JPS63204718A - Organic metal vapor growth device - Google Patents

Organic metal vapor growth device

Info

Publication number
JPS63204718A
JPS63204718A JP3850987A JP3850987A JPS63204718A JP S63204718 A JPS63204718 A JP S63204718A JP 3850987 A JP3850987 A JP 3850987A JP 3850987 A JP3850987 A JP 3850987A JP S63204718 A JPS63204718 A JP S63204718A
Authority
JP
Japan
Prior art keywords
molecular beam
source cell
gas
beam source
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3850987A
Other languages
Japanese (ja)
Inventor
Chisato Tomiyama
冨山 千里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3850987A priority Critical patent/JPS63204718A/en
Publication of JPS63204718A publication Critical patent/JPS63204718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a grown layer with steep junction and high quality doing no damage to the grown surface by a method wherein, when a molecular beam source cell is provided to change the first material gas to the second material gas, a crystalline substrate surface to be grown is protected by specified molecular beams irradiated from the molecular beam source cell. CONSTITUTION:When a molecular beam source cell 15 is provided on a position opposing to a wafer 12 (a crystalline substrate to be grown) to change from the first material gas to the second material gas, the molecular beam source cell 15 is constituted to irradiate the wafer surface with molecular beams of specified gas. In other words, while the growing process is stopped to change the material gas, a gas running-in port 14 is closed by a valve V while a shutter 16 of molecular beam source cell 15 is opened to protect the wafer 12 surface by molecular beam gas irradiated from the molecular beam source cell 15 and exhausted from an exhaust port 18. Through these procedures, a grown layer with steep junction and high quality can be formed doing no damage to junction surface.

Description

【発明の詳細な説明】 [概要] 減圧式有機金属気相成長装置において、分子線源セルを
設け、第1原料ガスより第2原料ガスに切り換える際、
分子線源セルから被成長結晶基板面に所望の分子線を照
射して保護するように構成する。そうすれば、成長面が
損傷されずに、高品質で且つ急峻な接合をもった成長層
が得られる。
[Detailed Description of the Invention] [Summary] In a reduced pressure type organometallic vapor phase growth apparatus, when a molecular beam source cell is provided and the first source gas is switched to the second source gas,
The structure is such that a desired molecular beam is irradiated from a molecular beam source cell onto the surface of a crystal substrate to be grown to protect it. In this way, a growth layer with high quality and steep junctions can be obtained without damaging the growth surface.

[産業上の利用分野] 本発明は有機金属気相成長装置(MOCVD装置)の改
善に関する。
[Industrial Application Field] The present invention relates to an improvement in a metal organic chemical vapor deposition apparatus (MOCVD apparatus).

半導体装置の製造方法において、半導体基板上に半導体
結晶層を成長するエピタキシャル成長法が知られており
、これは最も重要な基礎技術である。
In the manufacturing method of semiconductor devices, an epitaxial growth method is known in which a semiconductor crystal layer is grown on a semiconductor substrate, and this is the most important basic technology.

そのようなエピタキシャル成長法のうち、最近、有機金
属熱分解気相成長法(M OCV D : Metal
Organic Chemical Vapour D
eposition )が開発されており、これは有機
金属ガスを原料ガスにして、それを熱分解させて結晶成
長する方法で、この方式は減圧中(常圧でも可)におい
て低温度で成長でき、例えば、化合物半導体デバイスを
製造する場合、化合物半導体層の急峻なヘテロ接合を容
易に得られる利点のあるものである。
Among such epitaxial growth methods, metal organic pyrolysis vapor phase epitaxy (MOCVD) has recently been used.
Organic Chemical Vapor D
This method uses organic metal gas as a raw material gas and thermally decomposes it to grow crystals. This method allows growth at low temperature under reduced pressure (normal pressure is also possible). When manufacturing a compound semiconductor device, this method has the advantage that a steep heterojunction of a compound semiconductor layer can be easily obtained.

しかし、MOCVD法を適用するMOCVD装置では、
急峻な接合が得られると共に、接合面がダメージ(損傷
)を受けないように成長することが望まれている。
However, in MOCVD equipment that applies the MOCVD method,
It is desired that a steep bond be obtained and that the bonded surface be grown without being damaged.

[従来の技術] 従来より種々の構造のMOCVD装置が提案されている
が、複数の反応室を有する(多室型の)MOCVD装置
の概要断面図を第4図に示しており、図において、1は
二室(IA、 IB)を有する反応管、2は被成長結晶
基板(ウェハー)、3はウェハーを載置するサセプタ、
4はウェハーを加熱する高周波加熱コイル、5は真空排
気口、6は第1原料ガスの流入口、7は第2原料ガスの
流入口。
[Prior Art] MOCVD apparatuses with various structures have been proposed in the past, and a schematic cross-sectional view of a (multi-chamber type) MOCVD apparatus having a plurality of reaction chambers is shown in FIG. 1 is a reaction tube having two chambers (IA, IB), 2 is a crystal substrate to be grown (wafer), 3 is a susceptor on which the wafer is placed,
4 is a high-frequency heating coil for heating the wafer; 5 is a vacuum exhaust port; 6 is a first source gas inlet; and 7 is a second source gas inlet.

8はサセプタを移動させる回転軸で、反応管やサセプタ
などの構成部材は高純度な透明石英で作成されている。
8 is a rotating shaft for moving the susceptor, and components such as the reaction tube and the susceptor are made of high-purity transparent quartz.

このようなMOCVD装置を用いて、例えば、InP基
十反(ウェハー)2の上にInP層とInGaAs層と
を成長する場合、まず、第4図に示す位置(IA室)に
ウェハー2を載せたサセプタ3を配置し、第1原料ガス
流入口6からトリエチルインジウム(TEI)とホスフ
ィン(PH3)を流入して、600℃に加熱したウェハ
ー2面上に到達させ、その原料ガスを加熱分解してIn
P層を成長する。一方、第2原料ガスの流入ロアからI
B室にはPH3のみ流入させておく。次いで、InP層
の成長が終わると、回転軸8でサセプタをIB室に回転
して移動(点線で示す位置)させ、第2原料ガスを切り
換えて、ガス流入ロアからTEIとトリエチルガリウム
(TEG)とアルシン(ASH3)を流入し、加熱した
ウェハー2面上に到達させて、その原料ガスを加熱分解
してInGaAs層を成長する。
For example, when growing an InP layer and an InGaAs layer on an InP-based wafer 2 using such a MOCVD apparatus, the wafer 2 is first placed in the position shown in FIG. 4 (IA chamber). A susceptor 3 is arranged, and triethyl indium (TEI) and phosphine (PH3) are flowed in from the first raw material gas inlet 6 to reach the surface of the wafer 2 heated to 600°C, and the raw material gas is thermally decomposed. In
Grow P layer. On the other hand, I
Only PH3 is allowed to flow into chamber B. Next, when the growth of the InP layer is completed, the susceptor is rotated and moved to the IB chamber by the rotating shaft 8 (the position indicated by the dotted line), the second raw material gas is switched, and TEI and triethyl gallium (TEG) are introduced from the gas inflow lower. and arsine (ASH3) are flowed in and reached onto the two heated wafer surfaces, and the raw material gas is thermally decomposed to grow an InGaAs layer.

このような多室型のMOCVD装置を用いる理由は、出
来るだけ速く原料ガスを切り換えて、急峻なInP層と
InGaAs層との接合を得たいためであり、この型式
の構造によれば単室型の装置より一層急峻な接合を作製
することができる。
The reason for using such a multi-chamber MOCVD device is to switch the raw material gas as quickly as possible to obtain a steep bond between the InP layer and the InGaAs layer. It is possible to create steeper joints than with the previous device.

なお、予め反応管のIB室にPH,を流入させておくわ
けは、FP(P)が蒸発し易いため、ウェハーをIB室
に移動した時、成長したInP層から燐が蒸発するのを
防止するためである。
The reason why PH is allowed to flow into the IB chamber of the reaction tube in advance is to prevent phosphorus from evaporating from the grown InP layer when the wafer is moved to the IB chamber, since FP (P) easily evaporates. This is to do so.

[発明が解決しようとする問題点コ しかし、このような急峻な接合を得るために考案した構
造の多室型MOCVD装置を使用しても、原料ガスの切
換えタイミングが不適当であると、両原料ガスの混合が
起こり、また、反応管内にガス溜りができると、その残
存ガスの影響を受けて成長層の遷移領域(接合領域のこ
と)の品質が低下する。
[Problems to be Solved by the Invention] However, even if a multi-chamber MOCVD apparatus designed to obtain such a steep bond is used, if the timing of switching the raw material gas is inappropriate, both problems may occur. When mixing of raw material gases occurs and a gas pocket is formed in the reaction tube, the quality of the transition region (junction region) of the growth layer deteriorates due to the influence of the residual gas.

更に、多室型の成長装置はサセプタを回転して移動する
際に、初めのIA室の原料ガスが混入して(る場合があ
り、同様に遷移領域の品質を悪くして、急峻な接合の形
成に悪影響を与える。
Furthermore, when the susceptor is rotated and moved in a multi-chamber growth apparatus, the raw material gas from the first IA chamber may get mixed in, which can also degrade the quality of the transition region and cause steep junctions. adversely affects the formation of

本発明はこのような欠点を低減するMOCVD装置を提
案するものである。
The present invention proposes an MOCVD apparatus that reduces such drawbacks.

[問題点を解決するための手段] その目的は、ウェハー(被成長結晶基板)に対向する位
置に分子線源セルを設け、第1原料ガスから第2原料ガ
スに切り換える際に、該分子線源セルからウェハー面に
所望ガスの分子線を照射するように構成したM’0CV
D装置によって達成される。
[Means for solving the problem] The purpose is to provide a molecular beam source cell at a position facing the wafer (crystal substrate to be grown), and when switching from the first raw material gas to the second raw material gas, the molecular beam source cell is M'0CV configured to irradiate the wafer surface with a molecular beam of the desired gas from the source cell
This is accomplished by the D device.

[作用] 即ち、本発明にかかるM OCV D装置は、単室型の
減圧式成長装置であって、分子線源セルを設けて、原料
ガスの切換え時に、分子線源セルからウェハー面に所望
ガスの分子線を照射して保護する構造にする。そうすれ
ば、接合面が損傷されず、高品質で急峻な接合の成長層
が得られる。
[Function] That is, the MOCVD apparatus according to the present invention is a single-chamber type reduced-pressure growth apparatus, and is provided with a molecular beam source cell, and when changing the raw material gas, the MOCVD apparatus is a single-chamber type reduced-pressure growth apparatus. Create a structure that protects it by irradiating it with gas molecular beams. In this way, the bonding surface is not damaged and a high quality, steep bond growth layer can be obtained.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかるMOCVD装置の概要断面図を
示しており、11は反応管、12はウェハー(被成長結
晶基板)、13はウェハーを加熱するヒータ、14は原
料ガスのガス流入口、15は分子線源セル、 16は分
子線源セルのシャック−217はロータリーポンプにi
llしる排気口、18はターボポンプに通じる排気口で
、■は開閉バルブである。
FIG. 1 shows a schematic sectional view of the MOCVD apparatus according to the present invention, in which 11 is a reaction tube, 12 is a wafer (crystal substrate to be grown), 13 is a heater for heating the wafer, and 14 is a gas inlet for raw material gas. , 15 is a molecular beam source cell, 16 is a molecular beam source cell shack, and 217 is a rotary pump with i
18 is an exhaust port leading to the turbo pump, and ■ is an opening/closing valve.

図のように、本発明にかかるMOCVD装置は単室であ
り、ウェハーを縦方向に配置して、そのウェハー面にセ
ル内の分子線ガスが当たるように、分子線源セル15を
ウェハー12の対向した位置に配置しである。
As shown in the figure, the MOCVD apparatus according to the present invention has a single chamber, and the wafer is arranged vertically, and a molecular beam source cell 15 is placed above the wafer 12 so that the molecular beam gas in the cell hits the wafer surface. They are placed in opposing positions.

このようなMOCVD装置の操作の状態図を第2図(a
)および(b)に示しており、同図(a)は結晶層を成
長中の状態図で、ガス流入口14から原料ガスを流入中
であり、且つ、分子線源セルのシャッター16は閉じら
れていて、排気口17からロータリーポンプ(図示せず
)で排気されている。また、第2図(blは成長が中止
されて、原料ガスを切換え中の状態図で、ガス流入口1
4はバルブVで閉じられ、分子線源セルのシャッター1
6が開けられてウェハー12面を分子線源セルから照射
した分子線ガスで保護しており、排気口18からターボ
ポンプ(図示せず)で排気中の状態を示している。
A state diagram of the operation of such MOCVD equipment is shown in Figure 2 (a
) and (b), and (a) is a state diagram during the growth of a crystal layer, in which source gas is flowing in from the gas inlet 14, and the shutter 16 of the molecular beam source cell is closed. The air is evacuated from an exhaust port 17 by a rotary pump (not shown). In addition, Fig. 2 (bl is a state diagram when growth is stopped and the source gas is being switched; the gas inlet 1
4 is closed by a valve V, and the shutter 1 of the molecular beam source cell
6 is opened to protect the surface of the wafer 12 with the molecular beam gas irradiated from the molecular beam source cell, and the state is shown in which exhaust port 18 is being evacuated by a turbo pump (not shown).

このように操作できる構造のMOCVD装置を用いれば
、接合面が損傷されず、急峻な接合をもった成長層が得
られる。
If a MOCVD apparatus having a structure that can be operated in this manner is used, the bonding surface will not be damaged and a grown layer with a steep bond can be obtained.

このMOCVD装置を用いて、InP5板上にInP層
とInGaAs層とを連続成長する具体例を説明する。
A specific example of successively growing an InP layer and an InGaAs layer on an InP5 board using this MOCVD apparatus will be described.

第3図に原料ガスの流入状況を示すタイムチャートを示
している。まず、MOCVD装置を第2図(alの状態
にして、InP基板を600℃まで加熱し、その間は予
めキャリアガスのH2(水素)とPH,を流しておく。
FIG. 3 shows a time chart showing the inflow situation of raw material gas. First, the MOCVD apparatus is brought into the state shown in FIG. 2 (al), and the InP substrate is heated to 600° C., during which carrier gases H2 (hydrogen) and PH are flowed in advance.

次いで、TEIを流入し、減圧度を0.1気圧程度にし
て、TEIとPH3との原料ガス(第1原料ガス)を加
熱分解してInP層を成長する。
Next, TEI is introduced, the degree of pressure reduction is set to about 0.1 atm, and the raw material gases of TEI and PH3 (first raw material gas) are thermally decomposed to grow an InP layer.

次いで、MOCVD装置を第2図(b)の状態に切り換
え、ターボポンプで排気して10−’TorrO高真空
に排気する。この切換え時は、最初にシャッター16を
開けて分子線源セル15からe(P2.P4)の分子線
ガスをウェハー12に照射しておいて、第2図(h)の
状態に切り換える。そうすれば、InP層からの燐の蒸
発が防止され保護される。
Next, the MOCVD apparatus is switched to the state shown in FIG. 2(b) and evacuated to a high vacuum of 10-'TorrO using a turbo pump. At the time of this switching, the shutter 16 is first opened to irradiate the wafer 12 with molecular beam gas e (P2.P4) from the molecular beam source cell 15, and then the state is switched to the state shown in FIG. 2(h). In this way, evaporation of phosphorus from the InP layer is prevented and protected.

且つ、この切換え時に、まず分子線源セルから分子線を
ウェハーに照射しておくため、原料ガスの切換えタイミ
ングが遅れる不都合もない。
Moreover, since the molecular beam is first irradiated onto the wafer from the molecular beam source cell at the time of this switching, there is no inconvenience that the timing of switching the source gas is delayed.

次いで、MOCVD装置を第2図(a)の状態に戻し、
TEIとTEGとAsH3との原料ガス(第2原料ガス
)を流入し、加熱分解してInGaAs層を成長する。
Next, return the MOCVD apparatus to the state shown in FIG. 2(a),
Raw material gases (second raw material gases) of TEI, TEG, and AsH3 are introduced and thermally decomposed to grow an InGaAs layer.

この例から判るように、本発明にかかるMOCVD装置
は原料ガスの切換え速度は排気系に依存し、且つ、分子
線源セルによって、切換え時に分子線で保護する方法を
採っているため、結晶層面が損傷を受けずに原料ガスを
切り換えることができ、しかも、急峻な接合が品質良く
作製することができる。
As can be seen from this example, in the MOCVD apparatus according to the present invention, the switching speed of the source gas depends on the exhaust system, and the molecular beam source cell protects the crystal layer surface during switching. The raw material gas can be switched without being damaged, and steep joints can be made with good quality.

[発明の効果] 以上の説明から明らかなように、本発明にかかるMOC
VD装置によれば、接合面が損傷されず、急峻な接合の
高品質な成長層が得られて、半導体装置の性能向上に貢
献するものである。
[Effect of the invention] As is clear from the above explanation, the MOC according to the present invention
According to the VD apparatus, a high-quality growth layer with a steep junction can be obtained without damaging the junction surface, contributing to improving the performance of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるMOCVD装置の断面図、第2
図(a)、 (b)はその動作状態を示す図、第3図は
原料ガスの流入状況のタイムチャート図、第4図は従来
の多室型のMOCVD装置の断面図である。 図において、 11は縦型反応管、 12は被成長結晶基板(ウェハー)、 13はヒータ、 14は原料ガスのガス流入口、 15は分子線源セル、 16はシャッター、 17、18は真空排気口、 ■は開閉バルブ
FIG. 1 is a sectional view of the MOCVD apparatus according to the present invention, and FIG.
Figures (a) and (b) are diagrams showing its operating state, Figure 3 is a time chart diagram of the inflow of raw material gas, and Figure 4 is a sectional view of a conventional multi-chamber MOCVD apparatus. In the figure, 11 is a vertical reaction tube, 12 is a crystal substrate to be grown (wafer), 13 is a heater, 14 is a gas inlet for source gas, 15 is a molecular beam source cell, 16 is a shutter, 17 and 18 are vacuum exhausts ■Open/close valve

Claims (1)

【特許請求の範囲】[Claims]  原料ガスを流入して減圧気中において被成長結晶基板
面に結晶層を成長させる有機金属気相成長装置において
、被成長結晶基板に対向する位置に分子線源セルを設け
、前記原料ガスを第1原料ガスから第2原料ガスに切り
換える際に、該分子線源セルから被成長結晶基板面に所
望の分子線を照射するように構成したことを特徴とする
有機金属気相成長装置。
In an organometallic vapor phase growth apparatus in which a crystal layer is grown on the surface of a crystal substrate to be grown in a reduced pressure atmosphere by flowing a raw material gas, a molecular beam source cell is provided at a position facing the crystal substrate to be grown, and the source gas is 1. An organometallic vapor phase growth apparatus characterized in that, when switching from one source gas to a second source gas, a desired molecular beam is irradiated from the molecular beam source cell onto the surface of a crystal substrate to be grown.
JP3850987A 1987-02-20 1987-02-20 Organic metal vapor growth device Pending JPS63204718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3850987A JPS63204718A (en) 1987-02-20 1987-02-20 Organic metal vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3850987A JPS63204718A (en) 1987-02-20 1987-02-20 Organic metal vapor growth device

Publications (1)

Publication Number Publication Date
JPS63204718A true JPS63204718A (en) 1988-08-24

Family

ID=12527235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3850987A Pending JPS63204718A (en) 1987-02-20 1987-02-20 Organic metal vapor growth device

Country Status (1)

Country Link
JP (1) JPS63204718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333856A (en) * 1993-05-25 1994-12-02 Nec Corp Thin film forming device
US5730094A (en) * 1996-12-10 1998-03-24 General Motors Corporation Alternator field current control for active driveline damping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333856A (en) * 1993-05-25 1994-12-02 Nec Corp Thin film forming device
US5730094A (en) * 1996-12-10 1998-03-24 General Motors Corporation Alternator field current control for active driveline damping

Similar Documents

Publication Publication Date Title
USRE43045E1 (en) Multi-chamber MOCVD growth apparatus for high performance/high throughput
Yoshinobu et al. Heteroepitaxial growth of single crystalline 3C‐SiC on Si substrates by gas source molecular beam epitaxy
US5711813A (en) Epitaxial crystal growth apparatus
EP0806499B1 (en) Method and apparatus for fabricating semiconductor
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JPS63204718A (en) Organic metal vapor growth device
JP3137767B2 (en) Method for manufacturing semiconductor device
JPH03286522A (en) Growth method of si crystal
JP2717972B2 (en) Method and apparatus for forming thin film
JP2773772B2 (en) Crystal growth equipment
JPH01245512A (en) Formation of iii-v compound semiconductor by epitaxial growth
JPH01290221A (en) Semiconductor vapor growth method
JPH0243720A (en) Molecular beam epitaxial growth method
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS63204717A (en) Vapor growth device
JPS61260622A (en) Growth for gaas single crystal thin film
JPS62296510A (en) Formation of compound semiconductor thin film and apparatus therefor
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JP2535560B2 (en) Molecular beam crystal growth method
JPS63159296A (en) Vapor phase epitaxy
JPS63129616A (en) Semiconductor device and manufacture thereof
JPH03211723A (en) Forming thin film by vapor phase epitaxy, manufacture of transistor, and apparatus for vapor phase epitaxy
JPS6134930A (en) Growing process of selective type crystal
JPH033230A (en) Semiconductor vapor growth method
JPH02116120A (en) Crystal growth method