JP3110471B2 - Refrigeration quenching control device - Google Patents

Refrigeration quenching control device

Info

Publication number
JP3110471B2
JP3110471B2 JP1435291A JP1435291A JP3110471B2 JP 3110471 B2 JP3110471 B2 JP 3110471B2 JP 1435291 A JP1435291 A JP 1435291A JP 1435291 A JP1435291 A JP 1435291A JP 3110471 B2 JP3110471 B2 JP 3110471B2
Authority
JP
Japan
Prior art keywords
quenching
temperature
food
damper
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1435291A
Other languages
Japanese (ja)
Other versions
JPH04254180A (en
Inventor
卓郎 倉掛
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP1435291A priority Critical patent/JP3110471B2/en
Publication of JPH04254180A publication Critical patent/JPH04254180A/en
Application granted granted Critical
Publication of JP3110471B2 publication Critical patent/JP3110471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/123Sensors measuring the inside temperature more than one sensor measuring the inside temperature in a compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は食品などを短時間で適温
まで冷やすために経験則を基にした急冷制御装置の制御
ルールと、それを構成するファジィ変数のメンバーシッ
プ関数とによって最適な急冷ファンとダンパーとの操作
量を推論して、その結果を出力するようにした冷蔵庫の
急冷制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quenching control system based on empirical rules for cooling food and the like to an appropriate temperature in a short time, and an optimal quenching function based on membership functions of fuzzy variables constituting the quenching control device. The present invention relates to a refrigerator quenching control device that infers an operation amount of a fan and a damper and outputs the result.

【0002】[0002]

【従来の技術】冷蔵庫(冷凍冷蔵庫も含む)は食品など
の貯蔵を基本機能とするものであるが、近年では更に付
加機能を持たせたものが現われ始めた。その付加機能の
一つが急速冷蔵(以下急冷と省略する)である。この急
冷は必要に応じて食品を適温になるまで冷やすもので例
えば「急なお客さんでビールを大至急冷やしたい」や
「サラダを早く冷やして食事したい」などの時に利用で
き、また生鮮食料品などの新鮮さをそのままスピード保
存ができるなどの利点が有る。
2. Description of the Related Art Refrigerators (including refrigerators) have a basic function of storing foods and the like, but in recent years, refrigerators having additional functions have begun to appear. One of the additional functions is rapid refrigeration (hereinafter abbreviated as rapid cooling). This quenching cools the food to the appropriate temperature as needed, and can be used when, for example, "I want to cool beer very quickly with a sudden customer" or "I want to cool the salad quickly and eat". There is an advantage that freshness such as can be saved as it is at a speed.

【0003】従来の冷蔵庫の急冷制御装置では、例えば
特開昭63−118584号公報に示されるような方法
がある。ここでは急冷指令(たとえばスイッチオンな
ど)によって急冷を開始すると、あらかじめ設定された
時間の間、常にダンパーを開放にし、ファンで急冷室に
冷気を送り続けるものであった。しかしこのように急冷
動作を時間にのみ依存して制御する方法では、過冷却が
生じるために例えばビール瓶が破裂したり、他の食品で
は凍結して品質が劣化するなどの問題が有った。
A conventional quenching control device for a refrigerator includes a method disclosed in, for example, JP-A-63-118584. Here, when quenching is started by a quenching command (for example, switch-on), the damper is always opened for a preset time, and the fan continues to send cool air to the quenching chamber. However, such a method of controlling the quenching operation depending only on time has a problem that, for example, a beer bottle is ruptured due to overcooling, and other foods are frozen to deteriorate the quality.

【0004】この過冷却を解決するためには、例えば特
開昭63−189760号公報に示されるような方法が
ある。即ち急冷状態においてはダンパーを用いて急冷室
を通常より低い温度に設定し、なおかつファンを用いて
内部の冷気を強制循環させ食品を冷却すると共に、その
食品の表面温度を非接触(例えば赤外線センサー)で測
定し、その表面温度がある一定温度に冷えると、急冷動
作を停止させるものであった。
[0004] In order to solve this supercooling, there is a method disclosed in, for example, JP-A-63-189760. That is, in the quenching state, the quenching chamber is set at a lower temperature than usual by using a damper, and the inside of the chilled air is forcibly circulated using a fan to cool the food, and the surface temperature of the food is not contacted (for example, infrared sensor) ), And when the surface temperature is cooled to a certain temperature, the rapid cooling operation is stopped.

【0005】[0005]

【発明が解決しようとする課題】しかしこのような構成
では、急冷中は常に一定の冷却能力で冷却しているた
め、例えば目標とする表面温度で急冷動作を中止したと
してもその余韻で更に冷却が進み目標とする温度より低
い温度となってしまう(一般に言うオーバーシュートの
状態となる)。しかも急冷終了後は一般の温度制御しか
しないために、一度低下した温度はなかなかもとの温度
には戻らない。
However, in such a configuration, cooling is always performed at a constant cooling capacity during rapid cooling. Therefore, even if the rapid cooling operation is stopped at a target surface temperature, for example, further cooling is performed after the cooling. And the temperature becomes lower than the target temperature (overshoot state generally called). In addition, after quenching is completed, since only ordinary temperature control is performed, the once lowered temperature does not return to the original temperature.

【0006】この場合、ビール瓶が破裂するなどの最悪
状態は避けられるが、やはり過冷却を生じ、なおかつそ
の低温状態がしばらく続くために、食品が凍結するなど
して品質が劣化する恐れは十分にある。また食品として
は最適な温度より低くなっているためにその食品の持つ
風味や味を損ねることとなる。またこれを防止するには
例えば、目標とする表面温度を高めに設定するなどが考
えられるが、この場合は逆に冷却不足が生じ、表面のみ
冷えて中身が冷えていないために同じくその食品の持つ
風味や味を損ねることとなるという課題を有していた。
[0006] In this case, the worst condition such as bursting of the beer bottle can be avoided. However, since the supercooling still occurs and the low temperature condition continues for a while, there is a sufficient risk that the quality of the food will be degraded due to freezing. is there. Further, since the temperature of the food is lower than the optimum temperature, the flavor and taste of the food are impaired. In order to prevent this, for example, it is conceivable to set a higher target surface temperature, but in this case, conversely, insufficient cooling occurs, and only the surface is cooled and the contents are not cooled. There was a problem that the flavor and taste of the food would be impaired.

【0007】本発明は上記課題に鑑み、食品が凍結する
などして品質が劣化したり、食品の持つ風味や味を損ね
ることが無く、しかも短時間で目標温度に到達できる冷
蔵庫の急冷制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a rapid cooling control device for a refrigerator that can reach a target temperature in a short time without deteriorating quality due to freezing of the food or deteriorating the flavor or taste of the food. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の冷蔵庫の急冷制御装置は、急冷室に入れられ
た食品などの温度を検出する食品温度検出手段と、前期
急冷室の空気の温度を検出する第1の空気温度検出手段
と第2の空気温度検出手段と前期第1の空気温度検出手
段と第2の空気温度検出手段の出力の差の変化量を出力
する微分手段と、前記食品温度検出手段の出力と前記微
分手段の出力の情報に対し、急冷ファンとダンパーとの
操作量を求めるための経験則に基づく制御ルールを記憶
するメモリ装置と、前記食品温度検出手段の出力と前記
微分手段の出力の情報と前記メモリ装置から取り出され
た制御ルールに基づいて、ファジィ論理演算を行ない前
記急冷ファンと前記ダンパーとの操作量を演算するファ
ジィ推論手段とを備えることを特徴としている。
In order to achieve the above object, a quenching control device for a refrigerator according to the present invention comprises a food temperature detecting means for detecting a temperature of food or the like put in a quenching room, and an air in the quenching room. A first air temperature detecting means for detecting the temperature of the first air temperature, a second air temperature detecting means, and a differentiating means for outputting a change amount of a difference between outputs of the first air temperature detecting means and the second air temperature detecting means. A memory device that stores a control rule based on an empirical rule for obtaining an operation amount of the quenching fan and the damper with respect to information on the output of the food temperature detecting means and the output of the differentiating means; Fuzzy inference means for performing a fuzzy logic operation and calculating an operation amount of the quenching fan and the damper based on an output, information on an output of the differentiating means, and a control rule extracted from the memory device. It is characterized in that to obtain.

【0009】[0009]

【作用】本発明は上記構成により、食品温度検出手段に
よって検知された食品温度と急冷室の空気温度の変化量
に対する急冷ファンとダンパーとの操作量を、経験則か
ら求めた制御ルールに基づいて演算しているので、急冷
している食品の状態、例えば急冷し始めた頃や急冷終了
直前の場合などでその時に応じた最適な冷却を急冷ファ
ンとダンパーで行なうので常に最適な冷却能力で食品を
冷却することができるので、過冷却や冷却不足を防ぐこ
とができる。
According to the present invention, the amount of operation of the quenching fan and the damper with respect to the amount of change between the food temperature detected by the food temperature detecting means and the air temperature in the quenching chamber is based on a control rule obtained from an empirical rule. Since the calculation is performed, the quenching fan and damper perform optimal cooling according to the state of the rapidly cooled food, for example, when quenching starts or immediately before the end of quenching, so that the food always has the optimal cooling capacity. Can be cooled, so that overcooling or insufficient cooling can be prevented.

【0010】[0010]

【実施例】以下本発明の一実施例の冷蔵庫の急冷制御装
置について図面を参照しながら説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a quenching control device for a refrigerator according to an embodiment of the present invention.

【0011】まず本発明の概略構成について図2を用い
て説明する。図2は本発明の冷蔵庫の断面図である。図
2において、1は冷蔵庫本体で、外箱2と内箱3と両者
の空隙に形成されたウレタン発泡断熱材4により構成さ
れ、前面開口部に3つのドア5、6、7が配設されてい
る。ドア5、6、7はそれぞれ冷蔵庫本体1の冷凍室
8、冷蔵室9、野菜室10の開口部に対応して配設され
ている。
First, a schematic configuration of the present invention will be described with reference to FIG. FIG. 2 is a sectional view of the refrigerator of the present invention. In FIG. 2, reference numeral 1 denotes a refrigerator main body, which is composed of an outer box 2, an inner box 3, and a urethane foam insulating material 4 formed in a gap between the two, and three doors 5, 6, 7 are disposed in a front opening. ing. The doors 5, 6, 7 are provided corresponding to the openings of the freezer compartment 8, the refrigerator compartment 9, and the vegetable compartment 10 of the refrigerator body 1, respectively.

【0012】冷凍室8の底板11と冷蔵室9の天板12
に囲まれた区画壁内には蒸発器13とその背後に庫内フ
ァン14を有している。また、冷凍室8、冷蔵室9の背
部には、蒸発器13からの冷却空気を各室に導入するた
めの通風路15、16が形成されている。17は圧縮機
である。18は冷蔵室9の下部に設けた急冷室である。
急冷室18は壁19で冷蔵室9と仕切られており、そ
の開口部にはドア20が配設されている。また急冷室1
8の背面には蒸発器13からの冷気を急冷室18に導入
するための通風路21が形成されている。
The bottom plate 11 of the freezer compartment 8 and the top plate 12 of the refrigerator compartment 9
The evaporator 13 and a fan 14 in the refrigerator are provided behind the evaporator 13 in the partition wall surrounded by. Further, ventilation paths 15 and 16 for introducing cooling air from the evaporator 13 into each chamber are formed at the back of the freezing chamber 8 and the refrigerator compartment 9. 17 is a compressor. Reference numeral 18 denotes a quenching room provided below the refrigeration room 9.
The quenching chamber 18 is separated from the refrigerating chamber 9 by a wall 19, and a door 20 is provided at an opening thereof. In addition, quenching room 1
A ventilation path 21 for introducing cool air from the evaporator 13 into the quenching chamber 18 is formed on the back surface of 8.

【0013】このように構成された冷蔵庫において、そ
の急冷装置の構成について図1を用いて更に詳しく説明
する。図1は本発明の冷蔵庫の急冷制御装置のブロック
図である。図1において、22は通風路21からの冷気
を導入または遮断するためのダンパーである。23は急
冷室18内に冷気を導入するための急冷ファンである。
ここで言う冷気には、通風路21とダンパー22とを
介して供給される第1の冷気と、壁19の天面後部に設
けた通風孔24を介して供給される第2の冷気とがあ
り、第1の冷気は−18℃程度の冷気であり、第2の冷
気は5℃程度の冷気である。25は食品26の表面温度
を検出するための食品温度センサーである。 27は食
品温度センサー25の出力から食品26の表面温度Tを
検出する食品温度検出手段である。35は急冷室18の
上部に取り付けた空気温度センサー34の出力から空気
温度を検出する第1の空気温度検出手段、37は急冷室
18の下部に取り付けた空気温度センサー35の出力か
ら空気温度を検出する第2の空気温度検る出手段であ
る。28は第1の空気温度検出手段35の出力と第2の
空気温度検出手段37の出力の差を微分し急冷室18の
空気の温度の変化量ΔAを演算する微分手段である。
The structure of the quenching device in the refrigerator having the above-described structure will be described in more detail with reference to FIG. FIG. 1 is a block diagram of a rapid cooling control device for a refrigerator according to the present invention. In FIG. 1, reference numeral 22 denotes a damper for introducing or blocking cold air from the ventilation passage 21. Reference numeral 23 denotes a quenching fan for introducing cool air into the quenching chamber 18.
The cool air referred to here includes the first cool air supplied through the ventilation passage 21 and the damper 22 and the second cool air supplied through the ventilation hole 24 provided at the rear of the top surface of the wall 19. The first cool air is cool air of about -18 ° C, and the second cool air is cool air of about 5 ° C. 25 is a food temperature sensor for detecting the surface temperature of the food 26. 27 is a food temperature detecting means for detecting the surface temperature T of the food 26 from the output of the food temperature sensor 25. 35 is first air temperature detecting means for detecting the air temperature from the output of an air temperature sensor 34 attached to the upper part of the quenching chamber 18, and 37 is the air temperature from the output of the air temperature sensor 35 attached to the lower part of the quenching chamber 18. It is a second air temperature detecting means for detecting. Numeral 28 is a differentiating means for differentiating the difference between the output of the first air temperature detecting means 35 and the output of the second air temperature detecting means 37 to calculate a change ΔA in the temperature of the air in the quenching chamber 18.

【0014】また29はマイクロプロセッサで、ファジ
ィ推論手段30と制御ルールを記憶するメモリ装置31
とから構成されてる。32は、ファジィ推論手段30で
得た操作量の指示に従って、急冷ファン23の能力(即
ち回転数)を制御する急冷ファン制御手段である。33
は、ファジィ推論手段30で得た操作量の指示に従っ
て、ダンパー22の開閉制御をするダンパー制御手段で
ある。
Reference numeral 29 denotes a microprocessor, a fuzzy inference means 30 and a memory device 31 for storing control rules.
It is composed of Reference numeral 32 denotes a quench fan control unit that controls the capacity (that is, the number of revolutions) of the quench fan 23 in accordance with the instruction of the operation amount obtained by the fuzzy inference unit 30. 33
Is damper control means for controlling the opening and closing of the damper 22 in accordance with the instruction of the operation amount obtained by the fuzzy inference means 30.

【0015】以上のように構成された冷蔵庫の急冷制御
装置について以下図1〜図5を用いてその動作を説明す
る。
The operation of the quenching control device for a refrigerator configured as described above will be described below with reference to FIGS.

【0016】食品温度検出手段27では食品温度センサ
ー25の出力から食品26の表面温度Tを検出し、さら
に第1の空気温度検出手段35では空気温度センサー3
4の出力から急冷室18の上部の空気温度T1を検出
し、第2の空気温度検出手段37では空気温度センサー
36の出力から急冷室18の下部の空気温度T2を検出
して、微分手段28で空気温度の出力の差A(即ち(数
1))を微分し、
The food temperature detecting means 27 detects the surface temperature T of the food 26 from the output of the food temperature sensor 25, and the first air temperature detecting means 35 detects the air temperature sensor 3
4 detects the air temperature T1 in the upper part of the quenching chamber 18 from the output of the quenching chamber 18, and the second air temperature detecting means 37 detects the air temperature T2 in the lower part of the quenching chamber 18 from the output of the air temperature sensor 36. Is used to differentiate the difference A in the output of the air temperature (that is, (Equation 1)),

【0017】[0017]

【数1】 (Equation 1)

【0018】急冷室18の空気温度の変化量ΔA(即ち
(数2)ここでtは時間を、Δtは時間変化をわす)を
演算する。
The amount of change ΔA in the air temperature in the quenching chamber 18 (ie, (Equation 2), where t represents time and Δt represents time change) is calculated.

【0019】[0019]

【数2】 (Equation 2)

【0020】以上のように演算された表面温度T及び空
気温度の変化量ΔAはファジィ推論手段30に入力され
る。メモリ装置31はファジィ推論手段30で実行され
るファジィ推論に必要な制御ルールを格納している。急
冷ファン23の操作量である能力(即ち回転数)と、ダ
ンパー22の操作量である開閉度合いを求めるファジィ
推論は、下記のような制御ルールを基にして実行され
る。
The changes in the surface temperature T and the air temperature ΔA calculated as described above are input to the fuzzy inference means 30. The memory device 31 stores control rules required for fuzzy inference executed by the fuzzy inference means 30. The fuzzy inference for obtaining the capacity (ie, the number of revolutions) as the operation amount of the quenching fan 23 and the opening / closing degree as the operation amount of the damper 22 is executed based on the following control rules.

【0021】本実施例で採用した制御ルールは次のよう
な9ルールである。例えば ルールR1:もし食品温度が高く、空気温度の変化量が
正大であれば、急冷ファンを非常に強めかつダンパーを
開けよ ルールR2:もし食品温度が低く、空気温度の変化量が
正大であれば、急冷ファンを弱めかつダンパーを閉じよ ・・・等である。
The control rules employed in this embodiment are the following nine rules. For example, Rule R1: If the food temperature is high and the change in the air temperature is positive, the quenching fan should be greatly strengthened and the damper opened. Rule R2: If the food temperature is low and the change in the air temperature is positive. Weaken the quenching fan and close the damper.

【0022】前記言語ルールは、発明者が数多くの実験
データから得た経験則から求めた、急速に冷却したい食
品に最適な急冷ファン及びダンパーの制御に対する制御
ルールであり、これを温度と温度変化量の関係で表に示
すと(表1)、(表2)の通りになる。(表1)、(表
2)はおのおの実施例に使用する急冷ファン、ダンパー
に対する制御ルールの関係を示している。
The language rule is a control rule for the control of a quenching fan and a damper, which is optimal for a food to be rapidly cooled, obtained from empirical rules obtained from numerous experimental data. The relationship between the quantities is shown in the table (Table 1) and (Table 2). (Table 1) and (Table 2) show the relationship between the control rules for the quenching fan and the damper used in each embodiment.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】(表1)、(表2)は横方向に食品温度T
を強度によって3段階(LT=低温、MT=適温、HT
=高温)に分け、縦方向に空気温度の変化量△Aの強度
によって3段階(NB=負大、ZO=ゼロ、PB=正
大)に分けて配置し、上記区分された温度T、温度変化
量△Aとのおのおの交わった位置にはその食品温度T、
空気温度の変化量△Aの強度に対する最適な急冷ファン
の能力を(表1)に設定し、ダンパーの開度を(表2)
に設定している。ここで(表1)においては急冷ファン
の能力を強度に応じて5段階(VS=非常に強、S=
強、M=中、W=弱、VW=非常に弱)に分けており、
かつ(表2)においてはダンパーの開度を強度に応じて
3段階(C=閉、H=半開、O=開)に分けている。即
ち前記制御ルールRiは(表1)、(表2)における升
目(Ri)で示されている。
Tables 1 and 2 show the food temperature T in the horizontal direction.
In three stages (LT = low temperature, MT = appropriate temperature, HT
= High temperature), the amount of change in the air temperature in the vertical direction △ is arranged in three stages (NB = negative, ZO = zero, PB = positive) according to the intensity of A, and the temperature T and the temperature change The food temperature T, at the intersection of the quantity △ A,
The optimal quench fan capacity for the intensity of the air temperature change ΔA is set in (Table 1) and the damper opening is set in (Table 2).
Is set to Here, in (Table 1), the ability of the quenching fan is classified into five levels (VS = very strong, S =
Strong, M = medium, W = weak, VW = very weak)
In Table 2, the opening degree of the damper is divided into three stages (C = closed, H = half-opened, O = opened) according to the strength. That is, the control rule Ri is indicated by a square (Ri) in (Table 1) and (Table 2).

【0026】本発明の発明者は(表1)、(表2)にし
たがって急冷ファンの能力、ダンパーの開度を制御した
時、最適な急冷制御が実現できることを実験的に確認し
ている。
The inventor of the present invention has experimentally confirmed that optimum quenching control can be realized when the quenching fan capacity and the damper opening are controlled according to (Table 1) and (Table 2).

【0027】また前記言語ルールは図1のメモリ装置3
1の内に記憶する場合に下記のようなルール則で記憶さ
れている。本発明で使用した制御ルール数は9個であ
る。 ルールR1:IF T is HT and △A is PB THEN F=VS and D=O ルールR2:IF T is LT and △A is PB THEN F=W and D=C ・・・つぎにファジィ推論手段30では予めメモリ装置
31に記憶されている前記制御ルールを取り出してファ
ジィ推論によって急冷ファン23の操作量である能力及
びダンパー22の操作量である開度を算出し、急冷ファ
ン制御手段32及びダンパー制御手段33に出力する。
急冷ファン制御手段32は決められた操作量に応じて急
冷ファン23の能力を制御し、ダンパー制御手段33は
決められた操作量に応じてダンパー22の開度を制御す
る。
Further, the language rules are stored in the memory device 3 shown in FIG.
When it is stored in one, it is stored according to the following rule. The number of control rules used in the present invention is nine. Rule R1: IF This HT and ΔA is PB THEN F = VS and D = O Rule R2: IF This LT LT and ΔA is PB THEN F = W and D = C... Next, in the fuzzy inference means 30, The control rule previously stored in the memory device 31 is taken out, and the capability as the operation amount of the quenching fan 23 and the opening as the operation amount of the damper 22 are calculated by fuzzy inference, and the quenching fan control means 32 and the damper control means are calculated. 33.
The quenching fan control unit 32 controls the capacity of the quenching fan 23 according to the determined operation amount, and the damper control unit 33 controls the opening of the damper 22 according to the determined operation amount.

【0028】前記制御ルールR1、ルールR2・・・ル
ールR9のルールは食品温度T、空気温度の変化量△A
に対する急冷ファン23の能力及びダンパー22の開度
を段階的に決めているので、きめ細かな制御を行なう場
合には、前記制御ルールの前件部(IF部)をどの程度
満たしているかの度合いを算出して、その度合いに応じ
た急冷ファン23の能力及びダンパー22の開度を推定
する必要がある。そのため、本実施例では前記度合いを
算出するのにファジィ変数のメンバーシップ関数を利用
している。
The rules of the control rules R1, R2,..., R9 are food temperature T, air temperature variation ΔA.
In this case, the ability of the quenching fan 23 and the opening degree of the damper 22 are determined in a stepwise manner, so that in the case of fine control, the degree to which the antecedent part (IF part) of the control rule is satisfied is determined. It is necessary to calculate and estimate the capability of the quenching fan 23 and the opening degree of the damper 22 according to the degree. Therefore, in this embodiment, a membership function of a fuzzy variable is used to calculate the degree.

【0029】図3(a)は食品温度Tに対するファジィ
変数LT、MT、HTのメンバーシップ関数μLT
(T)、μMT(T)、μHT(T)を示したものであ
り、図3(b)は空気温度の変化量△Aに対するファジ
ィ変数PB、ZO、NBのメンバーシップ関数μPB
(△A)、μZO(△A)、μNB(△A)を示したも
のである。
FIG. 3A shows the membership function μLT of the fuzzy variables LT, MT and HT with respect to the food temperature T.
(T), μMT (T), and μHT (T). FIG. 3B shows the membership function μPB of the fuzzy variables PB, ZO, and NB with respect to the air temperature variation ΔA.
(△ A), μZO (△ A), and μNB (△ A).

【0030】ファジィ推論手段30で実行するファジィ
推論は前記制御ルールR1、ルールR2・・・ルールR
9と図3(a)、(b)のメンバーシップ関数とを用い
てファジィ論理演算を行なって操作量の演算を行なう。
推論形式としては合成法にmax−min法、−点化法
に高さ法を用いた。以下図4をもとに推論の手順を説明
する。
The fuzzy inference executed by the fuzzy inference means 30 is based on the control rules R1, R2,.
9 and the membership functions shown in FIGS. 3A and 3B, a fuzzy logic operation is performed to calculate the manipulated variable.
As the inference format, the max-min method was used for the synthesis method, and the height method was used for the -pointing method. The inference procedure will be described below with reference to FIG.

【0031】図4は推論手順を示す流れ図である。ST
EP1では食品温度検出手段27で食品温度To、微分
手段28で空気温度の変化量△Aoを算出する。STE
P2でファジィ推論手段30によって食品温度Toと空
気温度の変化量△Aoに対するファジィ変数のメンバー
シップ関数を用いて、前記食品温度Toと空気温度の変
化量△Aoにおけるメンバーシップ値の算出を行なう。
STEP3で、得られたメンバーシップ値が前記9個の
各ルールの前件部をどの程度の度合いかを合成法で算出
する。図4においては食品温度に対するファジィ変数を
X、空気温度の変化量に対するファジィ変数をYで示し
ている。 ルールR1:(数3)
FIG. 4 is a flowchart showing the inference procedure. ST
In EP1, the food temperature detecting means 27 calculates the food temperature To, and the differentiating means 28 calculates the variation ΔAo of the air temperature. STE
In P2, the fuzzy inference means 30 calculates the membership value in the food temperature To and the change amount 空 気 Ao of the air temperature using the fuzzy variable membership function for the change amount △ Ao of the food temperature To and the air temperature.
In STEP 3, the degree of the obtained membership value in the antecedent part of each of the nine rules is calculated by a synthesis method. In FIG. 4, a fuzzy variable for the food temperature is indicated by X, and a fuzzy variable for the change amount of the air temperature is indicated by Y. Rule R1: (Equation 3)

【0032】[0032]

【数3】 (Equation 3)

【0033】ルールR2:(数4)Rule R2: (Equation 4)

【0034】[0034]

【数4】 (Equation 4)

【0035】ルールR1(数3)は前記Toが前記食品
温度Tに対する領域HTに入り、かつ前記△Aoが前記
空気温度の変化量△Aに対する領域PBに入るという命
題は、ToがHTに入る割合と△AoがPBに入る割合
のうち小さい値としての割合で成立すること、故にルー
ルR1(数3)の場合の前件部はh1の割合で成立する
ことを表わしている。同様にルールR2(数4)の場
合、前件部はh2の割合で成立することを表わしてい
る。
Rule R1 (Equation 3) states that To enters the region HT for the food temperature T and that the △ Ao enters the region PB for the air temperature variation △ A, that To enters the HT. This indicates that the ratio and △ Ao are satisfied at a ratio as a small value among the ratios included in the PB. Therefore, the antecedent in the case of rule R1 (Equation 3) is satisfied at the ratio of h1. Similarly, in the case of rule R2 (Equation 4), it indicates that the antecedent is established at the rate of h2.

【0036】STEP4で制御ルールの実行部のメンバ
ーシップ関数によって、食品温度Toと空気温度の変化
量△Aにおける急冷ファン及びダンパーの操作量を下記
のようにして求める。急冷ファンの操作量Fo及びダン
パーの操作量Doを求めるためには、結論部での定数は
h1、h2・・・h9による加重平均として与えられる
から(数5)の−点化法の1つである高さ法により急冷
ファンの操作量Fo及びダンパーの操作量Doがもとま
り急冷ファン制御手段32及びダンパー制御手段33に
出力される。
In STEP 4, the operation amounts of the quenching fan and the damper at the variation ΔA of the food temperature To and the air temperature are obtained as follows by the membership function of the execution part of the control rule. In order to obtain the operation amount Fo of the quenching fan and the operation amount Do of the damper, the constant in the conclusion part is given as a weighted average by h1, h2... H9. The operation amount Fo of the quenching fan and the operation amount Do of the damper are obtained by the height method, and are output to the quenching fan control means 32 and the damper control means 33.

【0037】[0037]

【数5】 (Equation 5)

【0038】次に本実施例を適用した時の急冷動作の一
例について図5を用いて説明する。図5は本実施例の急
冷動作の一例を示すタイミング図である。図5において
(a)は急冷ファン23、(b)はダンパー22、
(c)は急冷室18の2点の空気温度の差のおのおのの
時間に対する変化、(d)は食品26の表面温度のおの
おのの時間に対する変化を示しており、実線は本実施例
の場合であり、破線は従来例の場合を示している。
Next, an example of a rapid cooling operation when this embodiment is applied will be described with reference to FIG. FIG. 5 is a timing chart showing an example of the rapid cooling operation of this embodiment. In FIG. 5, (a) is a quenching fan 23, (b) is a damper 22,
(C) shows a change in the air temperature difference between the two points in the quenching chamber 18 with respect to each time, (d) shows a change in the surface temperature of the food 26 with respect to each time, and the solid line shows the case of this embodiment. Yes, the broken line shows the case of the conventional example.

【0039】従来の急冷制御においては食品表面温度が
目標温度(この場合は5℃)に達するまで(イ点)急冷
ファン23をオン、ダンパーを開けているので、急冷停
止後も表面温度はその余韻で下がり続け目標温度以下に
オーバーシュートする(ロ点)。しかもその後温度は徐
々に回復し、しばらく時間がかかった後、目標温度に達
する(ハ点)。本実施例の急冷制御の場合、初期の表面
温度が高い場合(ニ点)、空気温度差が大きい場合(チ
点)は急冷ファン23を非常に強くし、かつダンパー2
2を開放にする事により従来と比べて急速に食品を冷や
すことができる。 あとは食品の表面温度と急冷室の
空気温度の変化量で最適な急冷ファン23、ダンパー2
2の制御を行なうことにより(ホ点)、(リ点)、従来
より早く目標温度に到達すると共に(ヘ点)、温度のオ
ーバーシュートも少なく抑えられることとなる(ト
点)、(ヌ点)。
In the conventional quenching control, the quenching fan 23 is turned on and the damper is opened until the food surface temperature reaches the target temperature (5 ° C. in this case) (point A). It continues to fall with lingering sounds and overshoots below the target temperature (point B). Moreover, the temperature gradually recovers thereafter, and after a while, reaches the target temperature (point C). In the case of the rapid cooling control according to the present embodiment, when the initial surface temperature is high (point D) and when the air temperature difference is large (point D), the quenching fan 23 is made very strong and the damper 2 is used.
By opening 2, food can be cooled more rapidly than before. After that, the optimum quenching fan 23 and damper 2 are selected based on the change in the surface temperature of the food and the air temperature in the quenching chamber.
By performing the control (2) (point E) and (point RE), the target temperature is reached earlier than before (point F), and the overshoot of the temperature can be suppressed to a small extent (point G) and (nu point). ).

【0040】また万が一食品表面温度が冷え過ぎた場合
においても(表1)、(表2)に示すようにダンパー2
2を閉めたまま、急冷ファン23を制御するので、通風
孔24より冷蔵室の冷気(5℃程度)を取り込むことが
できるので過冷却が生じてもいち早く目標温度に到達さ
せることができることとなる。
In the event that the food surface temperature is too cold, as shown in (Table 1) and (Table 2),
Since the quenching fan 23 is controlled with the valve 2 closed, the cool air (about 5 ° C.) in the refrigerator compartment can be taken in from the ventilation holes 24, so that the target temperature can be quickly reached even if supercooling occurs. .

【0041】従って、この実施例では制御パラメータと
して食品26の表面温度、及び急冷室18の空気温度差
の変化量を使用しているため急速に冷却したい食品に対
してきめ細かい制御が可能である。
Therefore, in this embodiment, since the surface temperature of the food 26 and the amount of change in the air temperature difference of the quenching chamber 18 are used as the control parameters, fine control can be performed on the food to be cooled rapidly.

【0042】また、制御ルールが人間の経験則から成り
立っているため、急冷制御装置に対して最適な急冷ファ
ン23の能力、ダンパー22の開度で制御がでる。その
ために常に最適な冷却能力で食品を冷却できるので、い
ち早く目標とする温度に到達できると共に、過冷却や冷
却不足を防ぐことができ、食品の品質の劣化を防ぐこと
ができる。また通風孔24を設けることにより、万が一
過冷却をしてしまった場合や、温度の低い食品が入れら
れた場合においても冷蔵室の冷気を循環させることがで
きるため、過冷却に対してもいち早く目標温度に達する
ことができる。
Further, since the control rules are based on human empirical rules, control can be performed with the optimal capacity of the quenching fan 23 and the opening degree of the damper 22 for the quenching control device. As a result, the food can always be cooled with the optimal cooling capacity, so that the target temperature can be quickly reached, the overcooling and the insufficient cooling can be prevented, and the deterioration of the quality of the food can be prevented. In addition, by providing the ventilation holes 24, even in the event of supercooling, or in the case where low-temperature food is put in, the cool air in the refrigerator compartment can be circulated, so that it is quicker to supercool. The target temperature can be reached.

【0043】また食品26の表面温度を検出して自動的
に制御を行なうので、急冷のスイッチ等を設ける必要が
なく自動的に急冷運転を行なうので、人為的なミスによ
る急冷不足(スイッチの入れ忘れ、重量設定ミスなど)
などが発生することはなく、なおかつコストダウンにも
つながることとなる。
Further, since the surface temperature of the food 26 is detected and automatically controlled, the rapid cooling operation is automatically performed without providing a rapid cooling switch or the like. , Weight setting mistake, etc.)
This does not occur, and also leads to cost reduction.

【0044】[0044]

【発明の効果】以上のように本発明の冷蔵庫の急冷制御
装置は、急冷室に入れられた食品などの温度を検出する
食品温度検出手段と、前期急冷室の空気の温度を検出す
る第1の空気温度検出手段と第2の空気温度検出手段と
前期第1の空気温度検出手段と第2の空気温度検出手段
の出力の差の変化量を出力する微分手段と、前記食品温
度検出手段の出力と前記微分手段の出力の情報に対し、
急冷ファンとダンパーとの操作量を求めるための経験則
に基づく制御ルールを記憶するメモリ装置と前期食品温
度検出手段の出力と前記微分手段の出力の情報と前記メ
モリ装置から取り出された制御ルールに基づいて、ファ
ジィ論理演算を行ない前記急冷ファンと前記ダンパーと
の操作量を演算するファジィ推論手段とを備えることに
より、食品温度検出手段によって検知された急冷室の空
気温度の変化量に対する急冷ファンとダンパーとの操作
量を、経験則から求めた制御ルールに基づいて演算して
いるので、急冷している食品の状態、例えば急冷し始め
た頃や急冷終了直前の場合などでその時に応じた最適な
冷却を急冷ファンとダンパーで行なうので常に最適な冷
却能力で食品を冷却することができるので、過冷却や冷
却不足を防ぐことができると共に短時間で食品の冷却が
可能である。
As described above, the quenching control device for a refrigerator according to the present invention comprises a food temperature detecting means for detecting the temperature of food or the like placed in a quenching chamber and a first means for detecting the temperature of air in the quenching chamber. An air temperature detecting means, a second air temperature detecting means, a differentiating means for outputting a change amount of a difference between outputs of the first air temperature detecting means and the second air temperature detecting means, and a food temperature detecting means. For the output and the output information of the differentiating means,
A memory device that stores a control rule based on an empirical rule for obtaining an operation amount of the quenching fan and the damper, an output of the food temperature detecting unit, information of an output of the differentiating unit, and a control rule extracted from the memory device. A quenching fan for performing a fuzzy logic operation and calculating fuzzy inference means for calculating an operation amount of the damper; and a quenching fan for a change amount of the air temperature of the quenching chamber detected by the food temperature detecting means. Since the amount of operation with the damper is calculated based on the control rules obtained from empirical rules, it is optimal according to the state of the rapidly cooled food, for example, when quenching started or immediately before the end of quenching Prevents overcooling and undercooling because the food can always be cooled with the optimum cooling capacity by performing rapid cooling with a quenching fan and damper It is possible for food cooling in a short time it is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の冷蔵庫の急冷制御装置のブ
ロック図
FIG. 1 is a block diagram of a quenching control device for a refrigerator according to an embodiment of the present invention.

【図2】本発明の一実施例の冷蔵庫の断面図FIG. 2 is a sectional view of a refrigerator according to one embodiment of the present invention.

【図3】(a)は食品温度Tに対するファジィ変数L
T、MT、HTのメンバーシップ関数を示した特性図 (b)は空気温度の変化量△Aに対するファジィ変数P
B、ZO、NBのメンバーシップ関数を示した特性図
FIG. 3A shows a fuzzy variable L with respect to a food temperature T;
A characteristic diagram showing membership functions of T, MT, and HT (b) is a fuzzy variable P with respect to an air temperature variation ΔA.
Characteristic diagram showing membership functions of B, ZO, and NB

【図4】推論手順を示す流れ図FIG. 4 is a flowchart showing an inference procedure.

【図5】 (a)は急冷ファンのタイミングチャート (b)はダンパーのタイミングチャート (c)は2点の空気温度差のタイミングチャート (d)は食品表面温度のタイミングチャート5A is a timing chart of a quenching fan, FIG. 5B is a timing chart of a damper, FIG. 5C is a timing chart of an air temperature difference between two points, and FIG. 5D is a timing chart of a food surface temperature.

【符号の説明】[Explanation of symbols]

18 急冷室 22 ダンパー 23 急冷ファン 27 食品温度検出手段 28 微分手段 30 ファジィ推論手段 31 メモリ装置 32 急冷ファン制御手段 33 ダンパー制御手段 35 第1の空気温度検出手段 37 第2の空気温度検出手段 REFERENCE SIGNS LIST 18 quenching chamber 22 damper 23 quenching fan 27 food temperature detecting means 28 differentiating means 30 fuzzy inference means 31 memory device 32 quenching fan controlling means 33 damper controlling means 35 first air temperature detecting means 37 second air temperature detecting means

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷蔵庫の一部に設けられた急冷室と、前
記急冷室に風を送るための急冷ファンと、前記急冷室に
低温の空気を送るためのダンパーと、前記急冷室に入れ
られた食品などの温度を検出する食品温度検出手段と、
前期急冷室の空気の温度を検出する第1の空気温度検出
手段と第2の空気温度検出手段と前期第1の空気温度検
出手段と第2の空気温度検出手段の出力の差の変化量を
出力する微分手段と、前記食品温度検出手段の出力と前
記微分手段の出力の情報に対し、前記急冷ファンと前記
ダンパーとの操作量を求めるための経験則に基づく制御
ルールを記憶するメモリ装置と、前記食品温度検出手段
の出力と前記微分手段の出力の情報と前記メモリ装置か
ら取り出された制御ルールに基づいて、ファジィ論理演
算を行ない前記急冷ファンと前記ダンパーとの操作量を
演算するファジィ推論手段とを備えることを特徴とする
冷蔵庫の急冷制御装置。
1. A quenching chamber provided in a part of a refrigerator, a quenching fan for sending air to the quenching chamber, a damper for sending low-temperature air to the quenching chamber, Food temperature detecting means for detecting the temperature of the food or the like,
The amount of change in the difference between the outputs of the first air temperature detecting means, the second air temperature detecting means, and the first air temperature detecting means and the second air temperature detecting means for detecting the temperature of the air in the quenching chamber is determined. A differentiating means for outputting, and a memory device for storing a control rule based on an empirical rule for obtaining an operation amount of the quenching fan and the damper with respect to information on the output of the food temperature detecting means and the output of the differentiating means. A fuzzy inference for performing a fuzzy logic operation to calculate an operation amount of the quenching fan and the damper based on information of an output of the food temperature detecting means, information of an output of the differentiating means, and a control rule retrieved from the memory device. Means for controlling quenching of a refrigerator.
JP1435291A 1991-02-05 1991-02-05 Refrigeration quenching control device Expired - Fee Related JP3110471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1435291A JP3110471B2 (en) 1991-02-05 1991-02-05 Refrigeration quenching control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1435291A JP3110471B2 (en) 1991-02-05 1991-02-05 Refrigeration quenching control device

Publications (2)

Publication Number Publication Date
JPH04254180A JPH04254180A (en) 1992-09-09
JP3110471B2 true JP3110471B2 (en) 2000-11-20

Family

ID=11858678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1435291A Expired - Fee Related JP3110471B2 (en) 1991-02-05 1991-02-05 Refrigeration quenching control device

Country Status (1)

Country Link
JP (1) JP3110471B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093125B (en) * 2006-06-23 2011-06-08 海尔集团公司 Icebox with temperature tunable clapboard, snapchill cabinet and switchable air , and control method
CN101093126B (en) * 2006-06-23 2011-11-02 海尔集团公司 Icebox with temperature tunable clapboard, and having snapchill cabinet, and control method
CN101093124B (en) * 2006-06-23 2011-11-02 海尔集团公司 Icebox without temperature tunable clapboard, and having snapchill cabinet and air return port turnable to open /close positiones, and control method
DE102014015037A1 (en) * 2014-08-14 2016-02-18 Liebherr-Hausgeräte Lienz Gmbh Fridge and / or freezer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492575B1 (en) * 2002-08-17 2005-06-03 엘지전자 주식회사 Thermopile infrared sensor with narrow visual field
ITMO20040211A1 (en) * 2004-08-06 2004-11-06 G I S P A Sa CONTROL SYSTEM FOR THE REDUCTION OF THE TEMPERATURE OF A FOOD.
CN103727735B (en) * 2013-12-25 2016-03-09 杭州华日家电有限公司 A kind of economize on electricity fuzzy control device of intelligent refrigerator and method
JP6527479B2 (en) * 2016-03-02 2019-06-05 日立グローバルライフソリューションズ株式会社 refrigerator
JP6664116B2 (en) * 2016-12-01 2020-03-13 パナソニックIpマネジメント株式会社 Cool box

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093125B (en) * 2006-06-23 2011-06-08 海尔集团公司 Icebox with temperature tunable clapboard, snapchill cabinet and switchable air , and control method
CN101093126B (en) * 2006-06-23 2011-11-02 海尔集团公司 Icebox with temperature tunable clapboard, and having snapchill cabinet, and control method
CN101093124B (en) * 2006-06-23 2011-11-02 海尔集团公司 Icebox without temperature tunable clapboard, and having snapchill cabinet and air return port turnable to open /close positiones, and control method
DE102014015037A1 (en) * 2014-08-14 2016-02-18 Liebherr-Hausgeräte Lienz Gmbh Fridge and / or freezer

Also Published As

Publication number Publication date
JPH04254180A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
JP3110471B2 (en) Refrigeration quenching control device
JPH0760048B2 (en) Cooling control device for refrigerator
JPH04187968A (en) Rapid cooling controller for refrigerator
JPH0682141A (en) Controller of refrigerator-freezer
JPH0443276A (en) Rapid cooling controller for refrigerator
JPH0443277A (en) Rapid cooling controller for refrigerator
JP2998848B2 (en) Refrigerator refrigerator control device
JPH04263771A (en) Quick cooling operation method for refrigerator
JP3197593B2 (en) Refrigerator temperature controller
JP3197589B2 (en) Refrigerator refrigerator temperature control device
JP3098780B2 (en) Refrigerator refrigerator control device
JP3231366B2 (en) Refrigerator refrigerator control device
JP3020332B2 (en) Refrigerator refrigerator control device
JP3135302B2 (en) Refrigerator refrigerator control device
JP3110479B2 (en) Refrigerator refrigerator control device
JPH0518649A (en) Controlling device for refrigerated-cold storage cabinet
JPH08261624A (en) Control device for freezing refrigerator
JP3032343B2 (en) Refrigerator refrigerator control device
JPH06300416A (en) Controller of freezer-refrigerator
JP2998851B2 (en) Refrigerator refrigerator control device
JP3474889B2 (en) Refrigerator freezer temperature control device
JP3026319B2 (en) Refrigerator refrigerator control device
JP3164869B2 (en) Refrigerator refrigerator control device
JPH07110182A (en) Refrigerator chamber temperature control device in refrigerator
JPH11187854A (en) Freezing storage in kimuchi storage house

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees