し、その反射光と振
動周波数F2なる参照光(ビーム2)とを干渉させ、上記
干渉光を光電変換した電気信号Eを得た後、上記電気信
号Eのビート波信号E1(ビート周波数:Fb(Fb=F1
F2))を取り出し、上記ビート波信号E1を2値化処理し
て2値信号E2に変換し、上記2値信号E2から周波数F−
FbあるいはF+Fbの成分を抽出し、この成分の振幅及び
位相により試料を評価することを特徴とする熱膨張振動
を用いた単一光源による試料評価方法として構成されて
いる。
In order to achieve the above object, the present invention provides a method for irradiating a sample with excitation light whose intensity has been periodically (frequency: F) modulated, and measuring the thermal expansion vibration of the sample surface generated thereby to evaluate the sample, and intensity modulated at a frequency F, irradiating the vibration frequencies F 1 becomes the measurement beam (beam 1), the reflected light and the vibration frequency F 2 becomes the reference light (beam 2) and caused to interfere with, and photoelectrically converting the interference light electric After obtaining the signal E, the beat signal E 1 (beat frequency: F b (F b = F 1
F 2)) was taken out, the beat wave signal E 1 by binarization into a binary signal E 2, the frequency of the binary signal E 2 F-
Extracting the component of the F b or F + F b, it is configured as a sample evaluation method using a single light source using a thermal expansion vibrations and evaluating the sample by the amplitude and phase of this component.

〔実施例〕〔Example〕

続いて第1図,第2図を参照して本発明を具体化した
実施例につき説明する。
Next, an embodiment embodying the present invention will be described with reference to FIGS.

ここに第1図は一実施例装置のブロック図、第2図は
試料の内部欠陥を検出する手法の概念図である。
FIG. 1 is a block diagram of an apparatus according to an embodiment, and FIG. 2 is a conceptual diagram of a method for detecting an internal defect of a sample.

尚、以下の実施例は本発明を具体化した一例にすぎ
ず、本発明の技術的範囲を限定する性格のものではな
い。
It should be noted that the following embodiments are merely examples embodying the present invention, and do not limit the technical scope of the present invention.

第1図に示すように、試料4に熱膨張振動をあたえる
と共にこれを計測するレーザとしてアルゴンイオンレー
ザ1を用い、この出射光を光変調器2で周波数Fで強度
変調し、この光を周波数シフタ6により互いに直交し周
波数差がFbなるビーム1,ビーム2を生成する。これらの
光を偏光ビームスプリッタ7により2つに分け、ビーム
1(励起光)をレンズ3で集光し、試料4に照射し、ビ
ーム2(参照光)をミラー8に照射する、 ビーム1の試料4からの反射光は、1/4波長板9通過
後、偏光面が90度変化するため、偏光ビームスプリッタ
7で、今度は反射する、同様にビーム2のミラー8から
の反射光は偏光ビームスプリッタ7を透過する。これら
のレーザ光は直交しているため偏光板10を透過さすこと
により、これらのビームを干渉させ、この干渉光を光電
変換器11で受光する。
As shown in FIG. 1, an argon ion laser 1 is used as a laser for giving a thermal expansion vibration to a sample 4 and measuring the same, and the emitted light is intensity-modulated at a frequency F by an optical modulator 2, and this light is subjected to a frequency modulation. frequency difference orthogonal to each other by the shifter 6 F b comprising the beam 1, to produce a beam 2. These lights are split into two by a polarizing beam splitter 7, a beam 1 (excitation light) is condensed by a lens 3, irradiated to a sample 4, and a beam 2 (reference light) is irradiated to a mirror 8. The reflected light from the sample 4 changes its polarization plane by 90 degrees after passing through the quarter-wave plate 9, so that it is reflected by the polarizing beam splitter 7. Similarly, the reflected light of the beam 2 from the mirror 8 is polarized. The light passes through the beam splitter 7. Since these laser beams are orthogonal to each other, they pass through the polarizing plate 10 so that these beams interfere with each other, and the interference light is received by the photoelectric converter 11.

光電変換器11からの出力Vをフィルタ12を通して干渉
光におけるビート波信号E1を取り出す。E1はU(t)を
変調信号として E1=AU(t)cos (2πFbt+P(t)+φ) …(2) (U(t)=1+m sin(2πFt)m:変調率) で与えられる。ここでAは試料、干渉光学系等に依存す
る値、P(t)は試料の膨張振動によるビーム1の位相
変化、φはP(t)が零のときのビーム1、ビーム2間
の光路長差による位相差である。
The output V from the photoelectric converter 11 is taken out of the beat wave signal E 1 in the interference light through the filter 12. E 1 is U E 1 = AU (t), as a modulation signal (t) cos (2πF b t + P (t) + φ) ... (2) (U (t) = 1 + m sin (2πFt) m: modulation index) given by Can be Here, A is a value depending on the sample, the interference optical system, etc., P (t) is a phase change of the beam 1 due to expansion vibration of the sample, and φ is an optical path between the beam 1 and the beam 2 when P (t) is zero. This is the phase difference due to the length difference.

試料の振動の振幅をL、位相をPとするとP(t)は で与えられる。ここでL<<λの時E1の周波数Fb−Fを
もつ信号成分は となり、この周波数成分の信号の振幅、位相の計測より
試料の熱膨張振動の計測が可能である。しかし前述のよ
うに試料の温度変化等に伴って試料の反射率が変動する
ことによりAが変動する場合、これがノイズとなり正確
に熱膨張振動を計測できない。そこで本実施例では、E1
の値を零レベル(しきい値)と比較し、E1が零レベル以
上ならE1=V、E1が零レベル以下ならE1=−Vとなるよ
うにコンパレータ13で2値化による波形変換を行う。こ
の波形変換後の信号E2となり、Aを含まないため、正確に熱膨張振動(振幅L,
位相P)を計測できる。
If the amplitude of the vibration of the sample is L and the phase is P, P (t) is Given by Here, when L << λ, the signal component having the frequency F b −F of E 1 is From the measurement of the amplitude and phase of the signal of the frequency component, the thermal expansion vibration of the sample can be measured. However, as described above, when A changes due to a change in the reflectance of the sample due to a change in the temperature of the sample or the like, this becomes noise, and the thermal expansion vibration cannot be accurately measured. Therefore, in this embodiment, E 1
Comparing the value zero level (threshold), E 1 = V, waveform by binarization by the comparator 13 as E 1 is E 1 = -V If zero level less if E 1 is zero level or higher Perform the conversion. The signal E 2 after this waveform conversion is And does not include A, so that thermal expansion vibration (amplitude L,
Phase P) can be measured.

E2から周波数Fb−Fをもつ信号成分を抽出するため
に、周波数解析器、FMチューナー等の利用が考えられる
が、信号レベルが小さいときには、同期検波方式を用い
るのが適している。この場合、同期検波において、参照
信号として周波数Fb−Fをもつ信号で同期検波をおこな
えばよい。しかし、一般に光学干渉形は空気の揺らぎや
外乱振動等の影響を受け易くこれがノイズとなり、
(2)式,(5)式における位相φに時間的変動をもた
らす。φの変動は、Vの変動となり、安定に熱膨張振動
を計測できない。
In order to extract a signal component having a frequency F b -F a E 2, the frequency analyzer, although the use of such FM tuner. However, when the signal level is low, is suitable to use coherent detection scheme. In this case, the synchronous detection, a signal having a frequency F b -F a reference signal may be performed synchronous detection. However, the optical interference type is generally susceptible to the effects of air fluctuations and disturbance vibrations, and this becomes noise.
The phase φ in the equations (2) and (5) fluctuates with time. The fluctuation of φ becomes the fluctuation of V, and the thermal expansion vibration cannot be measured stably.

そこで本実施例では、まずE2に変調信号(M・sin
(2φFt+q))を乗算器14で上算する。ここにMおよ
びqは既知の定数。乗算後の信号Vmは Vm=Rcos(2π(Fb+F)t+φ+q) +Rcos(2π(Fb−F)t+φ+q) …(7) (R=2MV/π) になる。次にVmをフィルタ15に通し、上式の右辺におけ
る第2項の信号Vrを取り出す。このVrを参照信号として
同期検波を行う。Vrには位相φを含んでいるためVrを参
照信号として同期検波16を行えば、Vにおける位相φの
影響は相殺される。同期検査波出力Voとなり、位相φはなくなり安定にVoを計測でき、これよ
り熱膨張振動を高精度で計測できる。
In this embodiment, first the E 2 modulation signal (M · sin
(2φFt + q)) is added up by the multiplier 14. Where M and q are known constants. Signal V m after multiplication becomes V m = Rcos (2π (F b + F) t + φ + q) + Rcos (2π (F b -F) t + φ + q) ... (7) (R = 2MV / π). Then the V m through the filter 15 extracts the signal V r of the second term on the right side of the above equation. Synchronous detection is performed using this Vr as a reference signal. By performing synchronous detection 16 as a reference signal V r for the V r contains a phase phi, the influence of the phase phi in V is canceled. Synchronization inspection wave output V o is Next, the phase φ stable no longer able to measure V o, than this can be measured thermal expansion vibration with high accuracy.

なお上記において、周波数Fb−Fの抽出について記し
たが、E2において周波数Fb+Fの成分にも熱膨張振動の
情報が含まれている。従って(7)式のVmの右辺の第1
項の信号を参照信号として用いても熱膨張振動を計測で
きる。
Note in the above, but noted extraction of frequency F b -F, it contains information of the thermal expansion vibration in the component of the frequency F b + F in E 2. Therefore, the first on the right side of V m in equation (7)
The thermal expansion vibration can be measured by using the signal of the term as a reference signal.

第2図に試料の内部欠陥の検出方法を示す。即ち、同
図は試料の表面に熱膨張信号を誘起するレーザ光を照射
させ、熱膨張振動による歪波を試料の背面あるいは照射
点から離れた地点で検出する構成を示している。この場
合、検出される振動には、弾性波伝搬中の情報(弾性的
特性)を含んでおり、試料内部の欠陥、表面クラックの
等が検出できる。
FIG. 2 shows a method for detecting an internal defect of a sample. That is, FIG. 1 shows a configuration in which the surface of the sample is irradiated with laser light for inducing a thermal expansion signal, and a distorted wave due to the thermal expansion vibration is detected at the back of the sample or at a point away from the irradiation point. In this case, the detected vibration includes information (elastic characteristics) during the propagation of the elastic wave, and a defect inside the sample, a surface crack, and the like can be detected.

〔発明の効果〕〔The invention's effect〕

本発明は以上述べたように、試料に周期的(周波数:
F)に強度変調した励起光を照射し、これによって生じ
る試料表面の熱膨張振動を測定して試料を評価する方法
において、周波数Fで強度変調した、振動周波数F1なる
測定光(ビーム1)を照射し、その反射光と振動周波数
F2なる参照光(ビーム2)とを干渉させ、上記干渉光を
光電変換した電気信号Eを得た後、上記電気信号Eのビ
ート波信号E1(ビート周波数:Fb(Fb=F1−F2))を取
り出し、上記ビート波信号E1を2値化処理して2値信号
E2に変換し、上記2値信号E2から周波数F−Fbあるいは
F+Fbの成分を抽出し、この成分の振幅及び位相により
試料を評価することを特徴とする熱膨張振動を用いた単
一光源による試料評価方法であるから、励起光と測定光
が同じであるから従来装置のように両光軸を合わせる手
間が省かれる。また試料の温度変化又はプラズマ密度の
変化等に伴う反射率の変化により生じる測定光の振幅変
化の影響がキャンセルされるので、試料の真の熱膨張振
動を計測することができる。
As described above, the present invention applies a periodic (frequency:
In the method of irradiating intensity-modulated excitation light to F) and measuring the thermal expansion vibration of the surface of the sample caused by the intensity-modulated excitation light to evaluate the sample, the measurement light (beam 1) intensity-modulated at frequency F and having a vibration frequency F 1 Irradiates the reflected light and vibration frequency
F 2 becomes the reference light (beam 2) and causing interference, after obtaining the electric signal E obtained by photoelectrically converting the interference light, the beat wave signal of the electric signal E E 1 (beat frequency: F b (F b = F 1 -F 2 )) is extracted, and the beat wave signal E 1 is binarized to obtain a binary signal.
It was converted to E 2, and extracts a component of the frequency F-F b or F + F b from the binary signal E 2, using thermal expansion vibrations and evaluating the sample by the amplitude and phase of the component single Since the sample evaluation method is performed using one light source, the excitation light and the measurement light are the same, so that there is no need to adjust both optical axes as in the conventional apparatus. In addition, since the influence of the change in the amplitude of the measurement light caused by the change in the reflectance caused by the change in the temperature of the sample or the change in the plasma density is canceled, the true thermal expansion vibration of the sample can be measured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る評価方法の実施に使用
する装置を示すブロック図、第2図は試料の内部欠陥の
検出方法を示す概念図、第3図は従来の熱膨張振動を計
測する手法の概念図である。 〔符号の説明〕 1……励起レーザ 2……ダイクロイックミラー 3……レンズ、4……試料 5……測定用レーザ、6……周波数シフタ 7……偏向ビームスプリッタ、8……参照ミラー 9……1/4波長板、10……偏光板 11……光電変換器、12……フィルタ 13……コンパレータ、14……乗算器 15……フィルタ、16……同期検波器
FIG. 1 is a block diagram showing an apparatus used for implementing an evaluation method according to an embodiment of the present invention, FIG. 2 is a conceptual diagram showing a method for detecting internal defects in a sample, and FIG. 3 is a conventional thermal expansion vibration. FIG. 3 is a conceptual diagram of a technique for measuring the distance. [Description of Signs] 1 ... Excitation laser 2 ... Dichroic mirror 3 ... Lens 4 ... Sample 5 ... Measurement laser 6 ... Frequency shifter 7 ... Deflection beam splitter 8 ... Reference mirror 9 ... … 1/4 wavelength plate, 10… Polarizer 11… Photoelectric converter, 12… Filter 13… Comparator, 14… Multiplier 15… Filter, 16… Synchronous detector

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料に周期的に強度変調した励起光を照射
し、これによって生じる試料表面の熱膨張振動を測定し
て試料を評価する方法において、 周波数Fで強度変調した、振動周波数F1なる測定光(ビ
ーム1)を照射し、その反射光と振動周波数F2なる参照
光(ビーム2)とを干渉させ上記干渉光を光電変換した
電気信号Eを得た後、 上記電気信号Eのビート波信号E1(ビート周波数:Fb(F
b=F1−F2))を取り出し、 上記ビート波信号E1を2値化処理して2値信号E2に変換
し、 上記2値信号E2から周波数F−FbあるいはF+Fbの成分
を抽出し、この成分の振幅及び位相により試料を評価す
ることを特徴とする熱膨張振動を用いた単一光源による
試料評価方法。
1. A periodically irradiated with intensity-modulated excitation light to the sample, in a method of thermal expansion vibration of the sample surface measured by the evaluating sample caused by this, and intensity modulated at a frequency F, the vibration frequencies F 1 After irradiating the measurement light (beam 1) with the reflected light and the reference light (beam 2) having the oscillation frequency F 2 to obtain an electric signal E obtained by photoelectrically converting the interference light, Beat wave signal E 1 (beat frequency: F b (F
b = F 1 −F 2 )), takes out the beat wave signal E 1 , converts it into a binary signal E 2, and converts the binary signal E 2 into a frequency F−F b or F + F b A sample evaluation method using a single light source using thermal expansion vibration, characterized by extracting a component and evaluating the sample based on the amplitude and phase of the component.
JP7096890A 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration Expired - Lifetime JP2735348B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7096890A JP2735348B2 (en) 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration
DE4109182A DE4109182A1 (en) 1990-03-20 1991-03-20 Sample evaluation system using thermal expansion deformation - using optical interference between reflected stimulation beam and reference beam with different frequency
KR1019910004405A KR0168444B1 (en) 1990-03-20 1991-03-20 Sample evaluating method by using thermal expansion displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096890A JP2735348B2 (en) 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration

Publications (2)

Publication Number Publication Date
JPH03269346A JPH03269346A (en) 1991-11-29
JP2735348B2 true JP2735348B2 (en) 1998-04-02

Family

ID=13446834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096890A Expired - Lifetime JP2735348B2 (en) 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration

Country Status (1)

Country Link
JP (1) JP2735348B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726210B2 (en) * 1993-01-08 1998-03-11 株式会社神戸製鋼所 Method and apparatus for evaluating thermophysical properties of sample
CN104198437B (en) * 2014-08-25 2016-09-28 武汉嘉仪通科技有限公司 A kind of device and method utilizing laser measurement material thermal expansion coefficient

Also Published As

Publication number Publication date
JPH03269346A (en) 1991-11-29

Similar Documents

Publication Publication Date Title
CA2007190C (en) Laser optical ultrasound detection
EP0124224A2 (en) Method and apparatus for thin film thickness measurement
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
US5298970A (en) Sample evaluating method by using thermal expansion displacement
US4480916A (en) Phase-modulated polarizing interferometer
CN110927121B (en) Phase type SPR detection device and method based on white light interference spectrum
CN107655599B (en) Method for measuring micro stress of optical element
JP2004301520A (en) Photothermal conversion measuting instrument and its method
JP2744742B2 (en) Gas concentration measuring method and its measuring device
Jiang et al. Multiple self-mixing interferometry algorithm based on phase modulation for vibration measurement
CN110927122A (en) Phase type SPR detection device and method based on interference spectrum
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
US6295131B1 (en) Interference detecting system for use in interferometer
KR0168444B1 (en) Sample evaluating method by using thermal expansion displacement
JP4119385B2 (en) Photothermal conversion measuring device
JP2735368B2 (en) Sample evaluation method using thermal expansion vibration
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JP2672758B2 (en) Sample thermoelasticity evaluation device
JPH0617864B2 (en) Sample evaluation method using thermal expansion vibration
JP2713190B2 (en) Optical property measuring device
JP2923779B1 (en) Optical interference device for ultrasonic detection
JPH06265496A (en) Defective evaluation method of sample
JPH04273048A (en) Sample evaluation using thermal expansion vibration
JPS60224044A (en) Surface inspecting device by light heterodyne interference method