JP3100580B2 - Core support device for sodium-cooled fast reactor - Google Patents

Core support device for sodium-cooled fast reactor

Info

Publication number
JP3100580B2
JP3100580B2 JP11028624A JP2862499A JP3100580B2 JP 3100580 B2 JP3100580 B2 JP 3100580B2 JP 11028624 A JP11028624 A JP 11028624A JP 2862499 A JP2862499 A JP 2862499A JP 3100580 B2 JP3100580 B2 JP 3100580B2
Authority
JP
Japan
Prior art keywords
core
thermal expansion
band
reactor
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11028624A
Other languages
Japanese (ja)
Other versions
JP2000227489A (en
Inventor
克弘 戸澤
篤 廣木
博 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11028624A priority Critical patent/JP3100580B2/en
Publication of JP2000227489A publication Critical patent/JP2000227489A/en
Application granted granted Critical
Publication of JP3100580B2 publication Critical patent/JP3100580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダクトレス形燃料
集合体を採用したナトリウム型高速炉の炉心支持装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core supporting device for a sodium-type fast reactor employing a ductless fuel assembly.

【0002】[0002]

【従来の技術】まず、従来におけるナトリウム冷却型高
速炉の例として、原型炉「もんじゅ」の構成を図5に示
す。図において、1は原子炉格納容器内に据付けた原子
炉容器、2は燃料集合体,制御棒,炉心遮へい体などを
炉心構成要素として構築した炉心、3は制御棒駆動機
構、4は燃料交換装置、5,6は1次冷却材(液体金属
ナトリウム)の入口,出口配管、7は下部炉心支持構造
8と炉心槽9を組合せた炉心支持構造物である。
2. Description of the Related Art First, as an example of a conventional sodium-cooled fast reactor, the structure of a prototype reactor "Monju" is shown in FIG. In the figure, 1 is a reactor vessel installed in a reactor containment vessel, 2 is a core constructed with fuel assemblies, control rods, core shields and the like as core components, 3 is a control rod drive mechanism, 4 is a fuel exchange The devices 5 and 6 are inlet and outlet pipes for the primary coolant (liquid metal sodium), and 7 is a core support structure combining a lower core support structure 8 and a core tank 9.

【0003】ここで、原型炉「もんじゅ」に採用されて
いる燃料集合体10は、図6(a),(b) で示すように断面
六角形になる鞘状のラッパ管(材質:フェライト鋼(例
えばフェライト系ステンレス鋼))10aに多数本を束
ねた燃料ピン10bをワイヤスペーサ10cを介して収
納するとともに、ラッパ管10aの上部にハンドリング
ヘッド10d,および上部遮へい体10e,下部にオリ
フィス孔(1次冷却材の流入口)を開口したエントラン
スノズル10f,およびスペーサパッド10gを組み合
わせた構成になる。
The fuel assembly 10 employed in the prototype reactor "Monju" has a sheath-shaped wrapper tube having a hexagonal cross section as shown in FIGS. 6 (a) and 6 (b) (material: ferritic steel). (For example, ferritic stainless steel)) A number of fuel pins 10b bundled in 10a are housed via a wire spacer 10c, and a handling head 10d and an upper shielding body 10e are provided in an upper part of the wrapper tube 10a, and an orifice hole (in the lower part). The configuration is such that an entrance nozzle 10f having an opening (primary coolant inlet) and a spacer pad 10g are combined.

【0004】また、炉心2の鉛直荷重を支える下部炉心
支持構造8は、図6(c) で示すように原子炉容器1内の
下部に設置した支持構造本体(材質:ステンレス鋼(S
US316))8aと、該支持構造本体8aに周縁を担
持した円板状になる上下一対の炉心支持板8b,8c
と、炉心2における炉心構成要素の配列に合わせて前記
炉心支持板8bと8cの間に溶接固定した連結管8dと
からなり、この連結管8dに燃料集合体10のエントラ
ンスノズル10f,および燃料集合体10の外周側に配
列した炉心遮へい体の下端部を上方から差し込んで燃料
集合体を1本ずつ直立姿勢に下支えしている。
A lower core support structure 8 for supporting the vertical load of the reactor core 2 includes a support structure main body (material: stainless steel (S), which is installed in the lower part of the reactor vessel 1 as shown in FIG.
US316)) 8a, and a pair of upper and lower core support plates 8b, 8c each having a disk shape with the periphery being
And a connection pipe 8d welded and fixed between the core support plates 8b and 8c in accordance with the arrangement of the core components in the core 2. The entrance nozzle 10f of the fuel assembly 10 and the fuel The lower end portions of the core shields arranged on the outer peripheral side of the body 10 are inserted from above to support the fuel assemblies one by one in an upright posture.

【0005】一方、図5において、炉心2の水平荷重
(地震時に作用する水平荷重も含む)を支持する側部炉
心支持構造11は、炉心2の外周を取り巻いて原子炉容
器1内に設置した炉心槽9との間に支持枠を介装して水
平荷重を炉心槽9に伝えて支持するようにしている。
On the other hand, in FIG. 5, a side core support structure 11 for supporting a horizontal load (including a horizontal load acting upon an earthquake) of the reactor core 2 is installed in the reactor vessel 1 around the outer periphery of the reactor core 2. A support frame is interposed between the core tank 9 and a horizontal load is transmitted to and supported by the core tank 9.

【0006】かかる構成で、中間熱交換器(図示せず)
より入口配管5を通じて原子炉容器1内に導入した1次
冷却材(ナトリウム)は、図6(c) で示すように支持構
造本体8aと下部炉心支持板8cとの間に画成された下
部プレナム8eから燃料集合体10のエントランスノズ
ル10fを通じてラッパ管10aの中を上昇するように
流れ、燃料要素10bを冷却した後に上端のハンドリン
グヘッド10dの開口部から炉内に流出し、1次冷却材
出口配管6を経由して中間熱交換器に戻るように循環送
流される。この状態で炉心2を構築する各燃料集合体の
鉛直荷重は、連結管8d,炉心支持板8b,8c,およ
び支持構造本体8aを介して最終的に原子炉容器1に伝
達して支持される。
With such a configuration, an intermediate heat exchanger (not shown)
The primary coolant (sodium) introduced into the reactor vessel 1 through the inlet pipe 5 is supplied to the lower core defined between the support structure main body 8a and the lower core support plate 8c as shown in FIG. The fuel flows from the plenum 8e through the entrance nozzle 10f of the fuel assembly 10 so as to rise inside the trumpet tube 10a, and after cooling the fuel element 10b, flows out of the opening of the handling head 10d at the upper end into the furnace. It is circulated and sent back to the intermediate heat exchanger via the outlet pipe 6. In this state, the vertical load of each fuel assembly constituting the core 2 is finally transmitted to and supported by the reactor vessel 1 via the connecting pipe 8d, the core supporting plates 8b and 8c, and the supporting structure main body 8a. .

【0007】一方、最近になり、ウラン資源を最大限利
用することを目的としたエネルギー供給システムに関し
てその先進的核燃料リサイクル体系の構築に向けた研究
開発が進められており、その核燃料リサイクル体系に相
応しい高速炉(リサイクル炉)の構想に付いての技術報
告が「動燃技法」第105号(平成10年3月発行)に
「リサイクル炉の検討」と題して掲載されている。
On the other hand, recently, research and development for the construction of an advanced nuclear fuel recycling system for an energy supply system aiming at maximizing utilization of uranium resources has been promoted, which is suitable for the nuclear fuel recycling system. A technical report on the concept of a fast reactor (recycle furnace) is published in "Dynamic Combustion Technique" No. 105 (issued in March 1998), entitled "Examination of Recycle Furnace".

【0008】この技術報告では、リサイクル炉心の基本
概念として、環境負荷低減の観点から、従来の高速炉
(原型炉「もんじゅ」)に採用した燃料集合体10(図
6参照)からラッパ管10aを削除し、燃料集合体に取
付けていたハンドリングヘッド10d,上部遮へい体1
0eなどを使用済み燃料集合体から分離して再利用する
ようリサイクルすることにより炉心から発生する固体廃
棄物量の低減化を図り、併せてラッパ管の削除により燃
料体体積比を改善して高い増殖比が得られるようした新
構想に基づく大型燃料集合体が提案されている。
In this technical report, as a basic concept of a recycling core, a wrapper tube 10a is used from a fuel assembly 10 (see FIG. 6) employed in a conventional fast reactor (prototype reactor "Monju") from the viewpoint of reducing environmental load. Removed the handling head 10d and upper shield 1 attached to the fuel assembly
0e etc. are separated from spent fuel assemblies and recycled so that they can be reused to reduce the amount of solid waste generated from the reactor core. In addition, the wrapper tube has been removed to improve the fuel body volume ratio and achieve high proliferation. A large fuel assembly based on a new concept to obtain a ratio has been proposed.

【0009】図7(a),(b) は前記の技術報告に掲載され
た新構想に基づく燃料集合体(以下「ダクトレス形燃料
集合体」と呼称する)の構成図であり、この燃料集合体
12は、多数本の燃料ピン12aの相互間隔をその長手
方向に分散して配したグリッドスペーサ12bで確保す
るとともに、頂部にハンドリングヘッドを備えた上部遮
へい体12cと下部のエントランスノズル12dとの間
を六角の各コーナーに沿って長手方向に配したタイロッ
ド12eでグリッドスペーサ12bを連結するように
し、さらに燃料集合体の中心部に内包して燃料集合体の
剛性部材を兼ねて制御棒の案内管12fを設置した構造
になる。なお、このダクトレス形燃料集合体によれば、
燃料集合体から発生する固体廃棄物の量は従来のラッパ
管形燃料集合体と比べて約50%の削減が可能となる。
FIGS. 7 (a) and 7 (b) are diagrams showing the construction of a fuel assembly based on the new concept described in the above technical report (hereinafter referred to as "ductless fuel assembly"). The body 12 is secured by a grid spacer 12b having a plurality of fuel pins 12a spaced apart from each other in the longitudinal direction thereof, and is formed by an upper shielding body 12c having a handling head on the top and a lower entrance nozzle 12d. The grid spacers 12b are connected by tie rods 12e arranged in the longitudinal direction along each corner of the hexagon, and are further included in the center of the fuel assembly and guide the control rods also as rigid members of the fuel assembly. The structure is such that the tube 12f is installed. According to this ductless fuel assembly,
The amount of solid waste generated from the fuel assembly can be reduced by about 50% as compared with the conventional flared tubular fuel assembly.

【0010】[0010]

【発明が解決しようとする課題】ところで、図7に示し
たダクトレス形燃料集合体を採用してナトリウム冷却炉
の炉心(「開放型炉心」と呼称する)を構築する場合に
は、一方において次記のような解決すべき問題点が残
る。
When a core of a sodium-cooled reactor (referred to as an "open type core") is constructed by employing the ductless fuel assembly shown in FIG. Problems to be solved remain as described above.

【0011】すなわち、図6に示したラッパ管形燃料集
合体で構成した炉心(「ダクト型炉心」と呼称する)で
は、下部プレナムからエントランスノズル10fを通じ
て燃料集合体10に流入した1次冷却材は、ラッパ管1
0aで囲まれた流路を流れるのでその全流量が燃料ピン
10bの冷却に寄与する。したがって、隣合う燃料集合
体の間に残るギャップ(燃料交換に伴う燃料集合体の炉
心装荷,引き抜き作業を阻害しないように燃料集合体の
間には数mm程度のギャップを確保しておく必要がある)
は燃料ピンの冷却性能に影響しない。
That is, in the core (referred to as "duct-type core") constituted by the flared tubular fuel assembly shown in FIG. 6, the primary coolant flowing into the fuel assembly 10 from the lower plenum through the entrance nozzle 10f. Is the trumpet tube 1
Since the fuel flows through the flow path surrounded by Oa, the total flow rate contributes to cooling of the fuel pin 10b. Therefore, the gap remaining between adjacent fuel assemblies (it is necessary to secure a gap of about several mm between fuel assemblies so as not to hinder the core loading and withdrawal work of fuel assemblies during refueling. is there)
Does not affect the cooling performance of the fuel pin.

【0012】一方、燃料集合体に図7に示したダクトレ
ス形燃料集合体12を採用し、その外周に配列したダク
ト有りの炉心遮へい体と組合せて構築した「開放型炉
心」では、次記のように燃料集合体12の間に残るギャ
ップが燃料冷却性能に大きな影響を及ぼす。すなわち、
ダクトレス形燃料集合体12を採用した「開放型炉心」
では、炉運転時(炉心温度:550℃)に炉心構成要素
の間にギャップが大きく残っていると、燃料集合体12
のエントランスノズル12d(図7参照)を通じて下部
プレナム側から燃料集合体に流入した一次冷却材が燃料
集合体の開放側面を通じてギャップに流れ出る量が多く
なるようになる。しかも、このギャップを通流する冷却
材は燃料ピン12aの冷却に対する寄与度が低い無効流
となるため、この無効流が多くなると炉心の冷却性能が
損なわれる懸念がある。
On the other hand, in the "open type core" constructed by combining the ductless type fuel assembly 12 shown in FIG. 7 with a core shield having a duct arranged on the outer periphery thereof, the fuel assembly is constructed as follows. Thus, the gap remaining between the fuel assemblies 12 has a great effect on the fuel cooling performance. That is,
"Open core" employing ductless fuel assembly 12
In the case where a large gap remains between the core components during the operation of the reactor (core temperature: 550 ° C.), the fuel assembly 12
The amount of the primary coolant that has flowed into the fuel assembly from the lower plenum through the entrance nozzle 12d (see FIG. 7) flows out to the gap through the open side surface of the fuel assembly. In addition, since the coolant flowing through the gap becomes an ineffective flow having a low contribution to the cooling of the fuel pins 12a, there is a concern that the cooling performance of the core will be impaired if the ineffective flow increases.

【0013】したがって、炉運転時には燃料集合体12
の間に残るギャップはできる限り小さく(好ましくは
0.25mm以下)抑えて一次冷却材の無効流を少なくす
ることが必要である。これに対して、原子炉容器内に炉
心を据付ける初期据付け時(炉内温度は常温)を含め
て、燃料交換時(炉内温度:約200℃)には、炉心構
成要素の間に燃料集合体の装荷,引き抜き性を阻害しな
いように少なくとも2mm程度の範囲のギャップを確保し
ておく必要がある。
Therefore, during the operation of the furnace, the fuel assembly 12
It is necessary to keep the gap remaining between them as small as possible (preferably 0.25 mm or less) to reduce the ineffective flow of the primary coolant. On the other hand, at the time of refueling (reactor temperature: about 200 ° C), including the initial installation of the core in the reactor vessel (reactor temperature is normal temperature), the fuel It is necessary to secure a gap of at least about 2 mm so as not to hinder the loading and pulling out of the aggregate.

【0014】そこで、発明者等は図6(c) に示した原型
炉「もんじゅ」と同様な炉心支持構造8を先記した「開
放型炉心」に採用し、図8のようにダクトレス形燃料集
合体12,およびその外周側に配列した炉心遮へい体1
3を支持した炉心支持構造を想定して炉心各部の熱膨張
を計算して検討したところ、燃料集合体の間のギャップ
gが次のように変化することが明らかになった。なお、
図8において、Oは炉心の中心、pは炉心構成要素間の
ピッチ、14はダクトレス形燃料集合体12のエントラ
ンスノズル12dに挿脱可能に結合した流調モジュー
ル、14aはモジュール内に内蔵した流路抵抗部であ
り、この流調モジュール14は、燃料集合体12の下部
支持,遮へい,一次冷却材の流量調節,および一次冷却
材の通流による燃料集合体の浮上がりを防止するハイド
ロリックホールドダウン機能を持たせたものである。
Therefore, the present inventors have adopted a core supporting structure 8 similar to the prototype reactor "Monju" shown in FIG. 6 (c) in the above-mentioned "open type core", and as shown in FIG. The assembly 12 and the core shield 1 arranged on the outer peripheral side thereof
As a result of calculating and examining the thermal expansion of each part of the core assuming the core supporting structure supporting the fuel cell No. 3, it became clear that the gap g between the fuel assemblies changes as follows. In addition,
In FIG. 8, O is the center of the core, p is the pitch between core components, 14 is a flow control module detachably connected to the entrance nozzle 12d of the ductless fuel assembly 12, and 14a is a flow control module built in the module. This flow control module 14 is a hydraulic hold for lower support and shielding of the fuel assembly 12, adjusting the flow rate of the primary coolant, and preventing the fuel assembly from floating due to the flow of the primary coolant. It has a down function.

【0015】すなわち、図8に示した炉心支持方式につ
いて炉心各部の熱膨張を計算したところ、炉心の初期据
付け時の炉内温度を20℃(一様),原子炉運転時にお
ける炉心温度を550℃,下部プレナムの温度を390
℃,燃料交換時における炉内温度を200°(一様)と
仮定し、初期据付時における燃料集合体相互間のギャッ
プgを2mmに設定した場合には、炉運転時にはギャップ
gは初期据付け時と同程度の1.9mm,燃料交換時には
ギャップgが2.4mmとなることが判った。
That is, when the thermal expansion of each part of the core was calculated for the core support system shown in FIG. 8, the core temperature during initial installation of the core was 20 ° C. (uniform), and the core temperature during reactor operation was 550. ℃, lower plenum temperature 390
° C, the furnace temperature at the time of refueling is assumed to be 200 ° (uniform), and the gap g between the fuel assemblies at the time of initial installation is set to 2 mm. It was found that the gap g was about 1.9 mm, which was about the same as the above, and the gap g was 2.4 mm at the time of refueling.

【0016】これは、燃料集合体12の主要材料が熱膨
張率の小さなフェライト鋼であるのに対して、炉心を支
えている下部炉心支持構造8の炉心支持板8b,8c,
および炉心槽9などの材料はフェライト鋼と比べて熱膨
張率の大きなステンレス鋼で構成されていることに起因
する。すなわち、炉心支持板8b,8cの熱膨張分を考
慮しなければ、各燃料集合体12は炉運転時には熱膨張
してギャップgが縮まるはずであるが、炉運転時には炉
心支持板8b,8cも熱膨張して各燃料集合体12を個
々に支えている各連結管8dがラジアル方向に変位し、
しかもこの変位量が燃料集合体自身の熱膨張よりも大き
くて連結管の配列ピッチが大きくなることから、連結管
に支持した炉心構成要素間のギャップが拡大するように
なる。
The main material of the fuel assembly 12 is ferrite steel having a small coefficient of thermal expansion, whereas the core support plates 8b, 8c, 8c of the lower core support structure 8 supporting the core.
This is because the material such as the core tank 9 is made of stainless steel having a higher coefficient of thermal expansion than ferritic steel. That is, if the thermal expansion of the core support plates 8b and 8c is not taken into account, each fuel assembly 12 should thermally expand during the furnace operation and the gap g should be reduced. Each connection pipe 8d that individually supports each fuel assembly 12 due to thermal expansion is displaced in the radial direction,
In addition, since the displacement amount is larger than the thermal expansion of the fuel assembly itself and the arrangement pitch of the connecting pipes is increased, the gap between the core components supported by the connecting pipes is enlarged.

【0017】上記から判るように、ダクトレス形燃料集
合体で構成した「開放型炉心」に原型炉「もんじゅ」と
同様な炉心支持構造を採用する場合には、炉運転時には
燃料集合体相互間には大きなギャップが生じるために、
ダクトレス形燃料集合体12に対する一次冷却材の無効
流が増えて所要の燃料冷却性能を確保することが困難と
なる。
As can be seen from the above description, when a core support structure similar to that of the prototype reactor "Monju" is adopted for the "open core" composed of the ductless fuel assemblies, the fuel assemblies are interposed between the fuel assemblies during operation of the reactor. Has a large gap,
The ineffective flow of the primary coolant to the ductless fuel assembly 12 increases, making it difficult to secure required fuel cooling performance.

【0018】そこで、ダクトレス形燃料集合体を採用し
た「開放形炉心」の炉心支持構造を開発するに当たって
は、次記のような基本的な機能が必要となる。すなわ
ち、 (1) 炉運転中における燃料集合体の間のギャップを、所
要の炉心冷却性能が維持できる範囲に抑えるように縮減
する。
In developing an "open core" core support structure employing a ductless fuel assembly, the following basic functions are required. That is, (1) The gap between the fuel assemblies during the operation of the reactor is reduced so that the required core cooling performance can be maintained.

【0019】(2) 燃料交換時には炉心構成要素互間のギ
ャップを燃料集合体の装荷,引き抜き作業に支障のない
範囲に確保する。
(2) At the time of refueling, the gap between the core components is ensured within a range that does not hinder the loading and unloading of the fuel assembly.

【0020】(3) 炉心を支持した状態で炉心構成要素に
過度な反り変形を与えるような過度な荷重を与えない。
(3) While the core is supported, an excessive load that gives an excessive warpage to core components is not applied.

【0021】(4) 地震時の水平荷重を炉心槽を介して炉
容器で支持できるようにする。
(4) The horizontal load at the time of the earthquake can be supported by the furnace vessel via the core tank.

【0022】(5) 特に、下部炉心支持構造においては、
前項(1) の条件を確保しつつ炉心構成要素の鉛直荷重を
安定よく支持できるようにする。
(5) Particularly, in the lower core support structure,
To stably support the vertical load of the core components while maintaining the conditions of (1) above.

【0023】本発明は上記の点に鑑みなされたものであ
り、その目的は前記した各項の要件を満足して先記した
「開放型炉心」を安定よく支持できるようにしたナトリ
ウム型冷却高速炉の新規な炉心支持装置を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object the purpose of satisfying the requirements of the above-mentioned respective items and allowing the above-mentioned "open core" to be stably supported. An object of the present invention is to provide a novel core support device for a furnace.

【0024】[0024]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、炉心を構築する燃料集合体とし
て、ラッパ管を省略して燃料ピン束の周域を開放したダ
クトレス形燃料集合体を採用するナトリウム冷却型高速
炉を対象に、その炉心の鉛直荷重,水平荷重を支える炉
心支持装置を、炉運転時には炉心構成要素間のギャップ
を狭め、燃料交換時には前記ギャップを広げるような拘
束機能を付与した下部炉心支持装置と側部炉心支持装置
を組合せて構成するものとし、具体的にはその下部炉心
支持装置,および側部炉心支持装置を次記のような態様
で構成する。
According to the present invention, as a fuel assembly for constructing a reactor core, a ductless fuel in which a wrapper tube is omitted and a peripheral region of a fuel pin bundle is opened is provided according to the present invention. For a sodium-cooled fast reactor employing an assembly, a core support device that supports the vertical load and horizontal load of the core is designed to narrow the gap between core components during furnace operation and widen the gap during refueling. The lower core support device and the side core support device provided with the restraining function are configured in combination. Specifically, the lower core support device and the side core support device are configured in the following manner.

【0025】(1) 下部炉心支持装置および側部炉心支持
装置とを、原子炉容器内の下部に設けた炉心支持構造本
体に担持した炉心支持板と、炉心構成要素の配列に合わ
せて前記炉心支持板上に分散配置し、かつ個々に炉心構
成要素の下端部を差し込んで炉心構成要素を直立姿勢に
支える連結管と、該連結管の束を取り巻いてその外周側
に配した拘束バンドとで構成し、前記連結管は外形が六
角形でその周面に上下方向のキーウエイを形成した構造
となし、かつ前記炉心支持板に開口した連結管挿入穴に
遊嵌支持した上で、前記キーウエイを噛み合わせて各連
結管同士を束状に相互連結するようになし、さらに、前
記連結管の束を外周側から炉心の中心に向け拘束バンド
にて拘束するように構成し、この拘束バンドは、炉運転
時には炉心構成要素間のギャップを狭め、燃料交換時に
は前記ギャップを広げるような拘束機能を備えてなるも
のする(請求項1) (2) 前項(1)において、連結管を炉心支持板の板面に分
散開口した連結管挿入穴に1本ずつ嵌挿して鉛直方向に
担持し、かつ前記連結管挿入穴と連結管との間に炉心構
成要素の膨張,収縮に随伴する連結管の変位を許容する
ラジアル方向の遊び間隙を設定する(請求項2)。
(1) The lower core support device and the side core support device are mounted on a core support structure main body provided at a lower portion in a reactor vessel, and the core is arranged in accordance with an arrangement of core components. A connecting pipe distributed on the support plate and individually supporting the core components in an upright posture by inserting the lower ends of the core components, and a binding band surrounding the bundle of the connecting pipes and disposed on the outer peripheral side thereof. The connecting pipe has a structure in which the outer shape is hexagonal and has a vertical keyway formed on the peripheral surface thereof, and the keyway is loosely supported in a connecting pipe insertion hole opened in the core support plate. The connecting pipes are connected to each other in a bundle by meshing with each other, and further, the bundle of the connecting pipes is configured to be restrained by a restraining band from the outer peripheral side toward the center of the core. Core components during furnace operation (2) In the above (1), the connecting pipes are dispersedly opened on the plate surface of the core support plate. The connecting pipes are inserted one by one into the connecting pipe insertion holes, and are supported in the vertical direction, and a radial direction allowing displacement of the connecting pipes accompanying expansion and contraction of core components between the connecting pipe insertion holes and the connecting pipes. A play gap is set (claim 2).

【0026】(3) 前項(1)において、拘束バンドを、熱
膨張係数の小さな引っ張部材と熱膨張係数の大きな圧縮
部材とを組合せてその等価熱膨張係数を炉心構成要素の
熱膨張係数よりも小さく調整した複数本のバンドユニッ
トを連結ピンを介してリング状に相互連結した構造とな
し、かつ拘束バンドのユニット連結部をラジアルキーを
介して炉心支持板に支持する(請求項3)。
(3) In the above item (1), the restraining band is formed by combining a tension member having a small coefficient of thermal expansion and a compressing member having a large coefficient of thermal expansion so that the equivalent coefficient of thermal expansion is larger than the coefficient of thermal expansion of core components. A structure in which a plurality of band units adjusted to be small are interconnected in a ring shape via connecting pins, and a unit connecting portion of the restraining band is supported on a core support plate via a radial key (claim 3).

【0027】(4) 前項(1)において、最外周に並ぶ連結
管を取り囲んで外周面にキーウエイを形成した荷重伝達
用ブロックを配列し、該ブロックを拘束バンドに連結し
た抑え板を介して拘束するようにする(請求項4)。
(4) In the above item (1), a load transmitting block having a keyway formed on the outer peripheral surface is arranged so as to surround the connecting pipes arranged on the outermost periphery, and the block is restrained via a holding plate connected to the restraining band. (Claim 4).

【0028】(5) 前項(1)において、炉心を取り囲んで
その最外周に並ぶ炉心構成要素の側面に配した炉心支持
枠と、該炉心支持枠を介して炉心を外周側から拘束する
拘束バンドとで構成する(請求項5)。
(5) In the above (1), a core support frame surrounding the core and arranged on the side surface of the core component arranged on the outermost periphery thereof, and a restraining band for restraining the core from the outer peripheral side via the core support frame. (Claim 5).

【0029】(6) 前項(5)において、炉心支持枠が炉心
の最外周に並ぶ炉心構成要素を包囲してその側面に重ね
合わせた分割構造になる周壁状の支持枠と、該支持枠の
相互間の継ぎ目を閉塞するシール部材と、前記支持枠を
取り巻いてその外周側に配した複数のセグメント板から
なる分割構造の支持枠抑え板とからなり、かつ支持枠抑
え板の各セグメント板を拘束バンドに連結する(請求項
6)。
(6) In the above (5), the core support frame surrounds core components arranged on the outermost periphery of the core, and has a peripheral wall-shaped support frame having a divided structure superimposed on a side surface thereof; A seal member for closing a seam between each other, and a support frame holding plate having a divided structure including a plurality of segment plates disposed around the support frame and arranged on the outer peripheral side thereof, and each segment plate of the support frame holding plate. It is connected to a restraining band (claim 6).

【0030】(7) 前項(5)において、拘束バンドを、熱
膨張係数の小さな引っ張部材と熱膨張係数の大きな圧縮
部材とを組合せてその等価熱膨張係数を炉心構成要素の
熱膨張係数よりも小さく調整した複数本のバンドユニッ
トを連結ピンを介してリング状に相互連結した構造とな
し、かつ拘束バンドのユニット連結部を炉心を囲繞する
炉心槽の内周壁面上に設けたレストレイントリングにラ
ジアルキーを介して連結する(請求項7)。
(7) In the above item (5), the restraining band is formed by combining a tension member having a small coefficient of thermal expansion and a compressing member having a large coefficient of thermal expansion so that the equivalent coefficient of thermal expansion is larger than that of the core component. A restraint ring in which a plurality of band units adjusted to be small are interconnected in a ring shape via a connecting pin, and a unit connecting portion of a restraining band is provided on an inner peripheral wall surface of a core vessel surrounding a core. Is connected via a radial key (claim 7).

【0031】前記(1) 〜(4) 項に記した下部炉心支持構
造によれば、炉心構成要素の下端部を支持する連結管同
士をキーウエイにより互いに拘束し合うように連結する
ことで、組立状態では各連結管が等ピッチに保持され、
かつ最外周のコーナー部に並ぶ連結管がラジアル方向に
変位すると、これに対応して各連結管のピッチが一様に
変化するようになる。そこで、あらかじめ炉心の初期据
付け時に連結管の間に適正なギャップを設定し、かつ連
結管を一括してその外周側から拘束バンドで緊縛状態に
拘束しておくことにより、炉運転時,および燃料交換時
にはそのときの炉内温度に対応した拘束バンドの熱膨張
に応じて連結管の相互ピッチ,したがってこの連結管に
支持した炉心構成要素の間のギャップがコントロールさ
れるようになる。この場合に、拘束バンドの熱膨張は温
度上昇による連結管,炉心構成要素の熱膨張に比べて小
さくなるようにあらかじめ調整されているので、炉運転
時には炉内温度の上昇に伴って連結管のピッチ,したが
って該連結管に1本ずつ連結支持された炉心構成要素の
間のギャップが拘束バンドの拘束により相対的に縮減す
る。これにより、一次冷却材の無効流が低く抑えられて
炉心に対する高い冷却性能が確保できる。
According to the lower core supporting structure described in the above items (1) to (4), assembling is performed by connecting the connecting pipes supporting the lower end portions of the core components so as to restrain each other by a keyway. In the state, each connecting pipe is held at equal pitch,
When the connecting pipes arranged at the outermost corners are displaced in the radial direction, the pitch of the connecting pipes changes uniformly in response to the displacement. Therefore, an appropriate gap is set in advance between the connecting pipes during the initial installation of the reactor core, and the connecting pipes are collectively restrained from the outer peripheral side of the connecting pipes with a restraining band, so that the reactor can be operated and the fuel can be controlled. At the time of replacement, the mutual pitch of the connecting pipes and therefore the gap between the core components supported by the connecting pipes are controlled in accordance with the thermal expansion of the restraining band corresponding to the furnace temperature at that time. In this case, the thermal expansion of the constraining band is adjusted in advance so as to be smaller than the thermal expansion of the connecting pipe and core components due to the temperature rise. The pitch, and therefore the gap between the core components connected and supported one by one to the connection pipe, is relatively reduced by the restraint of the restraint band. Thereby, the ineffective flow of the primary coolant is suppressed low, and high cooling performance for the core can be ensured.

【0032】また、燃料交換時には炉内温度が炉運転に
比べて半分以下に低下する。この状態では温度降下に伴
う連結管,炉心構成要素の熱収縮に比べて拘束バンドの
収縮が小さいため、拘束バンドによる締め付けが解除さ
れて炉心構成要素の間のギャップが広がり、これにより
燃料交換作業(装荷,引き抜き)に必要なギャップが確
保されるようになる。
During refueling, the temperature inside the furnace is reduced to less than half of that during furnace operation. In this state, since the contraction of the constraining band is smaller than the thermal contraction of the connecting pipe and the core components due to the temperature drop, the tightening by the constraining bands is released and the gap between the core components is widened, thereby performing the fuel exchange work. The gap required for (loading and unloading) is secured.

【0033】なお、拘束バンドは下部炉心支持構造の支
持構造本体に対してラジアルキーを介して支持して両者
間の熱膨張差を吸収するようにしているので、拘束バン
ドの拘束機能が阻害されることはない。
Since the restraining band is supported via a radial key with respect to the supporting structure main body of the lower core supporting structure so as to absorb a difference in thermal expansion between the two, the restraining function of the restraining band is impaired. Never.

【0034】一方、炉心の側部炉心支持構造を前記(5)
〜(7) のように構成して炉心を拘束支持することによ
り、炉運転時には温度上昇による炉心構成要素の熱膨張
に比べて拘束バンドの熱膨張が小さいため、炉心とこれ
を取り巻く拘束バンドとの間の間隔が縮まるようにな
る。これにより、各炉心構成要素を外周側から炉中心に
向けて締め付けるように拘束バンドが働いて炉心構成要
素の間のギャップが減少する。これに対して、燃料交換
時には温度降下による炉心構成要素の収縮に比べて拘束
バンドの収縮が小さいために炉心の締め付けが解除さ
れ、炉心構成要素の間のギャップが広がって燃料交換作
業に必要なギャップに戻る。
On the other hand, the side core supporting structure of the core
By constraining and supporting the core by configuring as shown in (7), since the thermal expansion of the constraining band is smaller than the thermal expansion of the core components due to temperature rise during furnace operation, the core and the constraining band surrounding it The distance between is reduced. As a result, the constraining band acts so as to clamp each core component from the outer peripheral side toward the core of the furnace, and the gap between the core components is reduced. On the other hand, at the time of refueling, since the contraction of the restraint band is smaller than the contraction of the core components due to the temperature drop, the tightening of the core is released, and the gap between the core components is widened and necessary for the refueling operation. Return to the gap.

【0035】また、側部炉心支持構造の拘束バンドは、
炉心槽の内壁に取付けたレストレイントリングにラジア
ルキーを介して支持し、両者間の熱膨張差を吸収するよ
うにしているので、拘束バンドの拘束機能が阻害される
ことはない。さらに、炉心を取り囲んでその外周側に配
した炉心支持枠,および支持枠抑え板を炉心構成要素の
膨張,収縮に追従できるように周方向に分割した構造と
なし、かつその支持枠の分割継ぎ目をシール部材で閉塞
するようにしたので、炉心に流れる一次冷却材が炉心支
持枠の継ぎ目を通じて外周側に漏れ出るおそれはない。
The restraining band of the side core supporting structure is as follows:
Since it is supported via a radial key on a restraint ring attached to the inner wall of the core tank to absorb the difference in thermal expansion between the two, the restraining function of the restraining band is not hindered. Further, a core support frame surrounding the core and disposed on the outer peripheral side thereof, and a support frame holding plate are divided circumferentially so as to be able to follow expansion and contraction of the core components, and the joint of the support frame is divided. Is closed by the seal member, there is no possibility that the primary coolant flowing into the core leaks to the outer peripheral side through the joint of the core support frame.

【0036】しかも、本発明の炉心支持装置では、拘束
バンドと組合せた下部炉心支持構造と側部炉心支持構造
を組合せたことにより、双方の炉心支持構造が互いに協
同して燃料集合体に過大な荷重を加えることなしに、安
定よく支持できる。すなわち、ダクトレス形燃料集合体
を採用した「開放型炉心」に対して、炉心下部で従来の
炉心支持構造のように炉心構成要素を炉心支持板に固定
した連結管で支持したまま、炉心の外周側から前記側部
炉心支持構造の拘束バンドで締めつけると、炉運転時に
はラッパ管形燃料集合体に比べて剛性の低いダクトレス
形燃料集合体に反りを与えるような荷重が作用して燃料
集合体が変形,破損するおそれがあるが、下部炉心支持
構造に先記のように拘束バンドの熱膨張に応じて連結管
が変位する可変ピッチ支持方式を採用したことで、側部
炉心支持構造の拘束機能と協同して燃料集合体に反りを
与えるような過大な荷重を加えることなく、かつその全
長域に亘り炉心構成要素の間に均等なギャップを保持し
て安定支持することが可能となる。また、これにより燃
料集合体に対してその径方向,軸方向の温度分布のばら
つきを低く抑えることができる。
In addition, in the core supporting apparatus of the present invention, the lower core supporting structure combined with the restraining band and the side core supporting structure are combined, so that both core supporting structures cooperate with each other to generate an excessively large fuel assembly. It can be stably supported without applying a load. In other words, for the “open core” that adopts a ductless fuel assembly, the core components are supported at the lower part of the core by the connecting pipe fixed to the core support plate, as in the conventional core support structure, and the outer periphery of the core is When tightened from the side with the restraining band of the side core support structure, a load acting on the ductless fuel assembly having a lower rigidity than the flared tubular fuel assembly acts during furnace operation, and the fuel assembly is actuated. Deformation and breakage may occur, but the lower core support structure adopts a variable pitch support method in which the connecting pipe is displaced in accordance with the thermal expansion of the restraint band, as described above, thereby constraining the side core support structure. It is possible to stably support the fuel assembly while maintaining an even gap between the core components over the entire length thereof without applying an excessive load that may warp the fuel assembly. Further, this makes it possible to suppress the variation in the temperature distribution in the radial direction and the axial direction with respect to the fuel assembly.

【0037】[0037]

【発明の実施の形態】以下、本発明の実施の形態を図1
ないし図4に示す実施例に基づいて説明する。なお、実
施例の図中で図5〜図8に対応する同一部材には同じ符
号を付してその説明は省略する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
A description will be given based on the embodiment shown in FIG. In the drawings of the embodiment, the same members corresponding to FIGS. 5 to 8 are denoted by the same reference numerals, and description thereof will be omitted.

【0038】(1) 下部炉心支持構造:まず、ダクトレス
形燃料集合体12と炉心遮へい体13を炉心構成要素1
5としてなる炉心2の鉛直荷重を支える下部炉心支持構
造について、その構成を図1(a),(b) 、および図2(a)
〜(c) に示す。すなわち、下部炉心支持構造8は、図6
(c) と同様に原子炉容器内の下部に設けた炉心支持構造
本体8aに外周縁を支持して担持した上下一対の炉心支
持板8b,8cと、炉心2を構成する炉心構成要素15
の配列に合わせて前記炉心支持板8a,8bに分散配置
し、かつ個々に炉心構成要素15を1本ずつ流調モジュ
ール14を介して直立姿勢に支える本発明になる連結管
16と、連結管16の束を包囲してその外周側に配した
拘束バンド17と、最外周に並ぶ連結管16の外側に配
列した荷重伝達用ブロック18と、一端を拘束バンド1
7に連結し、前記荷重伝達用ブロック18を介して各連
結管16を炉心2の中心Oに向けて押圧する押え板19
との組立体からなる。
(1) Lower core support structure: First, the ductless fuel assembly 12 and the core shield 13 are connected to the core component 1.
1 (a), (b) and FIG. 2 (a) show the structure of the lower core supporting structure for supporting the vertical load of the
To (c). That is, the lower core support structure 8 is configured as shown in FIG.
Similarly to (c), a pair of upper and lower core support plates 8b and 8c supported and supported on the outer peripheral edge by a core support structure main body 8a provided at the lower part in the reactor vessel, and a core component 15 constituting the core 2
A connecting pipe 16 according to the present invention, which is distributed and arranged on the core supporting plates 8a and 8b in accordance with the arrangement, and individually supports the core components 15 one by one via the flow control module 14 in an upright posture; 16, a constraining band 17 surrounding the bundle and disposed on the outer peripheral side thereof; a load transmitting block 18 arranged outside the connecting pipe 16 arranged on the outermost periphery;
7, and a pressing plate 19 that presses each connecting pipe 16 toward the center O of the core 2 via the load transmitting block 18.
And an assembly.

【0039】ここで、連結管16はその上下端に形成し
た鍔部の外形が六角形になるステンレス鋼製の筒状の本
体16-1と、該本体16-1の頂部に結合したナット状の
フランジ部16-2からなり、本体16-1の鍔部周面には
凹状と凸状になる上下方向のキーウエイ16aが六角形
の各辺に交互に形成されており、図示のように連結管1
6を配列して炉心支持板に装着した組立状態で、隣り合
う連結管の凹凸キーウエイを噛み合わせて連結管同士が
互いに拘束し合うよう連結されている。また、荷重伝達
用ブロック18,および押え板19の端面にも連結管1
6と同様なキーウエイが形成されており、各部材の相互
間がキーウエイを介して拘束し合うように連結されてい
る。
The connecting pipe 16 has a cylindrical body 16-1 made of stainless steel having a hexagonal outer shape of a flange formed at the upper and lower ends thereof, and a nut-like body coupled to the top of the main body 16-1. The upper and lower keyways 16a which are concave and convex are alternately formed on each side of the hexagon on the peripheral surface of the flange portion of the main body 16-1, and are connected as shown in the figure. Tube 1
In an assembled state in which the connecting pipes 6 are arranged and attached to a core support plate, the connecting pipes are connected to each other by engaging concave and convex keyways of adjacent connecting pipes. The connecting pipe 1 is also provided on the end faces of the load transmitting block 18 and the holding plate 19.
A keyway similar to 6 is formed, and the members are connected to each other via the keyway.

【0040】また、前記した炉心支持板8b,8cの板
面には、炉心構成要素15の配列に合わせて連結管16
を溶接せずに差し込み支持する連結管挿入穴8b-1,8
c-1が分散開口しており、連結管16は上部炉心支持板
8bと下部炉心支持板8cの間にまたがって1本ずつ前
記の連結管挿入穴に挿入して次記のように遊嵌式に担持
されている。なお、図2(a) で示すように連結管16の
本体16-1を炉心支持板8bと8cの間にセットした状
態で、その頂部にフランジ部16-2を結合して上部炉心
支持板8bを本体16-1の鍔部とフランジ部16-2との
間に挟持するようにしている。また、連結管挿入穴8b
-1,8c-1は、図2(b) で示すように連結管16の外径
寸法よりも一回り大きな長穴とし、炉心2の中心Oを通
るラジアル方向で連結管16の変位を許容するように遊
び間隙dを設定している。
The connecting pipes 16 are arranged on the plate surfaces of the core supporting plates 8b and 8c in accordance with the arrangement of the core components 15.
Pipe insertion holes 8b-1 and 8 to insert and support without welding
The connecting pipes 16 are dispersedly opened, and the connecting pipes 16 are inserted one by one into the connecting pipe inserting holes astride between the upper core supporting plate 8b and the lower core supporting plate 8c and loosely fitted as described below. It is carried on the formula. In the state where the main body 16-1 of the connecting pipe 16 is set between the core support plates 8b and 8c as shown in FIG. 8b is sandwiched between the flange portion of the main body 16-1 and the flange portion 16-2. Also, the connection pipe insertion hole 8b
As shown in FIG. 2B, -1 and 8c-1 are elongated holes slightly larger than the outer diameter of the connecting pipe 16, and allow displacement of the connecting pipe 16 in the radial direction passing through the center O of the core 2. The play gap d is set so as to perform.

【0041】一方、拘束バンド17は6本のバンドユニ
ット20を連結ピン21を介してリング状に相互連結し
た構成になり、ここでバンドユニット20は図4で示す
ような構造になる。すなわち、バンドユニット20は、
熱膨張率が小さい材料(炭素鋼,低合金鋼,マルテンサ
イト系ステンレス鋼など)で作られた左右両端のクレビ
ス20a,中心軸20b,および内外複数層に同心配置
した円筒形の引っ張り部材20cと、熱膨張率の大きな
材料(オーステナイト系ステンレス鋼など)で作られた
円筒形の圧縮部材20dの組立体からなり、ここで引っ
張り部材20cと圧縮部材20dを交互に同心配置し、
その両端を直列に結合して引っ張り部材と圧縮部材の熱
膨張が互いに打ち消し合うようにした組立体としてな
る。なお、かかる構成になる拘束バンドのバンドユニッ
トは、特公昭63−41432号公報にも開示されてお
り、その円筒形の引っ張り部材20c,圧縮部材20d
の材料(熱膨張率)選定,軸長,およびその層数を調節
することにより、その等価熱膨張率を燃料集合体12の
主要材料であるフェライト鋼の熱膨張率よりも小さく調
整することができる。
On the other hand, the restraining band 17 has a structure in which six band units 20 are interconnected in a ring shape via connecting pins 21. Here, the band unit 20 has a structure as shown in FIG. That is, the band unit 20
A clevis 20a at each of the left and right ends, a central shaft 20b, and a cylindrical tension member 20c concentrically arranged in a plurality of inner and outer layers made of a material having a small coefficient of thermal expansion (such as carbon steel, low alloy steel, martensitic stainless steel). An assembly of cylindrical compression members 20d made of a material having a large coefficient of thermal expansion (such as austenitic stainless steel), wherein the tension members 20c and the compression members 20d are alternately and concentrically arranged.
The two ends are connected in series to form an assembly in which the thermal expansion of the tension member and the compression member cancel each other. The band unit of the restraint band having such a configuration is also disclosed in Japanese Patent Publication No. 63-41432, and has a cylindrical tension member 20c and a compression member 20d.
By adjusting the material (coefficient of thermal expansion), the axial length, and the number of layers, the equivalent thermal expansion coefficient can be adjusted to be smaller than the thermal expansion coefficient of ferrite steel, which is the main material of the fuel assembly 12. it can.

【0042】そして、このバンドユニット20は、その
両端のクレビス20aに開口したピン穴20a-1に熱膨
張率の小さい材料で作られた連結ピン21を嵌挿してバ
ンドユニット20を相互連結して拘束バンド17を組立
た上で、連結ピン21を上下の炉心支持板8bと8cの
間にラジアルキーを介して連結し、拘束バンド17と炉
心支持板8b,8cとの間の熱膨張差を吸収するように
している。
The band unit 20 is interconnected by inserting connecting pins 21 made of a material having a low coefficient of thermal expansion into pin holes 20a-1 opened in the clevis 20a at both ends of the band unit 20. After assembling the restraining band 17, the connecting pin 21 is connected between the upper and lower core support plates 8b and 8c via a radial key, and the difference in thermal expansion between the restraining band 17 and the core support plates 8b and 8c is reduced. I try to absorb it.

【0043】かかる構成になる下部炉心支持構造8で
は、炉心構成要素15の下端部を個々に支持する連結管
16を炉心支持板8b,8cに固定(溶接)することな
く、連結管同士がキーウエイ16aを介して互いに拘束
し合うように連結されているので、図示の組立状態では
各連結管16の相互が等ピッチに保たれ、かつ最外周の
コーナー部に並ぶ連結管16がラジアル方向に変位する
と、これに対応して各連結管の間のピッチが一様に変化
する。そこで、炉心2の初期据付け時にあらかじめ連結
管16の相互間に適正なギャップ(2mm程度)を設定し
ておき、最外周の連結管16に荷重伝達用ブロック1
8,押え板19を介して拘束バンド17で連結管16の
束を一括して外周側から緊縛状態に拘束しておくことに
より、炉運転時,および燃料交換時にはそのときの炉内
温度に対応した拘束バンド17の熱膨張に応じて連結管
相互のピッチ,したがってこの連結管16に支持した炉
心構成要素15の間のギャップがコントロールされるよ
うになる。
In the lower core supporting structure 8 having such a configuration, the connecting tubes 16 for individually supporting the lower ends of the core components 15 are not fixed (welded) to the core supporting plates 8b and 8c, and the connecting tubes are connected by a keyway. Since the connection pipes 16a are connected to each other via 16a, the connection pipes 16 are maintained at the same pitch in the assembled state shown in the drawing, and the connection pipes 16 arranged at the outermost corners are displaced in the radial direction. Then, correspondingly, the pitch between the connecting pipes changes uniformly. Therefore, an appropriate gap (about 2 mm) is previously set between the connecting pipes 16 at the time of initial installation of the core 2, and the load transmitting block 1 is attached to the outermost connecting pipe 16.
8. The bundle of the connecting pipes 16 is collectively constrained from the outer peripheral side by the constraining band 17 via the presser plate 19 to be in a tight state from the outer peripheral side. In accordance with the thermal expansion of the constrained band 17, the pitch between the connecting pipes, and hence the gap between the core components 15 supported by the connecting pipe 16, can be controlled.

【0044】この場合に、拘束バンド17を構成するバ
ンドユニット20の等価熱膨張率は、先記のようにステ
ンレス鋼製の連結管16,炉心遮へい体13,およびフ
ェライト鋼を主材料とする燃料集合体12の熱膨張率よ
りも小さくなるように調整されているので、炉運転時
(炉心温度550℃,下部プレナム温度390℃)には
炉内温度の上昇に伴って熱膨張する連結管16に対し
て、拘束バンド17の拘束による押圧力が押え板19,
荷重伝達用ブロック18を介して炉心2の中心Oに向け
て矢印A方向に作用する。これにより、炉心温度の上昇
に伴って熱膨張する炉心構成要素15の間のギャップが
相対的に縮小する。ここで、拘束バンド17の熱膨張率
を適正に調整すると、試算では初期据付け時に燃料集合
体12の間に設定したギャップ(2mm)を炉運転時に
0.25mmまで縮めることが可能となる。これにより、
図8で述べた一次冷却材の無効流が減少して「開放型炉
心」に対して高い冷却性能が確保できる。なお、拘束バ
ンド17は、炉心温度が600℃にもなる事故時におい
て必要以上に炉心2を拘束して過大な荷重を加えること
がないように、事故時の炉心温度600℃で燃料集合体
相互間のギャップが0となるように拘束バンド17の熱
膨張量を設定するものとする。
In this case, the equivalent coefficient of thermal expansion of the band unit 20 forming the restraining band 17 is, as described above, the connecting pipe 16 made of stainless steel, the core shield 13, and the fuel mainly composed of ferrite steel. Since the coefficient of thermal expansion of the assembly 12 is adjusted to be smaller than the thermal expansion coefficient, the connecting pipe 16 that thermally expands as the furnace temperature rises during furnace operation (core temperature 550 ° C., lower plenum temperature 390 ° C.). On the other hand, the pressing force due to the restraint of the restraint band 17 is
It acts in the direction of arrow A toward the center O of the core 2 via the load transmitting block 18. As a result, the gap between the core components 15 that thermally expands as the core temperature increases is relatively reduced. Here, if the coefficient of thermal expansion of the restraint band 17 is properly adjusted, the gap (2 mm) set between the fuel assemblies 12 at the time of initial installation can be reduced to 0.25 mm at the time of furnace operation by trial calculation. This allows
The ineffective flow of the primary coolant described in FIG. 8 is reduced, and high cooling performance can be secured for the “open core”. In addition, in the event of an accident in which the core temperature is as high as 600 ° C., the restraint band 17 is provided so that the fuel assemblies are not connected to each other at the accident core temperature of 600 ° C. The amount of thermal expansion of the constraining band 17 is set so that the gap between them becomes zero.

【0045】一方、燃料交換時には炉内温度が200℃
にまで低下するので、この状態では温度降下による連結
管16,炉心構成要素15の熱収縮に比べて拘束バンド
17の収縮が小さいため、拘束バンド17による締め付
けが矢印Bで表すように解除されて炉心構成要素15の
間には燃料交換作業(装荷,引き抜き)に必要なギャッ
プ(2〜2.4mm)が確保されるようになる。
On the other hand, at the time of refueling, the temperature in the furnace is 200 ° C.
In this state, the contraction of the restraining band 17 is smaller than the thermal contraction of the connecting pipe 16 and the core component 15 due to the temperature drop, so that the fastening by the restraining band 17 is released as indicated by the arrow B. A gap (2 to 2.4 mm) required for the refueling operation (loading and unloading) is secured between the core components 15.

【0046】(2) 側部炉心支持構造:次に、炉心2の水
平荷重を支える本発明の側部炉心支持構造を図3(a),
(b) で説明する。すなわち、側部炉心支持構造11は、
炉心2の最外周に並ぶ炉心構成要素15を取り巻いてそ
の側面に配した炉心支持枠22と、該炉心支持枠22を
外周側から拘束する拘束バンド17とから構成されてい
る。
(2) Side core support structure: Next, the side core support structure of the present invention which supports the horizontal load of the core 2 is shown in FIG.
This will be described in (b). That is, the side core support structure 11 is
A core support frame 22 is provided around the core components 15 arranged on the outermost periphery of the core 2 and disposed on the side surface thereof, and a restraining band 17 for restraining the core support frame 22 from the outer peripheral side.

【0047】ここで、炉心支持枠22は炉心2の最外周
に並ぶ炉心構成要素(炉心遮へい体13)を包囲してそ
の側面に重ね合わせた断面波形の板で、かつ炉心2の外
形に合わせて周方向に6分割された周壁状の支持枠23
と、該支持枠23を取り巻いてその外周側に配した複数
のセグメント板からなる支持枠抑え板24と、支持枠2
3の分割継ぎ目を液密に閉塞するシール部材(インコネ
ルなどの耐熱,高弾性材で作られた断面U字形のパッキ
ン)25とからなり、かつ支持枠抑え板24の各セグメ
ント板が個々に拘束バンド17に連結されている。
Here, the core support frame 22 is a plate having a corrugated cross section which surrounds core components (core shield 13) arranged on the outermost periphery of the core 2 and is superimposed on the side surface thereof, and is adapted to the outer shape of the core 2. Peripheral wall-shaped support frame 23 divided into six in the circumferential direction
A support frame restraining plate 24 composed of a plurality of segment plates surrounding the support frame 23 and disposed on the outer peripheral side thereof;
A sealing member (packing made of heat-resistant, high-elasticity material such as Inconel) having a U-shaped cross section, which seals the three joints in a liquid-tight manner, and each segment plate of the support frame holding plate 24 is individually restrained. It is connected to a band 17.

【0048】また、拘束バンド17は、図1に示した下
部炉心支持構造8に採用したものと同じ構造になり、各
バンドユニット20の等価熱膨張率を炉心構成要素15
の熱膨張率よりも小さく調整したものであり、バンドユ
ニット20の相互間を繋ぐ連結ピン21が炉心槽9の内
周壁面上に設けたレストレイントリング26にラジアル
キーを介して連結されている。なお、図3では側部炉心
支持構造11が炉心2の上端に配備されているが、これ
と同様な側部炉心支持構造11は炉心2の高さ方向に沿
って数カ所(例えば上下2箇所)に分散して配備するも
のとする。
The constraining band 17 has the same structure as that employed for the lower core supporting structure 8 shown in FIG.
The connecting pin 21 connecting the band units 20 to each other is connected via a radial key to a restraint ring 26 provided on the inner peripheral wall surface of the core vessel 9. I have. In FIG. 3, the side core support structure 11 is provided at the upper end of the core 2. However, similar side core support structures 11 are provided at several places (for example, two places at the top and bottom) along the height direction of the core 2. And distributed.

【0049】かかる構成により、炉運転時には、炉心温
度の上昇に伴う炉心構成要素15の熱膨張に比べて拘束
バンド17の熱膨張が小さいために、炉心構成要素15
は拘束バンド17によって炉心2の中心Oに向けて押さ
え込まれるような拘束力を受ける。これにより、炉心構
成要素15の間のギャップが相対的に減少する。この場
合に、炉心構成要素の熱膨張量の計算結果から、拘束バ
ンド17の等価熱膨張率を適切に調整することにより、
炉心2の初期据付け時に燃料集合体12の相互間ギャッ
プを2mmの設定したとして、炉運転時(炉心温度550
℃)にはギャップを下部炉心支持構造11と同様に0.
25mmまで縮めることができる。これにより、図8で述
べた一次冷却材の無効流が減少してダクトレス形燃料集
合体12に対して高い冷却性能が確保できる。
With this configuration, during operation of the reactor, the thermal expansion of the constraining band 17 is smaller than the thermal expansion of the core component 15 due to an increase in the core temperature.
Is subjected to such a restraining force as to be pressed toward the center O of the core 2 by the restraining band 17. Thereby, the gap between the core components 15 is relatively reduced. In this case, by appropriately adjusting the equivalent coefficient of thermal expansion of the restraint band 17 from the calculation result of the amount of thermal expansion of the core components,
Assuming that the gap between the fuel assemblies 12 was set to 2 mm at the time of initial installation of the core 2, the reactor was operated (core temperature 550
C), the gap is set to 0.
Can be reduced to 25mm. Thereby, the ineffective flow of the primary coolant described in FIG. 8 is reduced, and high cooling performance for the ductless fuel assembly 12 can be secured.

【0050】一方、燃料交換時には、炉内温度が炉運転
時の550℃から200℃まで降下するが、この炉内温
度の降下による炉心構成要素15の収縮に比べて拘束バ
ンド17の収縮が小さいため、拘束バンド17による炉
心2の締め付けが解除される。この結果、炉心構成要素
15の間のギャップが広がり、燃料交換作業作業(装
荷,引き抜き)に必要なギャップ(2〜2.4mm)が確
保されるようになる。
On the other hand, during refueling, the furnace temperature drops from 550 ° C. during the furnace operation to 200 ° C., but the shrinkage of the restraining band 17 is smaller than the shrinkage of the core component 15 due to the drop in the furnace temperature. Therefore, the fastening of the core 2 by the restraint band 17 is released. As a result, the gap between the core components 15 widens, and the gap (2 to 2.4 mm) required for the refueling work (loading and unloading) is secured.

【0051】また、拘束バンド17は炉心槽9の内壁に
取付けたレストレイントリング26にラジアルキーを介
して支持し、両者間の熱膨張差を吸収するようにしてい
るので、拘束バンド17の拘束機能が阻害されることは
ない。さらに、炉心2を取り囲んでその外周側に配した
炉心支持枠23,および支持枠抑え板24を周方向に分
割したことで炉心の熱膨張,収縮に追従でき、かつその
支持枠23の分割継ぎ目をシール部材25で閉塞するよ
うにしたので、炉心2を流れる一次冷却材が炉心支持枠
22の継ぎ目を通じて外周側に漏れ出るのを防止でき
る。
The restraining band 17 is supported by a restraint ring 26 attached to the inner wall of the core tank 9 via a radial key so as to absorb the difference in thermal expansion between the two. The restraint function is not impaired. Further, the core support frame 23 and the support frame holding plate 24 surrounding the core 2 and arranged on the outer peripheral side thereof can be divided in the circumferential direction to follow the thermal expansion and contraction of the core. Is closed by the seal member 25, so that the primary coolant flowing through the core 2 can be prevented from leaking to the outer peripheral side through the joint of the core support frame 22.

【0052】しかも、実施例の炉心支持装置では、拘束
バンド17を備えた下部炉心支持構造8と側部炉心支持
構造11を組合せたことにより、双方の支持構造が互い
に協同して炉心構成要素15に反りを与えるような荷重
を加えることなしに、安定よく支持できる。すなわち、
ダクトレス形燃料集合体12を採用した「開放型炉心」
に対して、その炉心下部に図6(c) に示した従来の炉心
支持構造を採用して各炉心構成要素15を連結管を介し
て炉心支持板に固定したまま、炉心2の側部から前記し
た側部炉心支持構造11の拘束バンド17で締めつける
と、炉運転時にはラッパ管形燃料集合体に比べて剛性の
低いダクトレス形燃料集合体12に反りを与えるような
荷重が作用して燃料集合体12が変形,破損するおそれ
があるが、図1で述べたように拘束バンド17の熱膨張
に応じて連結管16が変位する可変ピッチ支持方式の下
部炉心支持構造8と組合せることにより、側部炉心支持
構造11の拘束機能と協同して燃料集合体12に不当な
荷重を加えることなく、かつその全長域に亘り炉心構成
要素相互間に均等なギャップを保持して安定支持させる
ことが可能となる。
Moreover, in the core supporting apparatus of the embodiment, the lower core supporting structure 8 provided with the restraining band 17 and the side core supporting structure 11 are combined, so that both supporting structures cooperate with each other to form the core component 15. It can be supported stably without applying a load that gives a warp to the surface. That is,
"Open core" employing ductless fuel assembly 12
On the other hand, the conventional core supporting structure shown in FIG. 6 (c) is adopted in the lower part of the core, and each core component 15 is fixed to the core supporting plate via a connecting pipe, and the core component 15 is fixed to the core supporting plate from the side of the core 2. When tightened by the restraining band 17 of the side core support structure 11 described above, a load acting on the ductless fuel assembly 12 having a lower rigidity than the flared tubular fuel assembly acts on the fuel assembly during the furnace operation, and the fuel assembly Although the body 12 may be deformed or broken, as described in FIG. 1, by combining with the lower core support structure 8 of the variable pitch support type in which the connecting pipe 16 is displaced in accordance with the thermal expansion of the restraining band 17, In cooperation with the restraining function of the side core support structure 11, it is possible to stably support the fuel assembly 12 without imposing an undue load on the fuel assembly 12 and maintaining a uniform gap between the core components over the entire length thereof. It becomes possible.

【0053】[0053]

【発明の効果】以上述べたように、本発明の炉心支持装
置によれば、炉心構成要素に過大な荷重を加えることな
く、原子炉運転時には炉心構成要素の相互間のギャップ
を縮小してダクトレス形燃料集合体に対する一次冷却材
の無効流を抑制しつつ、燃料交換時には炉心構成要素相
互間のギャップを、燃料交換作業に支障のない範囲まで
広げることができる。
As described above, according to the core supporting device of the present invention, the gap between the core components can be reduced during the operation of the reactor without applying an excessive load to the core components, thereby reducing the ductlessness. The gap between the core components during refueling can be widened to a range that does not hinder the refueling operation, while suppressing the ineffective flow of the primary coolant to the shaped fuel assembly.

【0054】また、下部炉心支持構造として請求項1〜
4の構成になる可変ピッチ支持方式の下部炉心支持構造
を採用し、これに請求項5〜7の構成になる側部炉心支
持構造を組合せて炉心を上下で拘束するようにしたこと
により、炉心構成要素の変形,破損を防止しつつその全
長域に亘り均等なギャップを保持して燃料集合体の径方
向,軸方向の温度分布のばらつきを低く抑えて安定よく
炉心を支持することができる。
In addition, the lower core supporting structure is provided in the first to third aspects.
The lower core support structure of the variable pitch support type having the configuration of the fourth aspect is adopted, and the side core support structure of the fifth to seventh configurations is combined with the lower core support structure so as to restrain the core vertically. It is possible to maintain a uniform gap over the entire length of the fuel assembly while preventing deformation and breakage of the components, thereby suppressing variations in the temperature distribution in the radial and axial directions of the fuel assembly to stably support the core.

【0055】これにより、現在,研究開発が進められて
いる先進的核燃料リサイクル体系に適用するリサイクル
炉(高速炉)として、ラッパ管を省略した新構想のダク
トレス形燃料集合体を採用する「開放型炉心」に対し、
一次冷却材の無効流を低減して熱効率の向上に大きく寄
与できる。
As a result, as a recycling furnace (fast reactor) applied to an advanced nuclear fuel recycling system currently being researched and developed, a ductless fuel assembly of a new concept in which a wrapper tube is omitted is adopted. Core ”
The ineffective flow of the primary coolant can be reduced to greatly contribute to the improvement of the thermal efficiency.

【0056】なお、本発明はこれまで説明した大型のダ
クトレス形燃料集合体に限らず、ラッパ管を省略した型
の燃料集合体に対して適用が可能である。
The present invention is not limited to the large-sized ductless fuel assembly described above, but is applicable to a fuel assembly in which the wrapper tube is omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炉心下部に配した本発明の実施例による下部炉
心支持構造の構成図であり、(a) は側視断面図、(b) は
(a) 図の矢視X−X断面図
FIG. 1 is a configuration diagram of a lower core supporting structure according to an embodiment of the present invention disposed in a lower part of a core, where (a) is a side sectional view and (b) is a side view.
(a) XX cross-sectional view of the figure

【図2】図1における連結管,およびその周辺の詳細な
構造図であり、(a) は側視断面図、(b),(c) はそれぞれ
(a) 図における矢視X−X,Y−Y断面図
FIGS. 2A and 2B are detailed structural views of the connecting pipe and its periphery in FIG. 1, wherein FIG. 2A is a side sectional view, and FIGS.
(a) Cross-sectional view taken along line XX and YY in FIG.

【図3】炉心上部に配した本発明の実施例による側部炉
心支持構造の構成図であり、(a) は側視断面図、(b) は
(a) 図の矢視X−X断面図
FIGS. 3A and 3B are configuration diagrams of a side core supporting structure according to an embodiment of the present invention disposed above the core, where FIG. 3A is a side sectional view and FIG.
(a) XX cross-sectional view of the figure

【図4】図1,および図3における拘束バンドのバンド
ユニット構造を表す軸方向に沿った断面図
FIG. 4 is a sectional view along the axial direction showing the band unit structure of the restraint band in FIGS. 1 and 3;

【図5】ナトリウム冷却型高速炉の例として挙げた原型
炉「もんじゅ」の原子炉本体の概要構成図
FIG. 5 is a schematic configuration diagram of a reactor body of a prototype reactor “Monju” mentioned as an example of a sodium-cooled fast reactor.

【図6】図5の炉心に採用した燃料集合体,およびその
支持構造図であり、(a) は一部切欠した燃料集合体全体
の外観斜視図、(b) は(a) 図の矢視X−X断面図、(c)
は燃料集合体を支持した下部炉心支持構造の構成断面図
6 is a view showing a fuel assembly adopted in the core shown in FIG. 5 and a supporting structure thereof, (a) is an external perspective view of the whole fuel assembly with a part cut away, and (b) is an arrow in FIG. XX sectional view, (c)
Is a cross-sectional view of the lower core support structure supporting the fuel assemblies

【図7】リサイクル炉の「開放型炉心」に採用する新構
想のダクトレス形燃料集合体の構成図であり、(a) は右
半分を断面した側面図、(b) は(a) 図の矢視X−X断面
FIG. 7 is a structural view of a ductless fuel assembly of a new concept adopted for an “open-type core” of a recycling furnace, where (a) is a side view of a right half section, and (b) is a view of (a). Arrow XX sectional view

【図8】図7のダクトレス形燃料集合体で構成した「開
放型炉心」を図6(c) と同様な下部炉心支持構造を採用
して支持した場合の想定図であり、(a) は炉心の中心を
通るラジアル方向の断面図、(b) は(a) 図の燃料集合体
の一列分を模式的に表した平面図
FIG. 8 is a diagram showing a case where an “open core” composed of the ductless fuel assemblies of FIG. 7 is supported by adopting a lower core supporting structure similar to FIG. 6 (c), and (a) is Sectional view in the radial direction passing through the center of the core, (b) is a plan view schematically showing one row of the fuel assembly in (a)

【符号の説明】 1 原子炉容器 2 炉心 7 炉心支持構造 8 下部炉心支持構造 8a 支持構造本体 8b,8c 炉心支持板 9 炉心槽 11 側部炉心支持構造 12 ダクトレス形燃料集合体 13 炉心遮へい体 15 炉心構成要素 16 連結管 16a キーウエイ 17 拘束バンド 18 荷重伝達用ブロック 19 押え板 20 バンドユニット 21 連結ピン 22 炉心支持枠 23 支持枠 24 支持枠押え板 25 シール部材 26 レストレイントリング[Description of Reference Numerals] 1 reactor vessel 2 core 7 core support structure 8 lower core support structure 8a support structure body 8b, 8c core support plate 9 core tank 11 side core support structure 12 ductless fuel assembly 13 core shield 15 Core component 16 Connecting pipe 16a Keyway 17 Restraining band 18 Load transmitting block 19 Press plate 20 Band unit 21 Connecting pin 22 Core support frame 23 Support frame 24 Support frame press plate 25 Seal member 26 Restraint ring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G21C 15/02 G21C 3/30 L (72)発明者 尾崎 博 神奈川県川崎市川崎区田辺新田1番1号 富士電機株 式会社内 (56)参考文献 特開 昭62−133385(JP,A) 特開 昭63−133091(JP,A) 特開 昭62−132193(JP,A) 特開2000−19279(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21C 3/30 G21C 3/32 G21C 5/06 G21C 5/08 G21C 5/10 G21C 5/14 G21C 5/16 G21C 15/02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI G21C 15/02 G21C 3/30 L (72) Inventor Hiroshi Ozaki 1-1-1, Shinabe, Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (56) References JP-A-62-133385 (JP, A) JP-A-63-133091 (JP, A) JP-A-62-132193 (JP, A) JP-A-2000-19279 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G21C 3/30 G21C 3/32 G21C 5/06 G21C 5/08 G21C 5/10 G21C 5/14 G21C 5/16 G21C 15/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炉心を構築する燃料集合体として、ラッパ
管を省略して燃料ピン束の周域を開放したダクトレス形
燃料集合体を採用するナトリウム冷却型高速炉を対象
に、その炉心の鉛直荷重,水平荷重を支える炉心支持装
置であって、原子炉容器内の下部に設けた炉心支持装置
本体に担持した炉心支持板と、炉心構成要素の配列に合
わせて前記炉心支持板上に分散配置し、かつ個々に炉心
構成要素の下端部を差し込んで炉心構成要素を直立姿勢
に支える連結管とを有する下部炉心支持装置と、前記連
結管の束を取り巻いてその外周側に配した拘束バンドを
有する側部炉心支持装置とを備え、前記連結管は外形が
六角形でその周面に上下方向のキーウエイを有し、かつ
前記炉心支持板に開口した連結管挿入穴に遊嵌支持した
上で、前記キーウエイを噛み合わせて各連結管同士を束
状に相互連結する構成とし、さらに、前記連結管の束を
外周側から炉心の中心に向け拘束バンドにて拘束し、こ
の拘束バンドは、炉運転時には炉心構成要素間のギャッ
プを狭め、燃料交換時には前記ギャップを広げる拘束機
能を備えることを特徴とするナトリウム冷却型高速炉の
炉心支持装置。
The present invention relates to a sodium-cooled fast reactor employing a ductless fuel assembly in which a wrapper tube is omitted and a peripheral region of a fuel pin bundle is opened as a fuel assembly for constructing a reactor core. A core support device that supports loads and horizontal loads, and is provided at a lower part in a reactor vessel.
Match the core support plate carried on the main body and the arrangement of core components.
The cores are distributed on the core support plate, and individually
Insert core components in upright position by inserting lower end of components
A lower core supporting device having a connecting pipe supported on the lower core;
A binding band around the tube bundle and placed on the outer circumference
Having a side core support device having
Hexagonal with a vertical keyway on its circumference, and
It was loosely fitted and supported in the connection pipe insertion hole opened in the core support plate.
Above, the connection way is bundled together
And a bundle of the connecting pipes.
From the outer peripheral side toward the center of the core,
During operation of the furnace, the gap between the core components
Restraint that narrows the gap and widens the gap when refueling
Sodium cooled fast reactor core supporting device, characterized in that it comprises the ability.
【請求項2】請求項1記載の炉心支持装置において、連
結管を炉心支持板の板面に分散開口した連結管挿入穴に
1本ずつ嵌挿して鉛直方向に担持し、かつ前記連結管挿
入穴と連結管との間に炉心構成要素の膨張,収縮に随伴
する連結管の変位を許容するラジアル方向の遊び間隙を
設定したことを特徴とするナトリウム冷却型高速炉の炉
心支持装置。
2. The core supporting apparatus according to claim 1, wherein the connecting pipes are inserted one by one into connecting pipe insertion holes distributed and opened on the plate surface of the core supporting plate, and are supported vertically, and the connecting pipes are inserted. A core support device for a sodium-cooled fast reactor, wherein a radial play gap is set between a hole and a connecting pipe to allow displacement of the connecting pipe accompanying expansion and contraction of core components.
【請求項3】請求項1記載の炉心支持装置において、拘
束バンドが、熱膨張率の小さな引っ張部材と熱膨張率の
大きな圧縮部材とを組合せてその等価熱膨張率を炉心構
成要素の熱膨張率よりも小さく調整した複数本のバンド
ユニットを連結ピンを介してリング状に相互連結した構
造になり、かつ拘束バンドのユニット連結部をラジアル
キーを介して炉心支持板に支持したことを特徴とするナ
トリウム冷却型高速炉の炉心支持装置。
3. The core supporting device according to claim 1, wherein the restraining band is a combination of a tension member having a small coefficient of thermal expansion and a compression member having a large coefficient of thermal expansion, and its equivalent coefficient of thermal expansion is determined by the thermal expansion of the core component. It has a structure in which a plurality of band units adjusted to be smaller than the ratio are interconnected in a ring shape via connecting pins, and the unit connecting part of the restraining band is supported on the core support plate via a radial key. Core support device for sodium-cooled fast reactor.
【請求項4】請求項1記載の炉心支持装置において、最
外周に並ぶ連結管を取り囲んで外周面にキーウエイを形
成した荷重伝達用ブロックを配列し、該ブロックを拘束
バンドに連結した抑え板を介して拘束するようにしたこ
とを特徴とするナトリウム冷却型高速炉の炉心支持装
置。
4. A core supporting device according to claim 1, wherein a load transmitting block surrounding a connecting pipe arranged at the outermost periphery and having a keyway formed on an outer peripheral surface thereof is arranged, and a holding plate connecting the block to a restraining band is provided. A core support device for a sodium-cooled fast reactor, wherein the core support device is configured to be constrained.
【請求項5】請求項1記載の炉心支持装置において、側
部炉心支持装置を、炉心を取り囲んでその最外周に並ぶ
炉心構成要素の側面に配した炉心支持枠と、該炉心支持
枠を介して炉心を外周側から拘束する拘束バンドとで構
成したことを特徴とするナトリウム型高速炉の炉心支持
装置。
5. The core supporting device according to claim 1, wherein the side core supporting device is provided on a side surface of a core component surrounding the core and arranged on the outermost periphery thereof, and the side core supporting device is provided through the core supporting frame. And a restraining band for restraining the reactor core from the outer peripheral side.
【請求項6】請求項5記載の炉心支持装置において、炉
心支持枠が炉心の最外周に並ぶ炉心構成要素を包囲して
その側面に重ね合わせた分割構造になる周壁状の支持枠
と、該支持枠の相互間の継ぎ目を閉塞するシール部材
と、前記支持枠を取り巻いてその外周側に配した複数の
セグメント板からなる分割構造の支持枠抑え板とからな
り、かつ支持枠抑え板の各セグメント板を拘束バンドに
連結したことを特徴とするナトリウム型高速炉の炉心支
持装置。
6. A core supporting device according to claim 5, wherein the core supporting frame surrounds core components arranged on the outermost periphery of the core, and has a peripheral wall-shaped support frame having a divided structure superimposed on a side surface thereof. A seal member for closing a joint between the support frames, and a support frame restraint plate having a divided structure including a plurality of segment plates disposed around the support frame and arranged on the outer peripheral side thereof, and each of the support frame restraint plates A core supporting device for a sodium fast reactor, wherein a segment plate is connected to a restraining band.
【請求項7】請求項5記載の炉心支持装置において、拘
束バンドが、熱膨張率の小さな引っ張部材と熱膨張率の
大きな圧縮部材とを組合せてその等価熱膨張率を炉心構
成要素の熱膨張率よりも小さく調整した複数本のバンド
ユニットを連結ピンを介してリング状に相互連結した構
造になり、かつ拘束バンドのユニット連結部を炉心を囲
繞する炉心槽の内周壁面上に設けたレストレイントリン
グにラジアルキーを介して連結したことを特徴とするナ
トリウム型高速炉の炉心支持装置。
7. The core supporting device according to claim 5, wherein the restraining band is a combination of a tension member having a small coefficient of thermal expansion and a compression member having a large coefficient of thermal expansion, and the equivalent coefficient of thermal expansion of the core member is determined by the thermal expansion of the core component. A plurality of band units adjusted to be smaller than the ratio are connected to each other in a ring shape via connecting pins, and the unit connecting portion of the restraining band is provided on the inner peripheral wall surface of the core vessel surrounding the core. A core support device for a sodium-type fast reactor, wherein the reactor core support device is connected to a train ring via a radial key.
JP11028624A 1999-02-05 1999-02-05 Core support device for sodium-cooled fast reactor Expired - Fee Related JP3100580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11028624A JP3100580B2 (en) 1999-02-05 1999-02-05 Core support device for sodium-cooled fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028624A JP3100580B2 (en) 1999-02-05 1999-02-05 Core support device for sodium-cooled fast reactor

Publications (2)

Publication Number Publication Date
JP2000227489A JP2000227489A (en) 2000-08-15
JP3100580B2 true JP3100580B2 (en) 2000-10-16

Family

ID=12253719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028624A Expired - Fee Related JP3100580B2 (en) 1999-02-05 1999-02-05 Core support device for sodium-cooled fast reactor

Country Status (1)

Country Link
JP (1) JP3100580B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599660B2 (en) * 2010-06-24 2014-10-01 白川 利久 Non-combustion ducted engine for electric airplanes
JP6982380B2 (en) * 2016-03-08 2021-12-17 コベルコ・コンプレッサ株式会社 Screw compressor
CN113140331B (en) * 2021-03-05 2023-09-15 国科中子能(青岛)研究院有限公司 Compact fuel assembly, reactor and mobile carrier

Also Published As

Publication number Publication date
JP2000227489A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
CA1108313A (en) Irradiation surveillance specimen assembly
US4749544A (en) Thin walled channel
US3850231A (en) Lmfbr intermediate heat exchanger
RU2536817C2 (en) Fuel assembly housing and fuel assembly having said housing
Chellapandi et al. Design concepts for reactor assembly components of 500 MWe future SFRs
US4751043A (en) Radial neutron reflector
US3816247A (en) Nuclear fuel assembly, especially for a fast reactor
JPS587957B2 (en) Genshiro
US6118838A (en) Frame-held neutron-absorbing fuel rod assembly storage rack
JP3100580B2 (en) Core support device for sodium-cooled fast reactor
US3293139A (en) Prestressed concrete pressure vessel for nuclear reactors
JPS5813875B2 (en) Reactor
US3795579A (en) Nuclear fuel assembly comprising a sleeve of variable thickness
US3816246A (en) Concrete pressure vessel for pressurized or boiling-water nuclear reactors
CN108140435B (en) Assembly of a nuclear reactor of the sodium-cooled fast reactor type, the shell of which is equipped with spacer plates of increased rigidity
US3342689A (en) Liquid-moderated, gas-cooled nuclear reactor and pressure equalization system
US5809101A (en) Handle unit for a fuel assembly in a nuclear reactor and fuel assembly having modified channel
JPH0321878B2 (en)
USRE34246E (en) Thin walled channel
JP2009085650A (en) Core component or fast reactor, core fuel assembly, core, and reactor structure
Jalaldeen et al. Comparison of life of two types of decay heat exchangers used in prototype fast breeder reactor
KR100423814B1 (en) Reactor Vessel Internal Structure Having an Integrated Inner Barrel Assembly Component
JP2001141866A (en) Fuel assembly
EP2610875A1 (en) A wrapper tube for a fuel subassembly of a nuclear reactor core and method for protecting fuel against overheating in case of coolant boiling
US3330735A (en) Liquid-moderated nuclear reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees