JP3114524B2 - Flame retardant resin composition - Google Patents

Flame retardant resin composition

Info

Publication number
JP3114524B2
JP3114524B2 JP06245820A JP24582094A JP3114524B2 JP 3114524 B2 JP3114524 B2 JP 3114524B2 JP 06245820 A JP06245820 A JP 06245820A JP 24582094 A JP24582094 A JP 24582094A JP 3114524 B2 JP3114524 B2 JP 3114524B2
Authority
JP
Japan
Prior art keywords
resin
flame
temperature
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06245820A
Other languages
Japanese (ja)
Other versions
JPH07309970A (en
Inventor
貴寛 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP06245820A priority Critical patent/JP3114524B2/en
Publication of JPH07309970A publication Critical patent/JPH07309970A/en
Application granted granted Critical
Publication of JP3114524B2 publication Critical patent/JP3114524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱分解温度が高く、耐
熱性に優れた難燃性樹脂組成物に関する。
The present invention relates to a thermal decomposition temperature is high, about the flame-retardant resin composition having excellent heat resistance.

【0002】[0002]

【従来の技術】自動車用部品、電子機器用部品、建築材
料などに使用される樹脂製品には、他部品からの発火、
火災発生時に対する安全性の面から難燃性が厳しく要求
されている。樹脂の難燃化の要求に対し、従来から樹脂
に配合して使用されている難燃剤として、 1)ハロゲン化合物(テトラブロモビスフェノールA,
デカブロモジフェニルオキサイド等)などの有機系難燃
剤 2)リン系化合物(ポリメタリン酸等)などの有機系難
燃剤 3)金属水酸化物(水酸化アルミニウム,水酸化マグネ
シウム等)などの無機系難燃剤 がある。これらの難燃剤は、樹脂に比べ熱分解温度が低
いため、このような難燃剤を配合した樹脂組成物を使用
した樹脂成形品は、一旦高温にさらされると難燃剤の熱
分解により強度低下、フクレ発生など特性が劣化すると
いう問題がある。
2. Description of the Related Art Resin products used for parts for automobiles, parts for electronic equipment, building materials, etc. include ignition from other parts,
Flame retardancy is strictly required for safety in the event of a fire. In response to the demand for flame retardancy of resins, the following flame retardants have been used by blending them in resins: 1) Halogen compounds (tetrabromobisphenol A,
Organic flame retardants such as decabromodiphenyl oxide 2) Organic flame retardants such as phosphorus compounds (polymetaphosphoric acid) 3) Inorganic flame retardants such as metal hydroxides (aluminum hydroxide, magnesium hydroxide, etc.) There is. Since these flame retardants have a lower thermal decomposition temperature than resins, resin molded products using a resin composition containing such a flame retardant, once exposed to a high temperature, decrease in strength due to thermal decomposition of the flame retardant, There is a problem that characteristics such as blistering are deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、難燃性樹脂組成物による樹脂成形品の耐熱
性が、難燃剤の添加に影響されることを排除し、当該耐
熱性をできるだけ樹脂自体の耐熱温度にまで近づけるこ
とである。
The problem to be solved by the present invention is to eliminate the influence of the addition of a flame retardant on the heat resistance of a resin molded article made of a flame-retardant resin composition. Is as close as possible to the heat-resistant temperature of the resin itself.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る難燃性樹脂組成物は、樹脂が燃焼可能
な高温雰囲気で溶融する無機化合物を含有することを特
徴とする。樹脂が熱硬化性の場合、樹脂の熱分解温度以
下で溶融する無機化合物を含有するものである。無機化
合物の熱分解温度は樹脂の熱分解温度より高い方が好ま
しいが、必ずしもこれに限定されない。例えば、樹脂が
エポキシ樹脂である場合、無機化合物は、低融点ガラス
粉末および/または酸化アルミニウム一水和物粉末、ハ
ロゲン化スズ粉末などである。樹脂が熱可塑性の場合、
樹脂の熱変形温度以上で溶融する無機化合物を含有する
ものである。無機化合物は、低融点ガラス粉末および/
または酸化アルミニウム一水和物粉末、ハロゲン化スズ
粉末などである。本発明に係る樹脂の難燃化方法は、樹
脂が燃焼可能な高温雰囲気で溶融する無機化合物を、当
該樹脂中に配合することを特徴とする。
In order to solve the above-mentioned problems, a flame-retardant resin composition according to the present invention is characterized in that it contains an inorganic compound which melts in a high-temperature atmosphere in which the resin can be burned. When the resin is thermosetting, it contains an inorganic compound that melts at a temperature not higher than the thermal decomposition temperature of the resin. The thermal decomposition temperature of the inorganic compound is preferably higher than the thermal decomposition temperature of the resin, but is not necessarily limited to this. For example, when the resin is an epoxy resin, the inorganic compound is a low-melting glass powder and / or an aluminum oxide monohydrate powder, a tin halide powder, or the like. If the resin is thermoplastic,
It contains an inorganic compound that melts at or above the heat deformation temperature of the resin. The inorganic compound comprises a low melting glass powder and / or
Or aluminum oxide monohydrate powder, tin halide powder and the like. The method for making a resin flame-retardant according to the present invention is characterized in that an inorganic compound that melts in a high-temperature atmosphere in which the resin can be burned is blended in the resin.

【0005】[0005]

【作用】従来使用されている難燃剤の燃焼抑制作用は、
次に述べるように、難燃剤が熱分解することによる。例
えば、 1)ハロゲン化合物においては、その熱分解時に発生す
るハロゲン化水素が、樹脂を酸素および熱から遮断し、
また、樹脂燃焼時に生成するフリーラジカルを捕捉す
る。 2)リン系化合物においては、その熱分解時に生成する
ポリリン酸の炭化膜が樹脂を酸素および熱から遮断す
る。 3)金属水酸化物においては、その熱分解(結晶水解
離)時の吸熱による温度低下などの作用により燃焼を抑
制する。 本発明に係る樹脂組成物の燃焼抑制作用は、添加されて
いる無機化合物が燃焼時の熱により溶融し、これが樹脂
を包み込むことにより、樹脂を酸素および熱から遮断す
るものである。無機化合物は分解することなく溶融する
だけで難燃作用を発揮し、周囲温度が下がれば元の固体
状態に戻る。従って、難燃剤の添加に影響されることな
く樹脂自体の耐熱温度に近づくまで耐熱性を確保でき
る。このような難燃作用は、難燃剤が熱分解してしまう
上記従来技術におけるものとは全く異なるものである。
The effect of suppressing the combustion of the conventionally used flame retardant is as follows.
As described below, the flame retardant is thermally decomposed. For example, 1) In a halogen compound, hydrogen halide generated at the time of its thermal decomposition shields the resin from oxygen and heat,
It also captures free radicals generated during resin combustion. 2) In the case of phosphorus-based compounds, a carbonized film of polyphosphoric acid generated during thermal decomposition blocks the resin from oxygen and heat. 3) In the case of metal hydroxide, combustion is suppressed by an action such as a temperature decrease due to heat absorption during thermal decomposition (dissociation of water of crystallization). The effect of suppressing the combustion of the resin composition according to the present invention is that the added inorganic compound is melted by heat at the time of combustion, and this wraps the resin, thereby shielding the resin from oxygen and heat. The inorganic compound exerts a flame-retardant action only by melting without being decomposed, and returns to its original solid state when the ambient temperature decreases. Therefore, the heat resistance can be ensured until the temperature approaches the heat resistance temperature of the resin itself without being affected by the addition of the flame retardant. Such a flame-retardant action is completely different from that in the above-mentioned prior art in which the flame retardant is thermally decomposed.

【0006】[0006]

【実施例】本発明に係る難燃性樹脂組成物は、熱硬化性
樹脂、熱可塑性樹脂のいずれの樹脂にも適用できる。
尚、熱硬化性樹脂の場合、従来の難燃剤を使用した樹脂
組成物においても、300℃程度の耐熱温度(熱分解温
度)は確保できるため、樹脂自体がそれ以上の耐熱性を
有する樹脂、特に、エポキシ樹脂に対しての適用が効果
が著しく好ましい。また、熱可塑性樹脂の場合、従来の
難燃剤を使用した樹脂組成物においても、120℃程度
の熱変形温度は確保できるため、樹脂自体がそれ以上の
耐熱性を有する樹脂、特に、ポリアミド樹脂、ポリブチ
レンテレフタレート樹脂など耐熱性の熱可塑性樹脂に対
しての適用が効果が著しく好ましい。樹脂に配合する無
機化合物は、樹脂が燃焼可能な高温雰囲気で溶融するも
のであり、使用する樹脂との組合せで適宜選択すること
になる。エポキシ樹脂との組合せでは、樹脂の熱分解温
度以下で溶融する無機化合物であり、好ましくは、低融
点ガラス粉末(PbO・B23系等)、酸化アルミニウ
ム一水和物粉末(Al23・H2O)、ハロゲン化スズ
(SnBr2,SnI2等)などである。上記耐熱性の熱
可塑性樹脂との組合せでは、樹脂の熱変形温度以上で溶
融する無機化合物であり、好ましくは、低融点ガラス粉
末(PbO・B23系等)、酸化アルミニウム一水和物
粉末(Al23・H2O)、ハロゲン化スズ(SnB
2,SnI2等)などである。
The flame-retardant resin composition according to the present invention can be applied to both thermosetting resins and thermoplastic resins.
In the case of a thermosetting resin, even in a resin composition using a conventional flame retardant, a heat resistance temperature (pyrolysis temperature) of about 300 ° C. can be secured, so that the resin itself has a higher heat resistance. Particularly, application to an epoxy resin is extremely preferable. Further, in the case of a thermoplastic resin, even in a resin composition using a conventional flame retardant, since a heat deformation temperature of about 120 ° C. can be ensured, the resin itself has a higher heat resistance, particularly, a polyamide resin, The application to a heat-resistant thermoplastic resin such as a polybutylene terephthalate resin is extremely advantageous. The inorganic compound to be blended with the resin melts in a high-temperature atmosphere in which the resin can be burned, and is appropriately selected in combination with the resin to be used. In combination with an epoxy resin, it is an inorganic compound that melts at or below the thermal decomposition temperature of the resin, and is preferably a low-melting glass powder (PbO.B 2 O 3 or the like) or an aluminum oxide monohydrate powder (Al 2 O 3 · H 2 O), tin halide (SnBr 2 , SnI 2, etc.). In combination with the above-mentioned heat-resistant thermoplastic resin, it is an inorganic compound that melts at a temperature not lower than the thermal deformation temperature of the resin, and is preferably a low-melting glass powder (PbO.B 2 O 3 or the like), aluminum oxide monohydrate Powder (Al 2 O 3 .H 2 O), tin halide (SnB)
r 2 , SnI 2, etc.).

【0007】実施例1 ビスフェノールA型エポキシ樹脂(エポキシ当量:48
0)100重量部、ジシアンジアミド3重量部、ベンジ
ルジメチルアミン0.4重量部を配合した樹脂組成物
(A)を調製した。この樹脂組成物(A)の硬化物の熱
分解温度は、405℃であった。上記樹脂組成物(A)
に、低融点ガラス粉末(PbO・B23系,融点:38
0℃,熱分解温度:500℃以上)を80重量部配合
し、難燃性樹脂組成物(A)を調製した。難燃性樹脂組
成物(A)のワニスをガラス不織布(単位重量:75g
/m2)に含浸乾燥し、樹脂量78重量%のプリプレグ
を得た。このプリプレグを所定枚数積層し、温度170
℃、圧力40kgf/cm2で90分間加熱加圧成形し、厚み
1.2mmの積層板を得た。
Example 1 Bisphenol A type epoxy resin (epoxy equivalent: 48)
0) A resin composition (A) was prepared in which 100 parts by weight, dicyandiamide 3 parts by weight, and benzyldimethylamine 0.4 part by weight were blended. The thermal decomposition temperature of the cured product of the resin composition (A) was 405 ° C. The above resin composition (A)
Low melting glass powder (PbO.B 2 O 3 system, melting point: 38
(0 ° C., thermal decomposition temperature: 500 ° C. or higher) in an amount of 80 parts by weight to prepare a flame-retardant resin composition (A). A varnish of the flame-retardant resin composition (A) is mixed with a glass nonwoven fabric (unit weight: 75 g).
/ M 2 ) to obtain a prepreg having a resin amount of 78% by weight. A predetermined number of the prepregs are laminated, and a temperature of 170
It was heated and pressed at 90 ° C. under a pressure of 40 kgf / cm 2 for 90 minutes to obtain a laminate having a thickness of 1.2 mm.

【0008】実施例2 樹脂組成物(A)に、酸化アルミニウム一水和物粉末
(Al23・H2O,融点:350℃,熱分解温度:38
0℃)を80重量部配合し、難燃性樹脂組成物(B)を
調製した。難燃性樹脂組成物(B)のワニスを使用し、
以下、実施例1と同様にして厚み1.2mmの積層板を得
た。
Example 2 An aluminum oxide monohydrate powder (Al 2 O 3 .H 2 O, melting point: 350 ° C., thermal decomposition temperature: 38) was added to the resin composition (A).
(0 ° C.) in an amount of 80 parts by weight to prepare a flame-retardant resin composition (B). Using a varnish of the flame-retardant resin composition (B),
Thereafter, a laminate having a thickness of 1.2 mm was obtained in the same manner as in Example 1.

【0009】実施例3 樹脂組成物(A)に、実施例1で使用した低融点ガラス
粉末を40重量部、実施例2で使用した酸化アルミニウ
ム一水和物粉末を40重量部配合した難燃性樹脂組成物
(C)を調製した。難燃性樹脂組成物(C)のワニスを
使用し、以下、実施例1と同様にして厚み1.2mmの積
層板を得た。
Example 3 Flame retardancy in which the resin composition (A) is mixed with 40 parts by weight of the low melting point glass powder used in Example 1 and 40 parts by weight of the aluminum oxide monohydrate powder used in Example 2. Resin composition (C) was prepared. Using a varnish of the flame-retardant resin composition (C), a laminate having a thickness of 1.2 mm was obtained in the same manner as in Example 1 below.

【0010】実施例4 樹脂組成物(A)に、ヨウ化スズ(SnI2,融点:3
20℃,熱分解温度:500℃以上)を80重量部配合
した難燃性樹脂組成物(D)を調製した。難燃性樹脂組
成物(D)のワニスを使用し、以下、実施例1と同様に
して厚み1.2mmの積層板を得た。
Example 4 Tin iodide (SnI 2 , melting point: 3) was added to a resin composition (A).
A flame-retardant resin composition (D) was prepared by mixing 80 parts by weight of (20 ° C., thermal decomposition temperature: 500 ° C. or higher). Using a varnish of the flame-retardant resin composition (D), a laminate having a thickness of 1.2 mm was obtained in the same manner as in Example 1 below.

【0011】従来例1 ビスフェノールA型臭素化エポキシ樹脂(エポキシ当
量:480,臭素含率:21重量%)70重量部、ビス
フェノールA型エポキシ樹脂(エポキシ当量:480)
30重量部、ジジシアンジアミド3重量部、ベンジルジ
メチルアミン0.4重量部を配合し、難燃性樹脂組成物
(E)を調製した。難燃性樹脂組成物(E)のワニスを
使用し、以下、実施例1と同様にして厚み1.2mmの積
層板を得た。
Conventional Example 1 70 parts by weight of bisphenol A type brominated epoxy resin (epoxy equivalent: 480, bromine content: 21% by weight), bisphenol A type epoxy resin (epoxy equivalent: 480)
30 parts by weight, 3 parts by weight of dicyandiamide, and 0.4 part by weight of benzyldimethylamine were blended to prepare a flame-retardant resin composition (E). Using a varnish of the flame-retardant resin composition (E), a laminate having a thickness of 1.2 mm was obtained in the same manner as in Example 1 below.

【0012】従来例2 樹脂組成物(A)に、水酸化アルミニウム粉末(Al
(OH)3,熱分解温度:280℃)を80重量部配合し
た難燃性樹脂組成物(F)を調製した。難燃性樹脂組成
物(F)のワニスを使用し、以下、実施例1と同様にし
て厚み1.2mmの積層板を得た。
Conventional Example 2 An aluminum hydroxide powder (Al) was added to the resin composition (A).
(OH) 3 , pyrolysis temperature: 280 ° C.) to prepare 80 parts by weight of a flame-retardant resin composition (F). Using a varnish of the flame-retardant resin composition (F), a laminate having a thickness of 1.2 mm was obtained in the same manner as in Example 1 below.

【0013】比較例1 樹脂組成物(A)のワニスを使用し、以下、実施例1と
同様にして厚み1.2mmの積層板を得た。
Comparative Example 1 A varnish of the resin composition (A) was used to obtain a laminate having a thickness of 1.2 mm in the same manner as in Example 1.

【0014】上記の各種樹脂組成物を使用して得られた
積層板の特性を表1に示す。表1において、熱分解温度
は、熱天秤により主分解温度を測定した。曲げ強度保持
率は、(数1)に基づいて計算した。尚、曲げ強度自体
の測定は、JIS−C−6911に準拠した。難燃性
は、UL−94に準拠して評価した。表中の(*)印
は、処理によってフクレが発生したことを表す。
Table 1 shows the properties of the laminates obtained using the above various resin compositions. In Table 1, the main decomposition temperature was measured with a thermobalance. The bending strength retention was calculated based on (Equation 1). The measurement of the bending strength itself was based on JIS-C-6911. Flame retardancy was evaluated according to UL-94. An asterisk (*) in the table indicates that blisters were generated by the treatment.

【0015】[0015]

【数1】 (Equation 1)

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、実施例の難燃性
樹脂組成物を適用した積層板は、難燃性を保持しながら
熱分解温度も高い。そして、高温にさらされた後も強度
低下が少なく耐熱性に優れている。難燃性を確保するた
めに配合した無機化合物が、耐熱性や機械強度などの特
性に悪影響を与えていないことを理解できる。特に、無
機化合物として樹脂の熱分解温度より高い熱分解温度を
有するものを選択したとき(実施例1および実施例4)
には、成形品の熱分解温度が樹脂自体の熱分解温度と同
等かそれをしのぐものになり、耐熱性も一層優れたもの
となる。上記実施例では、難燃性樹脂組成物を適用した
成形品が積層板であったが、本発明に係る難燃性樹脂組
成物は、積層板への適用に限ることなく種々の成形品に
適用できる。無機化合物の溶融温度は、絶対的なもので
はなく、当該無機化合物を配合する樹脂の耐熱温度との
関係で決定される。無機化合物は、使用する熱硬化性樹
脂の燃焼可能な高温雰囲気で溶融するもののうち、使用
する熱硬化性樹脂の熱分解温度以下で溶融するものを適
宜選択すればよい。
As is clear from Table 1, the laminates to which the flame-retardant resin compositions of the examples are applied have high thermal decomposition temperatures while maintaining flame retardancy. And, even after being exposed to a high temperature, there is little strength reduction and excellent heat resistance. It can be understood that the inorganic compound blended for ensuring flame retardancy does not adversely affect properties such as heat resistance and mechanical strength. In particular, when an inorganic compound having a higher thermal decomposition temperature than the thermal decomposition temperature of the resin is selected (Examples 1 and 4)
In this case, the thermal decomposition temperature of the molded product is equal to or exceeds the thermal decomposition temperature of the resin itself, and the heat resistance is further improved. In the above examples, the molded article to which the flame-retardant resin composition was applied was a laminate, but the flame-retardant resin composition according to the present invention is applicable to various molded articles without being limited to application to a laminate. Applicable. The melting temperature of the inorganic compound is not absolute, but is determined by the relationship with the heat-resistant temperature of the resin containing the inorganic compound. The inorganic compound that melts in a high-temperature atmosphere in which the thermosetting resin to be used can be burned may be appropriately selected from those that melt at or below the thermal decomposition temperature of the thermosetting resin to be used.

【0018】実施例5 ポリアミド6樹脂(熱変形温度:145℃)100重量
部に、低融点ガラス粉末(PbO・B23系,融点:3
80℃,熱分解温度:500℃以上)を80重量部混合
し、除湿乾燥により吸湿率0.1%以下とした後、樹脂
温度250℃、金型温度80℃、圧力900kgf/cm2
射出成形し、厚み3.2mmの板状成形品を得た。
Example 5 A low melting glass powder (PbO.B 2 O 3 system, melting point: 3) was added to 100 parts by weight of a polyamide 6 resin (thermal deformation temperature: 145 ° C.).
80 ° C., thermal decomposition temperature: 500 ° C. or higher) was mixed 80 parts by weight, was 0.1% or less moisture absorption by dehumidifying drying, the resin temperature of 250 ° C., a mold temperature of 80 ° C., injection pressure 900 kgf / cm 2 It was molded to obtain a 3.2 mm thick plate-like molded product.

【0019】実施例6 ポリアミド6樹脂100重量部に、酸化アルミニウム一
水和物粉末(Al23・H2O,融点:350℃,熱分解
温度:380℃)を80重量部混合し、以下、実施例5
と同様にして厚み3.2mmの板状成形品を得た。
EXAMPLE 6 80 parts by weight of aluminum oxide monohydrate powder (Al 2 O 3 .H 2 O, melting point: 350 ° C., thermal decomposition temperature: 380 ° C.) were mixed with 100 parts by weight of a polyamide 6 resin. Hereinafter, Example 5
In the same manner as in the above, a plate-like molded product having a thickness of 3.2 mm was obtained.

【0020】実施例7 ポリアミド6樹脂100重量部に、実施例5で使用した
低融点ガラス粉末を40重量部、酸化アルミニウム一水
和物粉末を40重量部混合し、以下、実施例5と同様に
して厚み3.2mmの板状成形品を得た。
Example 7 To 100 parts by weight of a polyamide 6 resin, 40 parts by weight of the low melting point glass powder used in Example 5 and 40 parts by weight of aluminum oxide monohydrate powder were mixed. To obtain a 3.2 mm thick plate-like molded product.

【0021】実施例8 ポリアミド6樹脂100重量部に、ヨウ化スズ(SnI
2,融点:320℃,熱分解温度:500℃以上)を8
0重量部混合し、以下、実施例5と同様にして厚み3.
2mmの板状成形品を得た。
Example 8 Tin iodide (SnI) was added to 100 parts by weight of a polyamide 6 resin.
2 , melting point: 320 ° C, thermal decomposition temperature: 500 ° C or more)
0 parts by weight, and then the same thickness as in Example 5 was applied.
A plate-shaped molded product of 2 mm was obtained.

【0022】従来例3 ポリアミド6樹脂80重量部に、テトラブロモビスフェ
ノールAエポキシオリゴマー(融点:120℃,熱分解
温度:260℃)20重量部,ガラス粉末80重量部を
混合し、以下、実施例5と同様にして厚み3.2mmの板
状成形品を得た。
Conventional Example 3 20 parts by weight of a tetrabromobisphenol A epoxy oligomer (melting point: 120 ° C., thermal decomposition temperature: 260 ° C.) and 80 parts by weight of glass powder were mixed with 80 parts by weight of a polyamide 6 resin. In the same manner as in Example 5, a plate-shaped molded product having a thickness of 3.2 mm was obtained.

【0023】従来例4 ポリアミド6樹脂100重量部に、水酸化アルミニウム
粉末(Al(OH)3,熱分解温度:280℃)を80重
量部混合し、以下、実施例5と同様にして厚み3.2mm
の板状成形品を得た。
Conventional Example 4 80 parts by weight of aluminum hydroxide powder (Al (OH) 3 , thermal decomposition temperature: 280 ° C.) was mixed with 100 parts by weight of a polyamide 6 resin, and the thickness was reduced to 3 in the same manner as in Example 5. .2mm
Was obtained.

【0024】比較例2 ポリアミド6樹脂100重量部に、ガラス粉末80重量
部を混合し、以下、実施例5と同様にして厚み3.2mm
の板状成形品を得た。
Comparative Example 2 80 parts by weight of a glass powder was mixed with 100 parts by weight of a polyamide 6 resin, and thereafter, a thickness of 3.2 mm was obtained in the same manner as in Example 5.
Was obtained.

【0025】実施例9 ポリアミド46樹脂(熱変形温度:285℃)100重
量部に、低融点ガラス粉末(PbO・B23系,融点:
380℃,熱分解温度:500℃以上)を80重量部混
合し、除湿乾燥により吸湿率0.1%以下とした後、樹
脂温度310℃、金型温度120℃、圧力700kgf/c
m2で射出成形し、厚み3.2mmの板状成形品を得た。
Example 9 100 parts by weight of a polyamide 46 resin (thermal deformation temperature: 285 ° C.) was mixed with a low melting point glass powder (PbO.B 2 O 3 system, melting point:
(380 ° C., thermal decomposition temperature: 500 ° C. or more), and 80% by weight of the mixture were mixed to obtain a moisture absorption of 0.1% or less by dehumidifying and drying.
Injection molding was performed at m 2 to obtain a 3.2 mm-thick plate-like molded product.

【0026】実施例10 ポリアミド46樹脂100重量部に、酸化アルミニウム
一水和物粉末(Al23・H2O,融点:350℃,熱分
解温度:380℃)を80重量部混合し、以下、実施例
9と同様にして厚み3.2mmの板状成形品を得た。
Example 10 80 parts by weight of aluminum oxide monohydrate powder (Al 2 O 3 .H 2 O, melting point: 350 ° C., thermal decomposition temperature: 380 ° C.) were mixed with 100 parts by weight of a polyamide 46 resin. Thereafter, a plate-shaped molded product having a thickness of 3.2 mm was obtained in the same manner as in Example 9.

【0027】実施例11 ポリアミド46樹脂100重量部に、ヨウ化スズ(Sn
2,融点:320℃,熱分解温度:500℃以上)を
80重量部混合し、以下、実施例9と同様にして厚み
3.2mmの板状成形品を得た。
Example 11 Tin iodide (Sn) was added to 100 parts by weight of a polyamide 46 resin.
I 2 , melting point: 320 ° C., thermal decomposition temperature: 500 ° C. or more) were mixed in an amount of 80 parts by weight to obtain a 3.2 mm-thick plate-like molded product in the same manner as in Example 9.

【0028】比較例3 ポリアミド46樹脂100重量部に、ガラス粉末80重
量部を混合し、以下、実施例5と同様にして厚み3.2
mmの板状成形品を得た。
Comparative Example 3 80 parts by weight of a glass powder was mixed with 100 parts by weight of a polyamide 46 resin, and then, a thickness of 3.2 was obtained in the same manner as in Example 5.
mm plate-shaped molded product was obtained.

【0029】従来例5 ポリアミド46樹脂80重量部に、テトラブロモビスフ
ェノールAエポキシオリゴマー20重量部,ガラス粉末
80重量部を混合し、以下、実施例9と同様にして射出
成形を行ったが、難燃剤の熱分解により成形できなかっ
た。
Conventional Example 5 20 parts by weight of a tetrabromobisphenol A epoxy oligomer and 80 parts by weight of a glass powder were mixed with 80 parts by weight of a polyamide 46 resin, and injection molding was carried out in the same manner as in Example 9; Molding was not possible due to the thermal decomposition of the flame retardant.

【0030】従来例6 ポリアミド46樹脂100重量部に、水酸化アルミニウ
ム粉末を80重量部混合し、以下、実施例9と同様にし
て射出成形を行ったが、難燃剤の熱分解により成形でき
なかった。
Conventional Example 6 80 parts by weight of aluminum hydroxide powder was mixed with 100 parts by weight of polyamide 46 resin, and injection molding was carried out in the same manner as in Example 9, but molding was not possible due to thermal decomposition of the flame retardant. Was.

【0031】上記の各種樹脂組成物を使用して得られた
板状成形品の特性を表2および表3に示す。尚、熱分解
温度は、熱天秤により主分解温度を測定した。また、熱
変形温度は、JIS−C−6911に準拠して測定し
た。難燃性は、UL−94にして評価準拠した。表中の
(*)印は、処理によってフクレが発生したことを表
す。
Tables 2 and 3 show the properties of the plate-like molded products obtained using the above various resin compositions. In addition, the thermal decomposition temperature measured the main decomposition temperature with the thermobalance. The heat distortion temperature was measured in accordance with JIS-C-6911. The flame retardancy was evaluated according to UL-94. An asterisk (*) in the table indicates that blisters were generated by the treatment.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】表2および表3から明らかなように、実施
例の難燃性樹脂組成物を適用した板状成形品は、難燃性
を保持しながら、高温にさらされた後も熱変形温度の低
下がなく耐熱性に優れている。難燃性を確保するために
配合した無機化合物が、耐熱特性に悪影響を与えていな
いことを理解できる。特に、表3から、これまで難燃性
の付与が困難であった耐熱性の熱可塑性樹脂成形品に対
しても、耐熱性を低下させることなく難燃性を付与でき
ることを理解できる。無機化合物の溶融温度は、絶対的
なものではなく、当該無機化合物を配合する熱可塑性樹
脂の熱変形温度との関係で決定される。無機化合物は、
使用する熱可塑性樹脂の燃焼可能な高温雰囲気で溶融す
るもののうち、樹脂の熱変形温度以上で溶融するものを
適宜選択すればよい。
As is clear from Tables 2 and 3, the plate-shaped molded articles to which the flame-retardant resin compositions of the examples were applied retain the flame-retardant properties and have a heat distortion temperature even after being exposed to high temperatures. No decrease in heat resistance and excellent heat resistance. It can be understood that the inorganic compound blended for ensuring flame retardancy does not adversely affect the heat resistance. In particular, from Table 3, it can be understood that flame retardancy can be imparted to a heat-resistant thermoplastic resin molded product, which has been difficult to impart flame retardancy, without reducing heat resistance. The melting temperature of the inorganic compound is not absolute, but is determined by the relationship with the heat deformation temperature of the thermoplastic resin containing the inorganic compound. Inorganic compounds are
Of the thermoplastic resins used, those that melt in a combustible high-temperature atmosphere and those that melt at or above the thermal deformation temperature of the resin may be appropriately selected.

【0035】[0035]

【発明の効果】上述のように、本発明に係る難燃性樹脂
組成物は、配合した無機化合物が熱分解するのではなく
溶融することにより難燃作用を発揮するので、当該樹脂
組成物を適用した成形品の耐熱性を樹脂自体の耐熱温度
にまで近づけることができる。エポキシ樹脂のように耐
熱性の高い樹脂に本発明を適用すれば、従来の難燃剤の
配合では得られなかった耐熱性の高い成形品を得ること
ができる。また、耐熱性の熱可塑性樹脂に本発明を適用
すれば、これまで付与できなかった難燃性を確保するこ
とができる。
As described above, the flame-retardant resin composition according to the present invention exerts a flame-retardant action by melting, rather than thermally decomposing, the compounded inorganic compound. The heat resistance of the applied molded article can be brought close to the heat resistance temperature of the resin itself. If the present invention is applied to a resin having a high heat resistance such as an epoxy resin, it is possible to obtain a molded product having a high heat resistance, which cannot be obtained by the conventional compounding of a flame retardant. In addition, if the present invention is applied to a heat-resistant thermoplastic resin, it is possible to secure flame retardancy that could not be imparted hitherto.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08L 1/00 - 101/16 C08K 3/00 - 13/08 C09K 21/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C08L 1/00-101/16 C08K 3/00-13/08 C09K 21/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エポキシ樹脂に、当該樹脂が燃焼可能な高
温雰囲気で溶融する無機化合物を含み、前記無機化合物
として熱分解温度が前記エポキシ樹脂の熱分解温度以下
である酸化アルミニウム一水和物粉末を含有することを
特徴とする難燃性樹脂組成物。
1. An epoxy resin containing an inorganic compound that melts in a high-temperature atmosphere in which the resin can be burned, wherein the inorganic compound
The thermal decomposition temperature is below the thermal decomposition temperature of the epoxy resin
A flame-retardant resin composition, characterized by containing an aluminum oxide monohydrate powder as described above.
【請求項2】無機化合物が、酸化アルミニウム一水和物
粉末と熱分解温度が前記エポキシ樹脂の熱分解温度より
高い低融点ガラス粉末との併用である請求項1記載の難
燃性樹脂組成物。
2. The inorganic compound is aluminum oxide monohydrate.
The powder and the thermal decomposition temperature are higher than the thermal decomposition temperature of the epoxy resin
The flame-retardant resin composition according to claim 1, which is used in combination with a high low-melting glass powder .
【請求項3】耐熱性熱可塑性樹脂に、当該樹脂が燃焼可
能な高温雰囲気で溶融し且つ当該樹脂の熱変形温度以上
で溶融する無機化合物を含み、前記無機化合物として酸
化アルミニウム一水和物粉末を含有することを特徴とす
難燃性樹脂組成物。
3. The heat-resistant thermoplastic resin is combustible with said resin.
Melts in a high-temperature atmosphere and is at or above the thermal deformation temperature of the resin.
Inorganic compounds that melt in
Characterized by containing aluminum halide monohydrate powder
The flame retardant resin composition that.
【請求項4】無機化合物が、酸化アルミニウム一水和物
粉末と低融点ガラス粉末との併用である請求項3記載の
難燃性樹脂組成物。
4. The inorganic compound is aluminum oxide monohydrate.
The flame-retardant resin composition according to claim 3, which is a combination of a powder and a low-melting glass powder .
JP06245820A 1994-03-24 1994-10-12 Flame retardant resin composition Expired - Fee Related JP3114524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06245820A JP3114524B2 (en) 1994-03-24 1994-10-12 Flame retardant resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-52399 1994-03-24
JP5239994 1994-03-24
JP06245820A JP3114524B2 (en) 1994-03-24 1994-10-12 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPH07309970A JPH07309970A (en) 1995-11-28
JP3114524B2 true JP3114524B2 (en) 2000-12-04

Family

ID=26393003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06245820A Expired - Fee Related JP3114524B2 (en) 1994-03-24 1994-10-12 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP3114524B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
JP5834231B2 (en) * 2010-12-16 2015-12-16 パナソニックIpマネジメント株式会社 Flame retardant resin composition
JP5712123B2 (en) 2011-12-26 2015-05-07 株式会社日立製作所 Composite material
US20150337106A1 (en) * 2012-12-26 2015-11-26 Hitachi, Ltd. Low-Melting-Point Glass Resin Composite Material and Electronic/Electric Apparatus Using Same
WO2014102921A1 (en) * 2012-12-26 2014-07-03 株式会社 日立製作所 Heat-resistant wiring component and method for manufacturing same

Also Published As

Publication number Publication date
JPH07309970A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
CN110845850B (en) Ceramizable halogen-free flame-retardant silicone rubber and preparation method thereof
CN107286563A (en) A kind of expansion type flame retardant and its preparation and application for ABS electric switch outer covers
JP4029456B2 (en) Flame-retardant non-halogen epoxy resin composition, prepreg using the same, and laminate for electric wiring board
CN102746608A (en) Special environmental-friendly halogen-free flame retardant for ABS (acrylonitrile butadiene styrene) resin
JP3114524B2 (en) Flame retardant resin composition
CN107828054B (en) Thermosetting polyester high-molecular flame retardant containing phosphorus and nitrogen elements, and preparation method and application thereof
JP2010077333A (en) Flame-retardant resin composition
Yu et al. Study on char reinforcing of different inorganic fillers for expandable fire resistance silicone rubber
CN108314838A (en) A kind of high-strength high-glowing-filament-temperature flame-retardancy polypropylene and preparation method thereof
JP6177252B2 (en) Polybutylene terephthalate resin composition
CN108485193B (en) Flame-retardant epoxy resin composition for electronic packaging material and preparation method thereof
CN107857883B (en) Phosphorus-nitrogen-containing high-molecular flame retardant with char-forming function and preparation method and application thereof
JP2000212403A (en) Flame-retarded resin composition, and prepreg and laminate prepared therefrom
EP0490065A2 (en) Fire retardant epoxy resin compositions
CN112143162B (en) ABS composite material and preparation method thereof
JPH07258439A (en) Flame retardant laminated sheet and its production
CN103282432B (en) Phenolic resin molding material
JP3835725B2 (en) Flame retardant epoxy resin powder coating
JPH1143536A (en) Flame-retardant resin composition
CN111978724A (en) Flame-retardant polyetherimide resin and preparation method thereof
JPH04142360A (en) Flame-retardant resin composition
CN104419169A (en) Environment-friendly and flame-retardant polycarbonate and preparation method thereof
JPH09169887A (en) Phenolic resin composition
JPH0625485A (en) Flame-retardant polypropylene resin composition
JP2002037978A (en) Sealing resin composition and semiconductor-sealing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees