JP3118083B2 - Method of forming vertical superlattice - Google Patents

Method of forming vertical superlattice

Info

Publication number
JP3118083B2
JP3118083B2 JP04168864A JP16886492A JP3118083B2 JP 3118083 B2 JP3118083 B2 JP 3118083B2 JP 04168864 A JP04168864 A JP 04168864A JP 16886492 A JP16886492 A JP 16886492A JP 3118083 B2 JP3118083 B2 JP 3118083B2
Authority
JP
Japan
Prior art keywords
substrate
gas
superlattice
supply
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04168864A
Other languages
Japanese (ja)
Other versions
JPH0613317A (en
Inventor
随安 張
克信 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP04168864A priority Critical patent/JP3118083B2/en
Publication of JPH0613317A publication Critical patent/JPH0613317A/en
Application granted granted Critical
Publication of JP3118083B2 publication Critical patent/JP3118083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの製造
等に利用される縦型超格子の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a vertical superlattice used for manufacturing semiconductor devices.

【0002】[0002]

【従来の技術】従来から、基板上に数原子層分に相当す
る厚さ数nm程度の複数種の薄膜を交互に積層させるよ
うに形成し、基板面と平行な横方向の急峻なヘテロ界面
を有する超格子を形成して半導体デバイスを製造するこ
とが行われている。
2. Description of the Related Art Conventionally, a plurality of types of thin films having a thickness of about several nm corresponding to several atomic layers are formed alternately on a substrate, and a steep heterointerface in a lateral direction parallel to the substrate surface is formed. A semiconductor device is manufactured by forming a superlattice having the following.

【0003】また、近年は、図3に示すように、結晶の
特異面、例えば(001)面から数度(図3に示す角度
β)傾いた段差基板面1aを有する基板1上に、基板面
1aと垂直な縦方向の急峻なヘテロ界面2aを有する縦
型超格子2を形成する試みがなされている。
In recent years, as shown in FIG. 3, a substrate 1 having a stepped substrate surface 1a inclined several degrees (angle β shown in FIG. 3) from a singular surface of a crystal, for example, (001) plane, Attempts have been made to form a vertical superlattice 2 having a steep heterointerface 2a in the vertical direction perpendicular to the surface 1a.

【0004】このような縦型超格子2を形成する場合、
従来は真空チャンバ内に上述した基板を配置してヒータ
で加熱するとともに、この基板に対向するように複数の
ガス供給ノズルを配置し、エアバルブ等の開閉機構を、
数秒程度のタイミングで交互に開閉して、これらのガス
供給ノズルから交互に所定のガスを供給し、図3に示す
ようなA層とB層とを交互に形成する。この場合、A層
の厚さL1 およびB層の厚さL2 は、数原子層分に相当
する厚さ数nm程度である。
When forming such a vertical superlattice 2,
Conventionally, the above-described substrate is arranged in a vacuum chamber and heated by a heater, and a plurality of gas supply nozzles are arranged so as to face the substrate, and an opening and closing mechanism such as an air valve is provided.
Opening and closing alternately at a timing of about several seconds, a predetermined gas is alternately supplied from these gas supply nozzles, and an A layer and a B layer are alternately formed as shown in FIG. In this case, the thickness L1 of the A layer and the thickness L2 of the B layer are about several nanometers corresponding to several atomic layers.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな縦型超格子を形成する場合、1回のガス供給量等を
厳密に制御すること等が必要であり、上述した従来の方
法では、例えばヘテロ界面がゆらぎ、波打った形状とな
ってしまい、良好な形状の縦型超格子を形成することが
できないという問題があった。
However, when such a vertical superlattice is formed, it is necessary to strictly control the amount of gas supplied at one time, and the like. There is a problem that the heterointerface fluctuates and becomes wavy, and a vertical superlattice having a good shape cannot be formed.

【0006】本発明は、かかる従来の事情に対処してな
されたもので、ヘテロ界面にゆらぎ等のない良好な形状
の縦型超格子を形成することのできる縦型超格子の形成
方法を提供しようとするものである。
The present invention has been made in view of such a conventional situation, and provides a method of forming a vertical superlattice capable of forming a vertical superlattice having a good shape without fluctuation at a hetero interface. What you want to do.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の縦型
超格子の形成方法は、結晶の特異面から数度傾いた段差
基板面を有する基板を真空チャンバ内に配設して加熱す
るとともに、前記基板に対向する如く、少なくとも第1
のガスを供給する第1のガス供給機構の供給口と、第2
のガスを供給する第2のガス供給機構の供給口を配設
し、これらの供給口から交互に第1および第2のガスを
複数回供給して前記基板面に縦型超格子を形成するにあ
たり、前記基板を、前記供給口に対して正体した状態か
ら傾けて配設するとともに、前記第1および第2のガス
供給機構に高速開閉可能なバルブ機構を設け、1回の前
記第1および第2のガス供給を、前記バルブ機構の開閉
を複数回繰り返すことによってパルス状に行うことを特
徴とする。
That is, according to the method of forming a vertical superlattice of the present invention, a substrate having a stepped substrate surface inclined several degrees from a singular surface of a crystal is placed in a vacuum chamber and heated. , At least a first one facing the substrate.
A supply port of a first gas supply mechanism for supplying a second gas;
Supply ports of a second gas supply mechanism for supplying the first gas and the first and second gases are alternately supplied from these supply ports a plurality of times to form a vertical superlattice on the substrate surface. In the meantime, the substrate is arranged to be inclined from the true state with respect to the supply port, and a valve mechanism capable of opening and closing at high speed is provided in the first and second gas supply mechanisms, and the first and second gas supply mechanisms are provided once. The second gas supply is performed in a pulse form by repeatedly opening and closing the valve mechanism a plurality of times.

【0008】[0008]

【作用】上記構成の本発明の縦型超格子の形成方法で
は、ガスの供給口に対して、基板を正体させた状態か
ら、5乃至45度傾けて配置するとともに、1回のガス
供給にあたり、高速開閉可能なバルブ機構を複数回開閉
を繰り返すことによって行い、この開閉回数によってガ
スの供給量を制御する。
According to the vertical superlattice forming method of the present invention having the above-described structure, the substrate is disposed at an angle of 5 to 45 degrees with respect to the gas supply port from a state in which the substrate is in a proper shape, and a single gas supply is performed. The valve mechanism capable of high-speed opening and closing is repeatedly opened and closed a plurality of times, and the gas supply amount is controlled by the number of times of opening and closing.

【0009】すなわち、本発明方法では、例えば図2に
示すように、ガス1とガス2とを交互に供給して縦型超
格子の形成する場合、従来方法では、ガス供給機構に設
けられたエアバルブ等の開閉機構を、交互に数秒間ずつ
開けてガス供給を行っているが(図2の下部に示す)、
本発明方法では1回のガス供給において高速開閉可能
(0.1ミリ秒程度)なバルブ機構を複数回開閉させて
パルス状にガス供給を行う(図2の上部に示す)。これ
により、断熱膨脹プロセスが繰り返されることによって
供給されるガス原子の運動エネルギーが増大し、基板表
面における拡散が促進され、縦型超格子形成のステップ
フロー条件が達成されやすくなるとともに、ガス供給量
および供給タイミングの制御をより高精度で行うことが
できるようになる。
That is, in the method of the present invention, as shown in FIG. 2, for example, when gas 1 and gas 2 are alternately supplied to form a vertical superlattice, the conventional method is provided with a gas supply mechanism. Gas is supplied by opening and closing mechanisms such as air valves alternately for several seconds (shown at the bottom of FIG. 2).
In the method of the present invention, a gas supply is performed in a pulsed manner by opening and closing a valve mechanism that can be opened and closed at high speed (about 0.1 millisecond) in one gas supply (shown in the upper part of FIG. 2). As a result, the kinetic energy of gas atoms supplied by repeating the adiabatic expansion process is increased, diffusion on the substrate surface is promoted, and the step flow condition for forming the vertical superlattice is easily achieved, and the gas supply amount is increased. In addition, the control of the supply timing can be performed with higher accuracy.

【0010】また、基板を、正体させた状態から5乃至
45度傾けて配置することにより、進行方向に高い運動
量を有する原子ビームの基板表面における原子の拡散に
異方性を持たせ、結晶成長が行われるべき基板上の所望
部位にガスを供給することができるようになり、縦型超
格子界面のゆらぎを抑制することができる。
[0010] Further, by disposing the substrate at an angle of 5 to 45 degrees from the true state, the diffusion of atoms on the substrate surface of an atomic beam having a high momentum in the traveling direction is made anisotropic, and crystal growth is performed. Gas can be supplied to a desired portion on the substrate where the process is to be performed, and fluctuations at the vertical superlattice interface can be suppressed.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明の一実施例に係る装置の構
成を示すものである。同図において10は内部を気密に
閉塞可能に構成された真空チャンバであり、この真空チ
ャンバ10内には、ヒータ11を備えた基板保持用ホル
ダ12が配設されている。また、この基板保持用ホルダ
12に向けて後述する所定のガスを供給するように、複
数(本実施例では3つ)のガス供給ノズル13が設けら
れており、上記基板保持用ホルダ12は、図中αで示す
基板1のガス供給ノズル13に対して正体した状態から
の角度が、5乃至45度の所定角度になるよう傾けた状
態で基板1を保持するよう構成されている。
FIG. 1 shows the configuration of an apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a vacuum chamber configured so that the inside can be hermetically closed. In the vacuum chamber 10, a substrate holding holder 12 having a heater 11 is provided. A plurality (three in this embodiment) of gas supply nozzles 13 are provided so as to supply a predetermined gas described later to the substrate holding holder 12. The configuration is such that the substrate 1 is held in a state where the substrate 1 is tilted so that the angle of the substrate 1 with respect to the gas supply nozzle 13 indicated by α in FIG.

【0013】また、ガス供給ノズル13が配設されたガ
ス供給配管14には、それぞれ0.1ミリ秒程度のタイ
ミングで高速開閉動作可能な高速バルブ15が介挿され
ており、これらの高速バルブ15の開閉動作によって、
図示しないガス供給源からのガスを供給および供給停止
することができるよう構成されている。
A high-speed valve 15 capable of high-speed opening / closing operation at a timing of about 0.1 millisecond is interposed in the gas supply pipe 14 in which the gas supply nozzle 13 is provided. By opening and closing operation of 15,
It is configured to be able to supply and stop supply of gas from a gas supply source (not shown).

【0014】以下、上記構成の装置を用いて、GaAs
/AlAsからなる縦型超格子を形成する場合について
説明する。
Hereinafter, GaAs will be described using the above-described apparatus.
A case of forming a vertical superlattice made of / AlAs will be described.

【0015】この場合、基板1として、GaAs段差基
板を用いる。GaAs段差基板表面が(001)面から
傾いた角度(図3に示す角度β)は、縦型超格子の周期
と以下のような関係がある。
In this case, a GaAs step substrate is used as the substrate 1. The angle at which the surface of the GaAs step substrate is inclined from the (001) plane (the angle β shown in FIG. 3) has the following relationship with the period of the vertical superlattice.

【0016】 角度β=1度 超格子の周期=16.4nm 角度β=2度 超格子の周期=8.2nm 角度β=3度 超格子の周期=5.5nm 角度β=4度 超格子の周期=4.1nm 角度β=5度 超格子の周期=3.3nm 角度β=8度 超格子の周期=2.0nm 角度β=10度 超格子の周期=1.6nm このため、GaAs段差基板の傾斜角度βは、目的とす
る超格子の周期によって適宜選択する。
Angle β = 1 degree Superlattice period = 16.4 nm Angle β = 2 degrees Superlattice period = 8.2 nm Angle β = 3 degrees Superlattice period = 5.5 nm Angle β = 4 degrees Period = 4.1 nm Angle β = 5 degrees Superlattice period = 3.3 nm Angle β = 8 degrees Superlattice period = 2.0 nm Angle β = 10 degrees Superlattice period = 1.6 nm For this reason, the GaAs step substrate Is appropriately selected according to the target period of the superlattice.

【0017】GaAs段差基板自体の傾斜角(図1に示
す角度α)は、5乃至45度とし、ヒータ11による加
熱温度は、550乃至750℃程度に設定する。
The inclination angle of the GaAs stepped substrate itself (the angle α shown in FIG. 1) is set to 5 to 45 degrees, and the heating temperature by the heater 11 is set to about 550 to 750.degree.

【0018】そして、Gaの原料ガスとして、〜10%
のTriethylgallium (トリエチルガリウム、TEG)と
90%〜のH2 (水素ガス)の混合ガス、Alの原料ガ
スとして、〜5%のTriisobutylaluminum (トリイソブ
チルアルミニウム、TIBA)と95%〜のH2 の混合
ガス、Asの原料ガスとしてAsH3 (アルシン)を用
いる。
And, as a source gas of Ga, 10%
Mixing Triethylgallium mixed gas (triethyl gallium, TEG) and 90% ~ H 2 (hydrogen gas), as a source gas for Al, to 5% of the Triisobutylaluminum (triisobutylaluminum, TIBA) and the 95% ~ H 2 of AsH 3 (arsine) is used as a source gas for gas and As.

【0019】これらの原料ガスの供給シーケンスとして
は、まず、高速バルブ15の開閉動作を繰り返して行う
ことにより、図2に示したように、アルシンガスをパル
ス状に数秒(例えば1秒程度)供給する。
As a supply sequence of these source gases, first, the open / close operation of the high-speed valve 15 is repeated to supply arsine gas in a pulsed manner for several seconds (for example, about 1 second) as shown in FIG. .

【0020】次に、アルシンガスの供給を停止して、同
様にして、TEGガスをパルス状に0.数秒(例えば
0.1秒程度)供給する。
Next, the supply of arsine gas is stopped, and the TEG gas is similarly pulsed into 0.1 g. Supply for several seconds (for example, about 0.1 second).

【0021】この後、TEGガスの供給を停止して、同
様にしてTIBAガスをパルス状に0.数秒(例えば
0.2秒程度)供給する。
Thereafter, the supply of the TEG gas is stopped, and the TIBA gas is similarly supplied in a pulse form of 0.1. Supply for several seconds (for example, about 0.2 seconds).

【0022】以下、このようなシーケンスを繰り返して
行い、GaAs/AlAsからなる縦型超格子を形成す
る。
Hereinafter, such a sequence is repeated to form a vertical superlattice of GaAs / AlAs.

【0023】このようにして、縦型超格子を形成する
と、断熱膨脹プロセスが繰り返されることによって、供
給されるガス原子の運動エネルギーが増大し、基板表面
における拡散が促進されるとともに、ガス供給量および
供給タイミングの制御をより高精度で行うことができ
る。また、角度αが5乃至45度となるよう基板1を傾
けて配置することにより、進行方向に高い運動量を有す
る原子ビームの基板表面における拡散に異方性を持た
せ、ガス原子を所望部位に確実に供給することができ
る。これにより、縦型超格子界面のゆらぎのない良好な
形状の縦型超格子を形成することができる。
When the vertical superlattice is formed in this way, the adiabatic expansion process is repeated, so that the kinetic energy of the supplied gas atoms increases, the diffusion on the substrate surface is promoted, and the gas supply amount is increased. In addition, the supply timing can be controlled with higher accuracy. In addition, by disposing the substrate 1 at an angle such that the angle α is 5 to 45 degrees, the diffusion of the atomic beam having a high momentum in the traveling direction on the substrate surface has anisotropy, and the gas atoms are transferred to a desired portion. It can be supplied reliably. Thereby, a vertical superlattice having a good shape without fluctuation of the vertical superlattice interface can be formed.

【0024】[0024]

【発明の効果】以上説明したように、本発明の縦型超格
子の形成方法によれば、ヘテロ界面にゆらぎ等のない良
好な形状の縦型超格子を形成することができる。
As described above, according to the vertical superlattice forming method of the present invention, it is possible to form a vertical superlattice having a good shape without fluctuation at the hetero interface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における装置の構成を示す
図。
FIG. 1 is a diagram showing a configuration of an apparatus according to an embodiment of the present invention.

【図2】本発明方法におけるガス供給シーケンスを説明
するための図。
FIG. 2 is a diagram for explaining a gas supply sequence in the method of the present invention.

【図3】縦型超格子の構成を説明するための図。FIG. 3 is a diagram illustrating a configuration of a vertical superlattice.

【符号の説明】[Explanation of symbols]

1 基板 10 真空チャンバ 11 ヒータ 12 基板保持用ホルダ 13 ガス供給ノズル 14 ガス供給配管 15 高速バルブ DESCRIPTION OF SYMBOLS 1 Substrate 10 Vacuum chamber 11 Heater 12 Substrate holding holder 13 Gas supply nozzle 14 Gas supply pipe 15 High-speed valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01L 21/205

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶の特異面から数度傾いた段差基板面
を有する基板を真空チャンバ内に配設して加熱するとと
もに、前記基板に対向する如く、少なくとも第1のガス
を供給する第1のガス供給機構の供給口と、第2のガス
を供給する第2のガス供給機構の供給口を配設し、これ
らの供給口から交互に第1および第2のガスを複数回供
給して前記基板面に縦型超格子を形成するにあたり、 前記基板を、前記供給口に対して正体した状態から傾け
て配設するとともに、前記第1および第2のガス供給機
構に高速開閉可能なバルブ機構を設け、1回の前記第1
および第2のガス供給を、前記バルブ機構の開閉を複数
回繰り返すことによってパルス状に行うことを特徴とす
る縦型超格子の形成方法。
1. A substrate having a stepped substrate surface inclined several degrees from a singular surface of a crystal is disposed in a vacuum chamber and heated, and at least a first gas is supplied so as to face the substrate. And the supply port of the second gas supply mechanism for supplying the second gas are provided, and the first and second gases are supplied from these supply ports alternately a plurality of times. In forming a vertical superlattice on the surface of the substrate, the substrate is disposed to be inclined from a true state with respect to the supply port, and the first and second gas supply mechanisms can be opened and closed at a high speed. A mechanism is provided, and the first
And supplying the second gas in a pulse form by repeating the opening and closing of the valve mechanism a plurality of times.
【請求項2】 請求項1記載の縦型超格子の形成方法に
おいて、 前記基板を前記供給口に対して正体した状態から5乃至
45度傾けて配置することを特徴とする縦型超格子の形
成方法。
2. The method for forming a vertical superlattice according to claim 1, wherein the substrate is arranged at an angle of 5 to 45 degrees from a true state with respect to the supply port. Forming method.
JP04168864A 1992-06-26 1992-06-26 Method of forming vertical superlattice Expired - Fee Related JP3118083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04168864A JP3118083B2 (en) 1992-06-26 1992-06-26 Method of forming vertical superlattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04168864A JP3118083B2 (en) 1992-06-26 1992-06-26 Method of forming vertical superlattice

Publications (2)

Publication Number Publication Date
JPH0613317A JPH0613317A (en) 1994-01-21
JP3118083B2 true JP3118083B2 (en) 2000-12-18

Family

ID=15875980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04168864A Expired - Fee Related JP3118083B2 (en) 1992-06-26 1992-06-26 Method of forming vertical superlattice

Country Status (1)

Country Link
JP (1) JP3118083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275738B1 (en) * 1998-08-07 2000-12-15 윤종용 Method for producing thin film using atomatic layer deposition
JP4716737B2 (en) * 2005-01-05 2011-07-06 株式会社日立国際電気 Substrate processing equipment

Also Published As

Publication number Publication date
JPH0613317A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US20180209043A1 (en) Epitaxial chamber with customizable flow injection
EP0430274A2 (en) Method of producing bipolar transistor
JPS63261832A (en) Manufacture of semiconductor device
JP3126787B2 (en) Film forming method and film forming apparatus
JP3118083B2 (en) Method of forming vertical superlattice
JPH01135529A (en) Surface modification of body using electromagnetic radiation
Zhang et al. Short‐pulse supersonic nozzle beam epitaxy: A new approach for submonolayer controlled growth
JP2773772B2 (en) Crystal growth equipment
JP2641539B2 (en) Method for manufacturing semiconductor device
JP2535560B2 (en) Molecular beam crystal growth method
US20230399767A1 (en) Systems and methods for pulsed beam deposition of epitaxial crystal layers
JPH0613322A (en) Forming apparatus for hetero structure
JPH0292891A (en) Molecular beam epitaxial growth process and apparatus therefor
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JP2858058B2 (en) Crystal growth method
JPH0338824A (en) Manufacture of semiconductor thin wire
JP2661216B2 (en) Method for manufacturing compound semiconductor thin film
JPS63204717A (en) Vapor growth device
JP2743431B2 (en) Compound semiconductor vapor growth method and apparatus
JP3121945B2 (en) Semiconductor crystal growth method
Takahashi et al. In situ patterning of contamination resists in metalorganic chemical vapor deposition for fabrication of quantum wires
JP3172834B2 (en) Gas introduction device in gas source MBE
JPS63204718A (en) Organic metal vapor growth device
JPH03275591A (en) Molecular ray crystal growing apparatus
JPS63295495A (en) Device for molecular beam epitaxy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees