JP3099976B2 - Carbon-based shape-selective catalyst and method for producing the same - Google Patents

Carbon-based shape-selective catalyst and method for producing the same

Info

Publication number
JP3099976B2
JP3099976B2 JP03105071A JP10507191A JP3099976B2 JP 3099976 B2 JP3099976 B2 JP 3099976B2 JP 03105071 A JP03105071 A JP 03105071A JP 10507191 A JP10507191 A JP 10507191A JP 3099976 B2 JP3099976 B2 JP 3099976B2
Authority
JP
Japan
Prior art keywords
carbon
weight
pore diameter
based shape
selective catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03105071A
Other languages
Japanese (ja)
Other versions
JPH05345130A (en
Inventor
健治 橋本
孝一 三浦
一廣 前
順一 林
竜生 川口
成 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP03105071A priority Critical patent/JP3099976B2/en
Publication of JPH05345130A publication Critical patent/JPH05345130A/en
Application granted granted Critical
Publication of JP3099976B2 publication Critical patent/JP3099976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性および耐薬品性
に優れた炭素質触媒およびその製造方法に関する。更に
詳しくは、石炭、ピッチその他の改質剤およびフェノー
ル樹脂を原料とし、細孔径および細孔径分布を正確に制
御した、形状選択性のある炭素質触媒およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous catalyst having excellent heat resistance and chemical resistance and a method for producing the same. More specifically, the present invention relates to a shape-selective carbonaceous catalyst in which coal, pitch and other modifiers and a phenol resin are used as raw materials, and in which the pore size and pore size distribution are accurately controlled, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に炭素材料は他の各種工業材料には
見られない優れた特性、即ち比重が小さく、耐熱性、耐
薬品性、耐熱衝撃性、電気および熱伝導性、高温強度、
潤滑性および生体親和性などを有している。
2. Description of the Related Art Generally, carbon materials have excellent properties not found in other industrial materials, that is, low specific gravity, heat resistance, chemical resistance, thermal shock resistance, electric and thermal conductivity, high-temperature strength, and the like.
It has lubricity and biocompatibility.

【0003】このことから、古くから電極、耐火物、カ
ーボンブラシ、メカニカルシール、軸受などの高温構造
材料や、特殊機械部品として幅広く利用されている。さ
らに最近の化学技術の進歩により、電子炉用高密度黒鉛
や高性能炭素繊維、生体用バイオカーボンなど新しい機
能を付与した炭素材料が開発されている。
[0003] For this reason, they have been widely used as high-temperature structural materials such as electrodes, refractories, carbon brushes, mechanical seals, and bearings, and special mechanical parts since ancient times. Recent advances in chemical technology have led to the development of carbon materials with new functions, such as high-density graphite for electronic furnaces, high-performance carbon fibers, and biocarbon for living organisms.

【0004】一方、炭素材料としては、従来より石炭、
石油及びその分解プロセス誘導品等が主として使用され
ているが、エネルギー面も含めて、石油へ依存している
現状の体質を見直す必要に迫られている。石炭はコーク
ス源、燃料が主であるが、石油に替わるエネルギー源、
化学原料源として液化、ガス化等の開発をはじめ幅広く
付加価値を付与する利用技術が求められている。
On the other hand, as carbon materials, coal,
Petroleum and its derivatives are mainly used, but there is a pressing need to review the current state of dependence on petroleum, including energy. Coal is mainly made of coke and fuel, but it is an energy source that replaces oil,
There is a need for a utilization technology that provides a wide range of added value, including the development of liquefaction, gasification, etc. as a chemical raw material source.

【0005】特開平3−40912号公報には、炭素質
メソフェーズ微粉末またはこれにバインダーを加え造粒
した成形体を非酸化雰囲気下で、500〜1100℃の
温度領域で炭化する分子ふるい炭素の製造法が提案され
ている。これはコールタールピッチや石油系重質油を3
50℃〜500℃程度の温度て加熱して生成するメソフ
ェーズを使用するものであり、又目的が混合ガス分離に
使用する分子ふるい炭素を製造することにある。
Japanese Patent Application Laid-Open No. Hei 3-40912 discloses a molecular sieve carbon in which a carbonaceous mesophase fine powder or a compact obtained by adding a binder thereto and granulating is carbonized in a non-oxidizing atmosphere in a temperature range of 500 to 1100 ° C. Manufacturing methods have been proposed. This is for coal tar pitch and petroleum heavy oil.
A mesophase produced by heating at a temperature of about 50 ° C. to 500 ° C. is used. The purpose is to produce molecular sieve carbon used for mixed gas separation.

【0006】触媒は化学工業にとって、最も重要な機能
性材料である。この機能を発揮させるためには細孔組織
を適切に制御することが必要とされている。細孔組織の
重要性は以下の理由による。 固体の触媒作用は表面現象であるため、その活性は
第1義的には表面積に比例する。表面積を大きくし、か
つ反応器の運転を円滑に行うためには、多孔質構造が必
須である。 貴金属担持触媒では、表面積あたりの担持率を大き
くすると金属の凝集が起こり易くなり、安定性が低下す
る。 細孔径が反応する分子と同程度となると、反応する
分子を形状、大きさで識別し、特定の反応のみを起こさ
せることが可能となる。
[0006] Catalysts are the most important functional materials for the chemical industry. In order to exert this function, it is necessary to appropriately control the pore structure. The importance of the pore structure is based on the following reasons. Since the catalysis of a solid is a surface phenomenon, its activity is primarily proportional to the surface area. In order to increase the surface area and smoothly operate the reactor, a porous structure is essential. In the case of a noble metal-supported catalyst, when the loading rate per surface area is increased, aggregation of the metal is likely to occur, and the stability is reduced. When the pore diameter is about the same as the reacting molecule, the reacting molecule can be identified by its shape and size, and only a specific reaction can be caused.

【0007】細孔径の制御による分子形状選択性を有す
る触媒としてはゼオライトがその代表として知られてい
るが、更に耐熱性、耐薬品性等の点において、炭素材料
を原料とした同様の特性を有する触媒が各方面から要望
されていた。
Zeolite is known as a representative catalyst having a molecular shape selectivity by controlling the pore diameter. However, in terms of heat resistance, chemical resistance, etc., it has the same characteristics as a carbon material as a raw material. A catalyst having the same has been demanded from various fields.

【0008】従来より分子形状選択性を有する炭素は、
基本的には以下に示す4つあるいはそれらを組み合わせ
た方法で製造されている。 熱分解法 サランや塩化ビニリデンを制御された条件下で熱分解す
る方法。 被覆法 活性炭や各種炭化物にピッチや樹脂を加えて熱分解し、
熱分解炭素で細孔を制御する方法。(例えば特開昭49
−106982号公報、特開昭59−45914号公報
など)
Conventionally, carbon having molecular shape selectivity is
Basically, it is manufactured by a method shown below or a combination thereof. Pyrolysis method A method in which Saran and vinylidene chloride are pyrolyzed under controlled conditions. Coating method Activated carbon and various carbides are thermally decomposed by adding pitch and resin.
A method of controlling pores with pyrolytic carbon. (For example, JP
JP-A-10-69882, JP-A-59-45914, etc.)

【0009】 賦活法 炭化物を厳密な条件下で適度に賦活して細孔を拡大する
方法。(例えば特開昭53−1195号公報など) 蒸着法 活性炭等を600〜900℃の温度でベンゼン、トルエ
ンなどを含むガスで処理し、熱分解炭素を細孔壁に蒸着
させて細孔を縮小する方法。(例えば特公昭56−13
0226号公報など)
Activation Method A method of appropriately activating carbides under strict conditions to enlarge pores. (For example, JP-A-53-1195, etc.) Evaporation method Activated carbon or the like is treated with a gas containing benzene, toluene, or the like at a temperature of 600 to 900 ° C., and pyrolytic carbon is evaporated on the pore walls to reduce the pores. how to. (For example, Japanese Patent Publication No. 56-13
No. 0226)

【0010】これらの方法はいずれも、炭素材の熱分解
等により予め基本的な細孔を生成させ、次にその細孔径
を目的に合致するように微妙に調整しようとするもので
ある。これらの方法では基本的な細孔の生成が支配的で
あるため、原料の選定が重要であり、多くの原料の中か
ら適切なものを得ることは非常に困難であった。また限
られた原料の組合わせしかできないため、ニーズに応じ
た細孔径に制御することが出来なかったほか、細孔分布
もシャープにできなかった。
In each of these methods, basic pores are generated in advance by thermal decomposition of a carbon material or the like, and then the diameter of the pores is finely adjusted to meet the purpose. In these methods, since the formation of basic pores is dominant, the selection of a raw material is important, and it has been very difficult to obtain an appropriate raw material from many raw materials. In addition, since only a limited combination of raw materials can be used, it was not possible to control the pore diameter according to needs, and the pore distribution could not be sharpened.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、同一
の原料から、各反応目的に応じて細孔径及びその分布を
自由に制御することのできる形状選択性を有する炭素材
系触媒とその製造方法及び該触媒を用いてメタノールを
COとH2 のみに選択的に分解する方法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a carbon material-based catalyst having a shape selectivity capable of freely controlling the pore diameter and its distribution from the same raw material according to the purpose of each reaction, and a catalyst for the same. An object of the present invention is to provide a production method and a method for selectively decomposing methanol into only CO and H 2 using the catalyst.

【0012】[0012]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意研究を行った。その結果、石炭、ピ
ッチ等の改質剤及びフェノール樹脂を混合し、そのピッ
チ配合量、フェノール樹脂量、炭化条件を調整して炭化
することにより、精密に細孔系が制御された形状選択性
を有する炭素材系触媒が得られることを見い出し、本発
明を完成した。
Means for Solving the Problems The present inventors have intensively studied to solve the above-mentioned problems. As a result, by mixing a modifier such as coal and pitch and a phenolic resin, and adjusting the blending amount of the pitch, the amount of the phenolic resin, and the carbonization conditions, carbonization is performed, and the shape selectivity in which the pore system is precisely controlled is controlled. It has been found that a carbon material-based catalyst having the following formula is obtained, and the present invention has been completed.

【0013】すなわち本発明は(1) 石炭、フェノー
ル樹脂を原料として混合炭化した細孔径0.3〜0.6
nmで、平均細孔径に対し0.04±0.02nmの幅の細
孔径の占める割合が70%以上の細孔容積分布を有し、
細孔容積が0.1〜0.2cc/gである炭素系形状選択性
触媒であり、(2) 石炭、フェノール樹脂、およびピ
ッチ、アントラセン、ジヒドロアントラセン、アセナフ
チレンおよびポリビニルアルコールの5種の改質材群よ
り選んだ少なくとも1種の改質剤を原料として混合炭化
した細孔径0.3〜0.6nmで、平均細孔径に対し0.
04±0.02nmの幅の細孔径の占める割合が70%以
上の細孔容積分布を有し、細孔容積が0.1〜0.2cc
/gである炭素系形状選択性触媒であり、(3) 原料に
予め金属微粉又は金属塩化合物を混合して触媒を製造す
る混合法又は製造した触媒に金属塩化合物を含浸させる
含浸法のいずれかにより金属を担持させてなる前項1ま
たは2記載の炭素系形状選択性触媒であり、(4) 平
均粒子径10μm以下に微粉砕した石炭20〜70重量
部を、フェノール樹脂20〜40重量部で固化し、該固
化物を10×30メッシュに粉砕した後、炭化すること
を特徴とする前項1記載の炭素系形状選択性触媒の製造
方法であり、(5) 平均粒子径10μm以下に微粉砕
した石炭20〜70重量部に、軟化点60〜100℃、
トルエン不溶解分5〜35重量%、キノリン不溶解分0
〜10重量%を示すピッチ又は他の改質剤0〜40重量
部を混合し、これをフェノール樹脂20〜40重量部で
固化し、更に該固化物を10×30メッシュに粉砕した
後、炭化することを特徴とする前項2記載の炭素系形状
選択性触媒の製造方法であり、(6) 不活性雰囲気下
で昇温速度を2〜20℃/min とし、600〜1,00
0℃の温度範囲で炭化し、昇温速度、炭化温度を該範囲
内で制御することにより、平均細孔径および細孔径分布
を制御することを特徴とする前項4又は5記載の炭素系
形状選択性触媒の製造方法であり、(7) 改質剤添加
量を0〜40重量部の範囲内で、フェノール樹脂添加量
を20〜40重量部の範囲内で調整することにより、平
均細孔径および細孔径分布を制御することを特徴とする
前項5記載の炭素系形状選択性触媒の製造方法であり、
(8) 細孔径が0.4〜0.45nmであり、0.5nm
以上の細孔をほとんど含有しない請求項3又は6記載の
炭素系形状選択性触媒を用いたことを特徴とするCO,
2 のみを選択的に得るメタノール分解方法である。
That is, the present invention provides (1) a pore diameter of 0.3 to 0.6 obtained by mixing and carbonizing coal and phenol resin as raw materials.
nm, the ratio of the pore diameter having a width of 0.04 ± 0.02 nm to the average pore diameter has a pore volume distribution of 70% or more,
A carbon-based shape-selective catalyst having a pore volume of 0.1 to 0.2 cc / g. (2) Coal, phenolic resin, and five kinds of modification of pitch, anthracene, dihydroanthracene, acenaphthylene, and polyvinyl alcohol Pore diameter of 0.3 to 0.6 nm obtained by mixing and carbonizing at least one type of modifier selected from the group of materials as a raw material, and 0.3 to 0.6 nm with respect to the average pore diameter.
The ratio of the pore diameter having a width of 04 ± 0.02 nm is 70% or more, and the pore volume is 0.1 to 0.2 cc.
/ g is a carbon-based shape-selective catalyst, and (3) either a mixing method in which a raw material is preliminarily mixed with metal fine powder or a metal salt compound to produce a catalyst, or an impregnation method in which the produced catalyst is impregnated with a metal salt compound. The carbon-based shape-selective catalyst according to the above 1 or 2, wherein the metal is supported by the method described above. (4) 20 to 70 parts by weight of finely pulverized coal having an average particle diameter of 10 μm or less; (5) The method for producing a carbon-based shape-selective catalyst according to the above (1), wherein the solidified product is pulverized to 10 × 30 mesh and carbonized. 20-70 parts by weight of pulverized coal, softening point 60-100 ℃,
5-35% by weight of toluene-insoluble matter, 0 of quinoline-insoluble matter
10 to 10% by weight of a pitch or other modifier is mixed with 0 to 40 parts by weight, and the mixture is solidified with 20 to 40 parts by weight of a phenol resin. 3. The method for producing a carbon-based shape-selective catalyst according to the above item 2, wherein (6) the heating rate is 2 to 20 ° C./min in an inert atmosphere,
The carbonaceous shape selection according to the above item 4 or 5, wherein carbonization is carried out in a temperature range of 0 ° C., and the average pore diameter and the pore diameter distribution are controlled by controlling the temperature rising rate and the carbonization temperature within the range. (7) adjusting the addition amount of the modifier within the range of 0 to 40 parts by weight and adjusting the addition amount of the phenol resin within the range of 20 to 40 parts by weight to obtain the average pore diameter and A method for producing a carbon-based shape-selective catalyst according to the above item 5, wherein the pore size distribution is controlled,
(8) The pore diameter is 0.4 to 0.45 nm, and 0.5 nm
CO, characterized by using the carbon-based shape-selective catalyst according to claim 3 or 6, which hardly contains the above pores.
This is a methanol decomposition method for selectively obtaining only H 2 .

【0014】原料の混合比は、石炭20〜70重量部に
対して、ピッチ又は他の改質剤0〜40重量部、フェノ
ール樹脂20〜40重量部の範囲で調整して、各原料の
混合比を変えることにより細孔径およびその分布を制御
することができる。ピッチ又は他の改質剤の添加割合を
変えることによって、細孔容積、分布を変化させること
なく、細孔径を正確に制御することができる。即ち、ピ
ッチ等の添加率を大きくすることによって、細孔径を小
さくすることができる。フェノール樹脂は難黒鉛化性炭
素であるため、該樹脂の添加により熱収縮が妨げられる
とともに、細孔径、細孔容積は増大する。本発明におい
て、平均細孔径に対し、0.04±0.02nmの幅の
細孔径の占める割合が70%以上の細孔容積分布を有す
るとは、例えば平均細孔径0.4nmの場合、0.34
nm〜0.46nm又は0.38nm〜0.42nmの
範囲の細孔径容積の占める割合が全細孔容積の70%以
上を占めることを意味する。
The mixing ratio of the raw materials is adjusted in the range of 0 to 40 parts by weight of the pitch or other modifier and 20 to 40 parts by weight of the phenol resin with respect to 20 to 70 parts by weight of coal. By changing the ratio, the pore size and its distribution can be controlled. By changing the addition ratio of the pitch or other modifier, the pore diameter can be accurately controlled without changing the pore volume and distribution. That is, the pore diameter can be reduced by increasing the addition rate of the pitch and the like. Since the phenol resin is non-graphitizable carbon, the addition of the phenol resin prevents heat shrinkage and increases the pore diameter and pore volume. In the present invention, the ratio of the pore diameter having a width of 0.04 ± 0.02 nm to the average pore diameter having a pore volume distribution of 70% or more means that, for example, when the average pore diameter is 0.4 nm, 0% .34
It means that the ratio of the pore volume in the range of nm to 0.46 nm or 0.38 nm to 0.42 nm accounts for 70% or more of the total pore volume.

【0015】改質剤としては、通常コールタールピッチ
が好適に用いられるが、軟化点60〜100℃、トルエ
ン不溶解分5〜35重量%、キノリン不溶解分0〜10
重量%、好ましくは軟化点70〜90℃、トルエン不溶
解分10〜15重量%、キノリン不溶解分1〜3重量%
を示す中ピッチが好適である。軟化点が60℃未満のピ
ッチでは炭化収率が低く、炭化時に発泡する等の問題が
あり、また軟化点100℃超のピッチでは石炭、フェノ
ール樹脂との混合の際の温度条件が上昇する等の問題が
ある。中ピッチを改質剤として使用した場合のフェノー
ル樹脂による固化は、通常フェノールとホルムアルデヒ
ドを1:1に混合し、触媒として少量のアンモニア水を
加えて95℃で5時間放置する。
As the modifier, coal tar pitch is usually preferably used, but has a softening point of 60 to 100 ° C., a toluene insoluble content of 5 to 35% by weight, and a quinoline insoluble content of 0 to 10%.
% By weight, preferably 70-90 ° C. softening point, 10-15% by weight of toluene-insoluble matter, 1-3% by weight of quinoline-insoluble matter
Is preferable. Pitches having a softening point of less than 60 ° C. have problems such as low carbonization yield and foaming during carbonization, and pitches having a softening point of more than 100 ° C. increase the temperature conditions when mixing with coal and phenolic resins. There is a problem. When the medium pitch is used as a modifier, solidification with a phenol resin is usually performed by mixing phenol and formaldehyde at a ratio of 1: 1 and adding a small amount of aqueous ammonia as a catalyst and leaving the mixture at 95 ° C. for 5 hours.

【0016】フェノール樹脂を加えて固化させた後、該
固化物を10×30メッシュに粉砕した後、炭化する
が、炭化方法としては不活性雰囲気下において、昇温速
度、炭化温度が正確に設定できる装置であれば何れの装
置でも使用できるが、粉砕粒子の均一反応が可能な流動
層型反応器等を用いることが望ましい。本発明におい
て、10×30メッシュ等の表現は、10メッシュの篩
は通過し、30メッシュの篩上に残るものを意味するも
のとする。
After the phenol resin is added and solidified, the solidified product is pulverized into a 10 × 30 mesh and carbonized. The carbonization method is such that the temperature rise rate and the carbonization temperature are set accurately under an inert atmosphere. Any device can be used as long as it can be used, but it is desirable to use a fluidized bed reactor or the like capable of uniformly reacting the pulverized particles. In the present invention, an expression such as 10 × 30 mesh means that a 10-mesh sieve passes and remains on a 30-mesh sieve.

【0017】昇温速度は2〜20℃/min の範囲で調整
するが、好ましくは10℃/min 前後が良い、20℃/
min を超えると発泡したりして、細孔径の制御は困難で
あり、2℃/min 未満では炭化に時間がかかりすぎる。
炭化温度は600〜1,000℃の範囲で調整するが、
600℃未満であると細孔は充分発達せず、また100
0℃を超えると細孔径、細孔面積ともに減少し、目的と
する触媒を得ることが出来ない。600〜1,000℃
の範囲では、炭化温度の上昇に伴い細孔径は小さくな
り、細孔面積は変化しない。
The heating rate is adjusted within the range of 2 to 20 ° C./min, preferably around 10 ° C./min.
If it exceeds min, foaming or the like, and it is difficult to control the pore diameter, and if it is less than 2 ° C./min, it takes too much time for carbonization.
The carbonization temperature is adjusted in the range of 600 to 1,000 ° C,
If the temperature is lower than 600 ° C., the pores do not develop sufficiently,
If the temperature exceeds 0 ° C., both the pore diameter and the pore area decrease, and the desired catalyst cannot be obtained. 600-1,000 ° C
In the range, the pore diameter decreases with an increase in the carbonization temperature, and the pore area does not change.

【0018】所定の炭化温度へ到達してからの保持時間
も細孔容積分布に影響を与え、高温の場合は、保持時間
が延びるにつれて、細孔容積および細孔径ともに縮小す
る。
The retention time after reaching a predetermined carbonization temperature also affects the pore volume distribution. At high temperatures, both the pore volume and pore diameter decrease as the retention time increases.

【0019】触媒担体として用いる場合には、Ni、C
o、Mo、Fe、Cu等の金属微粉又は金属硝酸塩等の
水溶性金属塩化合物の金属触媒を原料である石炭、ピッ
チ等と最初から混合して炭化する混合法でもよく、また
得られた炭化物に金属塩化合物を含浸する含浸法でも可
能である。Niを担持させる場合、混合法では金属硝酸
塩をフェノール樹脂の架橋剤であるホルムアルデヒドに
溶解して混合すればよく、含浸法では真空脱気した炭化
物を所定濃度の金属硝酸塩水溶液中に浸漬すればよい。
When used as a catalyst carrier, Ni, C
o, Mo, Fe, a mixing method of mixing a metal catalyst of a water-soluble metal salt compound such as metal fine powder such as Fe, Cu or a metal nitrate with the raw material coal, pitch, etc. from the beginning, and then carbonizing the obtained metal. It is also possible to use an impregnation method in which a metal salt compound is impregnated. In the case of supporting Ni, in the mixing method, the metal nitrate may be dissolved and mixed in formaldehyde, which is a crosslinking agent for the phenolic resin, and in the impregnation method, the vacuum degassed carbide may be immersed in an aqueous metal nitrate solution having a predetermined concentration. .

【0020】原料の混合比、炭化温度条件を組み合わせ
ることにより、得られる炭素質触媒の細孔径を分布のシ
ャープさを保ったまま微妙に制御することが可能であ
る。活性炭の賦活時間、温度、水蒸気分圧などにより賦
活度を制御して、細孔径を大きくできることは従来から
知られているところであるが、この場合には分布のシャ
ープさを保つことは困難であり、細孔分布がブロードに
なってしまう。この点で本発明は細孔径の分布のシャー
プさを保ったまま細孔径を小さくしたり、大きくしたり
することが可能な点で優れていることは明白である。
By combining the mixing ratio of the raw materials and the conditions of the carbonization temperature, it is possible to finely control the pore diameter of the obtained carbonaceous catalyst while keeping the distribution sharp. It is conventionally known that the activation time can be controlled by the activation time of the activated carbon, the temperature, the partial pressure of steam, etc., and that the pore diameter can be increased.However, in this case, it is difficult to keep the distribution sharp. In addition, the pore distribution becomes broad. From this point, it is apparent that the present invention is excellent in that the pore diameter can be reduced or increased while maintaining the sharpness of the distribution of the pore diameter.

【0021】細孔径を0.4〜0.45nmに精密に制御
し、Niを担持した本発明の炭素質触媒を用いたメタノ
ールの分解反応への適用例においては、生成物はCO、
2のみであり、CH4 ,H2 O,CO2 は反応中間体
の分子の大きさが細孔径より大であるため生成しない。
これは化学反応の制御に形状選択性を有する触媒が極め
て有効に作用した画期的な例である。
In an example of application to the decomposition reaction of methanol using the carbonaceous catalyst of the present invention in which the pore diameter is precisely controlled to 0.4 to 0.45 nm, the product is CO,
There is only H 2 , and CH 4 , H 2 O, and CO 2 are not generated because the molecular size of the reaction intermediate is larger than the pore diameter.
This is an epoch-making example in which a catalyst having shape selectivity has been extremely effective in controlling a chemical reaction.

【0022】[0022]

【実施例】以下に本発明を実施例によって、より具体的
に説明するが、本発明は、この実施例に限定されるもの
ではない。 (実施例1) 触媒の調製 石炭、(バイドリー炭、BCと略称する)を10μm以
下に微粉砕し、フェノール樹脂(PFと略称する)で固
化する。改質剤を使用する場合には、石炭(BC)を1
0μm以下に微粉砕し、これにコールタールピッチ(P
と略称する)又はポリビニルアルコール(PVAと略称
する)と混合した後、フェノール樹脂(PF)で固化す
る。この固化物を粒径約1mmに粉砕して、流動層型反応
器で窒素雰囲気中で昇温速度10℃/min.で炭化温度ま
で昇温して、15分間保持した。コールタールピッチと
しては、軟化点80℃、トルエン不溶解分13.3重量
%、キノリン不溶解分2.5重量%のものを使用した。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. (Example 1) Preparation of catalyst Coal, (abbreviated as Baidley coal, BC) is finely pulverized to 10 µm or less and solidified with a phenol resin (abbreviated as PF). If a modifier is used, one (1) coal (BC)
Finely pulverized to a size of 0 μm or less, and coal tar pitch (P
) Or polyvinyl alcohol (abbreviated as PVA) and then solidified with a phenolic resin (PF). The solidified product was pulverized to a particle size of about 1 mm, heated to a carbonization temperature in a nitrogen atmosphere at a rate of 10 ° C./min in a fluidized bed reactor, and held for 15 minutes. The coal tar pitch used had a softening point of 80 ° C., a toluene insoluble content of 13.3% by weight, and a quinoline insoluble content of 2.5% by weight.

【0023】金属触媒の担持は金属硝酸塩を、炭素質触
媒の原料の石炭又はピッチに混合して担持させる混合法
と、製造した炭素質触媒に金属硝酸塩水溶液を含浸させ
る含浸法の2つの方法で行った。なお本発明の方法で製
造した炭素質触媒を水蒸気中で加熱して賦活後、金属を
含浸担持させたものを賦活法とする。炭化過程の重量減
少は、熱天秤を用いて、昇温速度10℃/min.で100
〜1,000℃の温度範囲で測定した。各触媒の細孔容
積分布と平均細孔径はMolecular Probe 法及び窒素吸着
法によって決定した。ガスの拡散係数は、定容系の吸着
装置を用いて、25℃での圧力の経時変化を測定し、こ
れをDrydenらの方法によって解析して求めた。結果を図
1〜5に示す。
The metal catalyst is supported by two methods, namely, a mixing method in which the metal nitrate is mixed and supported on coal or pitch as a raw material of the carbonaceous catalyst, and an impregnation method in which the produced carbonaceous catalyst is impregnated with an aqueous metal nitrate solution. went. In addition, the carbonaceous catalyst produced by the method of the present invention is heated in steam to activate it, and then the metal catalyst impregnated and supported is referred to as an activation method. The weight loss during the carbonization process was measured using a thermobalance at a heating rate of 10 ° C / min.
It was measured in a temperature range of 1,1,000 ° C. The pore volume distribution and average pore diameter of each catalyst were determined by the Molecular Probe method and the nitrogen adsorption method. The gas diffusion coefficient was determined by measuring the time-dependent change in pressure at 25 ° C. using a constant-volume adsorption apparatus, and analyzing this by the method of Dryden et al. The results are shown in FIGS.

【0024】図1にBC−PFを600〜1000℃で
炭化して得られた触媒の細孔分布を示し、図4にBC−
PF−PVAを同じ温度範囲で炭化して得られた触媒の
細孔分布を示した。PVAを添加することにより、細孔
分布が明らかに変化することがわかる。なお、図中、
5.0×10−1nm等の細孔容積は、分子径の異なる
4種のガスの25℃での吸着等温線にDubinin-Astakhov
式を適用して、各々のガスの極限吸着容積を求め、この
極限吸着容積が、その分子径以上の容積に対応するとし
て求めた積算値である。図5においても同様とする。
FIG. 1 shows a pore distribution of a catalyst obtained by carbonizing BC-PF at 600 to 1000 ° C., and FIG.
The pore distribution of the catalyst obtained by carbonizing PF-PVA in the same temperature range was shown. It can be seen that the pore distribution is clearly changed by adding PVA. In the figure,
The pore volume of 5.0 × 10 -1 nm and the like is based on Dubinin-Astakhov
By applying the equation, the ultimate adsorption volume of each gas is obtained, and this ultimate adsorption volume is an integrated value obtained assuming that the ultimate adsorption volume corresponds to a volume larger than the molecular diameter. The same applies to FIG.

【0025】図2により、炭化温度と原料(改質剤コー
ルタールピッチ)の混合比(ピッチ重量%)を変化させ
ることにより、細孔径を制御できることが判る。
FIG. 2 shows that the pore diameter can be controlled by changing the carbonization temperature and the mixture ratio (pitch weight%) of the raw material (modifier coal tar pitch).

【0026】図3は、BC−PF−PVA系の触媒の炭
化過程の重量減少曲線および重量減少速度を示した。図
の実線は実験値、破線はBC、PF、PVAがそれぞれ
単独で炭化すると仮定して計算した値である。計算値と
実験値は炭化初期(200〜500℃)で大きく異なる
が、この傾向はフェノール樹脂にアントラセン、ジヒド
ロアントラセン、アセナフチレン、コールタールピッチ
等の改質剤有機物を添加した場合にも観察された。これ
は石炭、フェノール樹脂と改質剤有機物との相互作用に
よるもので、この結果として、改質試料の炭化物の細孔
構造は、BC、PFの単独炭化物の細孔構造とは異なる
と予想できる。
FIG. 3 shows a weight loss curve and a weight reduction rate in the carbonization process of the BC-PF-PVA-based catalyst. The solid line in the figure is an experimental value, and the broken line is a value calculated assuming that BC, PF, and PVA are carbonized independently. The calculated value and the experimental value are largely different in the initial stage of carbonization (200-500 ° C.), but this tendency was also observed when phenol resin was added with an organic modifier such as anthracene, dihydroanthracene, acenaphthylene, or coal tar pitch. . This is due to the interaction between coal, phenolic resin and organic modifier, and as a result, the pore structure of the carbide of the modified sample can be expected to be different from that of the single carbide of BC and PF. .

【0027】図5より、炭素質触媒への金属担持は混合
法、含浸法のいずれもシャープな細孔分布を有してお
り、0.5nm以上のミクロ孔が殆んど存在しないのに対
し、賦活後含浸担持したものはブロードな細孔分布とな
り、0.5nm以上のミクロ孔がかなり存在する。図5に
おいては、金属としてNiを使用した場合を示したが、
その他の金属触媒としてCo、Fe、Cuを担持させた
場合の触媒物性を表1、表2に示す。
FIG. 5 shows that the metal loading on the carbonaceous catalyst has a sharp pore distribution in both the mixing method and the impregnation method, and there is almost no micropores of 0.5 nm or more. On the other hand, the one impregnated and supported after activation has a broad pore distribution, and there are considerable micropores of 0.5 nm or more. FIG. 5 shows a case where Ni is used as the metal,
Tables 1 and 2 show the physical properties of the catalyst when Co, Fe, and Cu are supported as other metal catalysts.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】(実施例2) メタノールの分解反応 石炭(BC)を10μm以下に微粉砕し、コールタール
ピッチと混合した後、フェノール樹脂で固化した。これ
を粒径約1mmに粉砕して、流動層型反応器で昇温速度1
0℃/min.で炭化して分子ふるい炭素(Molecular Siev
ing Carbon, MSC )触媒を製造した。担持金属にはメタ
ン化反応に高活性なニッケルを選び、硝酸ニッケルをM
SCの原料(石炭、ピッチ)に混合して担持させる混合
法と製造したMSCに硝酸ニッケル水溶液を含浸させる
含浸法の2つの方法で担持させた。この炭素質触媒を用
いて、次の反応条件により、メタノールの分解反応を行
った。
Example 2 Methanol Decomposition Reaction Coal (BC) was pulverized to 10 μm or less, mixed with coal tar pitch, and then solidified with a phenol resin. This is pulverized to a particle size of about 1 mm, and heated at a rate of 1 in a fluidized bed reactor.
Carbonized at 0 ° C / min. And molecular sieve carbon (Molecular Siev
ing Carbon, MSC) catalyst. For the supported metal, select nickel that is highly active in the methanation reaction,
It was supported by two methods, namely, a mixing method in which the raw material of SC (coal, pitch) was mixed and supported, and an impregnation method in which the manufactured MSC was impregnated with an aqueous nickel nitrate solution. Using this carbonaceous catalyst, methanol was decomposed under the following reaction conditions.

【0031】結果を図6,7に示す。The results are shown in FIGS.

【表3】 但しWは触媒重量(g-cat ),Fは装入量(mol/h )を
示す。
[Table 3] Here, W indicates the weight of the catalyst (g-cat), and F indicates the amount charged (mol / h).

【0032】 メタノールの分解反応は以下の反応に従って進行する。 反応進行度 (1) CH3 OH → CO+2H2 ; ξ1 (2) CO+3H2 → CH4 +H2 O ; ξ2 (3) CO+H2 → (CH4 +CO2 )/2 ; ξ3 (1) は分子径の大なメタノールが分子径の小さな水素及
び一酸化炭素に分解する反応であり、(2)(3)は分子径の
小さな水素及び一酸化炭素から分子径の大きなメタンを
生成するが反応中間体の分子径はメタノールやメタンよ
りはるかに大きいと考えられる。
The decomposition reaction of methanol proceeds according to the following reaction. Reaction progress (1) CH 3 OH → CO + 2H 2 ; ξ 1 (2) CO + 3H 2 → CH 4 + H 2 O; ξ 2 (3) CO + H 2 → (CH 4 + CO 2 ) / 2; ξ 3 (1) Methanol with a large molecular diameter decomposes into hydrogen and carbon monoxide with small molecular diameters. (2) and (3) produce methane with large molecular diameter from hydrogen and carbon monoxide with small molecular diameters. The molecular size of the intermediate is likely to be much larger than that of methanol or methane.

【表4】 [Table 4]

【0033】図6には反応特性と平均細孔径の関係を示
した。FAOは反応入口でのメタノール流量でξ1 はメタ
ノールの転化率に相当する。図より平均細孔径が0.4nm
を越えたところより反応が急激に進み細孔径に応じてメ
タノールの転化率も上昇するがξ2 ,ξ3 の反応は殆ど
進行しない。図7には反応特性とメタノールの拡散係数
の関係を示した。拡散係数が大な程メタノールの転化率
は上昇するが、メタンへの転化率は活性炭、賦活品にく
らべ本発明触媒では殆ど進行しておらず形状選択性を示
すことが明らかである。
FIG. 6 shows the relationship between the reaction characteristics and the average pore diameter. F AO is 1 xi] methanol flow rate of the reaction inlet is equivalent to methanol conversion. From the figure, the average pore diameter is 0.4 nm
After that, the reaction proceeds rapidly, and the conversion of methanol increases according to the pore diameter, but the reactions of ξ 2 and ξ 3 hardly proceed. FIG. 7 shows the relationship between the reaction characteristics and the diffusion coefficient of methanol. It is clear that the conversion rate of methanol increases as the diffusion coefficient increases, but the conversion rate to methane hardly progresses with the catalyst of the present invention as compared with activated carbon and activated products, and it shows shape selectivity.

【0034】[0034]

【発明の効果】本発明においては、石炭とフェノール樹
脂、石炭とフェノール樹脂とピッチ等の改質剤を原料と
し、原料の混合比および炭化条件を調整することにより
0.3〜0.6nmの範囲で、シャープな細孔径分布を有
するほぼ均一な細孔を有する炭素系の触媒又は触媒担体
を得ることができる。この触媒は、炭素系触媒の耐熱
性、耐薬品性と相まってその形状選択性を活用して、各
種の化学反応の制御に使用できるものであり、今後の化
学工業において大きな展開が期待される。
In the present invention, coal and phenolic resin, coal and phenolic resin and pitch and other modifiers are used as raw materials, and the mixing ratio of the raw materials and the carbonization conditions are adjusted to obtain a 0.3 to 0.6 nm. Within this range, it is possible to obtain a carbon-based catalyst or catalyst carrier having substantially uniform pores having a sharp pore diameter distribution. This catalyst can be used for controlling various chemical reactions by utilizing its shape selectivity in combination with the heat resistance and chemical resistance of a carbon-based catalyst, and is expected to be greatly expanded in the chemical industry in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石炭‐フェノール樹脂、炭素系触媒の細孔容積
分布を示す。
FIG. 1 shows a pore volume distribution of a coal-phenol resin and a carbon-based catalyst.

【図2】平均細孔径と炭化温度及び原料混合比の関係を
示す。
FIG. 2 shows the relationship between the average pore diameter, the carbonization temperature, and the raw material mixing ratio.

【図3】石炭‐フェノール樹脂‐ポリビニルアルコー
ル、炭素系触媒の炭化時の重量減少曲線と重量減少速度
を示す。
FIG. 3 shows a weight loss curve and a weight reduction rate during carbonization of coal-phenol resin-polyvinyl alcohol and a carbon-based catalyst.

【図4】石炭‐フェノール樹脂‐ポリビニルアルコー
ル、炭素系触媒の細孔容積分布を示す。
FIG. 4 shows the pore volume distribution of coal-phenol resin-polyvinyl alcohol, and carbon-based catalyst.

【図5】金属担持法、賦活法による細孔容積分布の差違
を示す。
FIG. 5 shows the difference in pore volume distribution between the metal loading method and the activation method.

【図6】メタノール分解に伴う各反応の進行度と触媒の
平均細孔径の関係を示す。
FIG. 6 shows the relationship between the degree of progress of each reaction accompanying the decomposition of methanol and the average pore size of the catalyst.

【図7】メタノール分解に伴う各反応の進行度とメタノ
ールの細孔内拡散係数との関係を示す。
FIG. 7 shows the relationship between the degree of progress of each reaction accompanying methanol decomposition and the diffusion coefficient of methanol in the pores.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 3/22 C01B 3/22 A 31/02 101 31/02 101Z 31/08 31/08 A 37/00 37/00 (72)発明者 前 一廣 京都府宇治市五ケ庄官有地(番地なし) 京大職員宿舎626 (72)発明者 林 順一 兵庫県神戸市須磨区天神町1−3−19 (72)発明者 川口 竜生 岐阜県本巣郡穂積町生津外宮前1−119 (72)発明者 三輪 成 福岡県北九州市小倉北区中井4丁目4− 6 審査官 安齋 美佐子 (56)参考文献 特開 昭59−230638(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/18 B01J 29/03 B01J 35/10 301 C01B 31/02 101 C01B 31/08 C01B 37/00 CA(STN)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C01B 3/22 C01B 3/22 A 31/02 101 31/02 101Z 31/08 31/08 A 37/00 37/00 (72 ) Inventor Kazuhiro Mae, Goji Shokan, Uji-shi, Kyoto (No address) Kyoto University staff dormitory 626 (72) Inventor Junichi Hayashi 1-3-19 Tenjincho, Suma-ku, Kobe-shi, Hyogo (72) Inventor Tatsuo Kawaguchi 1-172 Ikutsu Gekyumae, Hozumi-cho, Motosu-gun, Gifu Prefecture (72) Inventor: Miwa Shigeru 4-4-6 Nakai, Kokurakita-ku, Kitakyushu-shi, Fukuoka Examiner Misako Anzai (56) References JP-A-59-230638 (JP A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/18 B01J 29/03 B01J 35/10 301 C01B 31/02 101 C01B 31/08 C01B 37/00 CA (STN)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石炭、フェノール樹脂を原料として混合
炭化した細孔径0.3〜0.6nmで、平均細孔径に対し
0.04±0.02nmの幅の細孔径の占める割合が70
%以上の細孔容積分布を有し、細孔容積が0.1〜0.
2cc/gである炭素系形状選択性触媒。
1. A mixture of carbon and phenolic resin as raw materials, which has a pore diameter of 0.3 to 0.6 nm, wherein a ratio of a pore diameter having a width of 0.04 ± 0.02 nm to an average pore diameter is 70%.
% Or more, and the pore volume is 0.1 to 0.1%.
2 cc / g carbon-based shape-selective catalyst.
【請求項2】 石炭、フェノール樹脂、およびピッチ、
アントラセン、ジヒドロアントラセン、アセナフチレン
およびポリビニルアルコールの5種の改質材群より選ん
だ少なくとも1種の改質剤を原料として混合炭化した細
孔径0.3〜0.6nmで、平均細孔径に対し0.04±
0.02nmの幅の細孔径の占める割合が70%以上の細
孔容積分布を有し、細孔容積が0.1〜0.2cc/gであ
る炭素系形状選択性触媒。
2. Coal, phenolic resin and pitch,
Pore diameter of 0.3 to 0.6 nm obtained by mixing and carbonizing at least one modifier selected from five modifier groups of anthracene, dihydroanthracene, acenaphthylene, and polyvinyl alcohol as a raw material. .04 ±
A carbon-based shape-selective catalyst having a pore volume distribution in which a ratio of a pore diameter having a width of 0.02 nm occupies 70% or more and a pore volume of 0.1 to 0.2 cc / g.
【請求項3】 原料に予め金属微粉又は金属塩化合物を
混合して触媒を製造する混合法又は製造した触媒に金属
塩化合物を含浸させる含浸法のいずれかにより金属を担
持させてなる請求項1または2記載の炭素系形状選択性
触媒。
3. The method according to claim 1, wherein a metal is supported by a mixing method of preparing a catalyst by previously mixing a metal fine powder or a metal salt compound with the raw material, or an impregnation method of impregnating the prepared catalyst with a metal salt compound. Or a carbon-based shape-selective catalyst according to 2.
【請求項4】 平均粒子径10μm以下に微粉砕した石
炭20〜70重量部を、フェノール樹脂20〜40重量
部で固化し、該固化物を10×30メッシュに粉砕した
後、炭化することを特徴とする請求項1記載の炭素系形
状選択性触媒の製造方法。
4. A method of solidifying 20 to 70 parts by weight of coal finely pulverized to an average particle diameter of 10 μm or less with 20 to 40 parts by weight of a phenol resin, pulverizing the solidified product to 10 × 30 mesh, and then carbonizing. The method for producing a carbon-based shape-selective catalyst according to claim 1.
【請求項5】 平均粒子径10μm以下に微粉砕した石
炭20〜70重量部に、軟化点60〜100℃、トルエ
ン不溶解分5〜35重量%、キノリン不溶解分0〜10
重量%を示すピッチ又は他の改質剤0〜40重量部を混
合し、これをフェノール樹脂20〜40重量部で固化
し、更に該固化物を10×30メッシュに粉砕した後、
炭化することを特徴とする請求項2記載の炭素系形状選
択性触媒の製造方法。
5. 20 to 70 parts by weight of coal pulverized to an average particle diameter of 10 μm or less, a softening point of 60 to 100 ° C., a toluene insoluble content of 5 to 35% by weight, and a quinoline insoluble content of 0 to 10%.
0 to 40 parts by weight of a pitch or other modifying agent indicating a weight%, and solidified with 20 to 40 parts by weight of a phenol resin. The solidified product was further pulverized to 10 × 30 mesh,
The method for producing a carbon-based shape-selective catalyst according to claim 2, wherein carbonization is performed.
【請求項6】 不活性雰囲気下で昇温速度を2〜20℃
/min とし、600〜1,000℃の温度範囲で炭化
し、昇温速度、炭化温度を該範囲内で制御することによ
り、平均細孔径および細孔径分布を制御することを特徴
とする請求項4又は5記載の炭素系形状選択性触媒の製
造方法。
6. A heating rate of 2 to 20 ° C. in an inert atmosphere.
And carbonization in a temperature range of 600 to 1,000 ° C., and controlling the temperature increase rate and the carbonization temperature within the range to control the average pore diameter and the pore diameter distribution. 6. The method for producing a carbon-based shape-selective catalyst according to 4 or 5.
【請求項7】 改質剤添加量を0〜40重量部の範囲内
で、フェノール樹脂添加量を20〜40重量部の範囲内
で調整することにより、平均細孔径および細孔径分布を
制御することを特徴とする請求項5記載の炭素系形状選
択性触媒の製造方法。
7. The average pore size and pore size distribution are controlled by adjusting the amount of modifier added within the range of 0 to 40 parts by weight and the amount of phenol resin within the range of 20 to 40 parts by weight. The method for producing a carbon-based shape-selective catalyst according to claim 5, characterized in that:
【請求項8】 細孔径が0.4〜0.45nmであり、
0.5nm以上の細孔をほとんど含有しない請求項3又は
6記載の炭素系形状選択性触媒を用いたことを特徴とす
るCO,H2 のみを選択的に得るメタノール分解方法。
8. A fine particle having a pore diameter of 0.4 to 0.45 nm,
Claim 3 or 6 CO, characterized in that using a carbon-based shape-selective catalyst according, H 2 only selectively obtain methanolysis process hardly contains pores of more than 0.5 nm.
JP03105071A 1991-04-11 1991-04-11 Carbon-based shape-selective catalyst and method for producing the same Expired - Fee Related JP3099976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03105071A JP3099976B2 (en) 1991-04-11 1991-04-11 Carbon-based shape-selective catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03105071A JP3099976B2 (en) 1991-04-11 1991-04-11 Carbon-based shape-selective catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05345130A JPH05345130A (en) 1993-12-27
JP3099976B2 true JP3099976B2 (en) 2000-10-16

Family

ID=14397719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03105071A Expired - Fee Related JP3099976B2 (en) 1991-04-11 1991-04-11 Carbon-based shape-selective catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3099976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668474U (en) * 1993-03-10 1994-09-27 前川 建士 Fish scaler

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179583B2 (en) * 2002-02-08 2008-11-12 ケッチェン・ブラック・インターナショナル株式会社 Battery or electric double layer capacitor using carbon black as electrode composition
JP4955952B2 (en) * 2004-07-30 2012-06-20 東洋炭素株式会社 Production method of activated carbon
JP5767441B2 (en) * 2010-02-25 2015-08-19 日清紡ホールディングス株式会社 Hazardous substance decomposition material
EP2990104B1 (en) * 2013-04-25 2019-10-16 Nissan Motor Co., Ltd Catalyst, method for producing same, and electrode catalyst layer using said catalyst
WO2014175098A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
CN111302304B (en) * 2018-12-11 2021-06-15 中国科学院大连化学物理研究所 Method for preparing hydrogen by dehydrogenating nitrogen heterocyclic compound promoted by alkali
JP7408614B2 (en) * 2021-12-01 2024-01-05 日清紡ホールディングス株式会社 Hydrogen production catalyst and hydrogen production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668474U (en) * 1993-03-10 1994-09-27 前川 建士 Fish scaler

Also Published As

Publication number Publication date
JPH05345130A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
US20220127148A1 (en) Preparation of cross-linked aerogels and derivatives thereof
JP4033833B2 (en) Method for selectively producing ordered carbon nanotubes in a fluidized bed
US4978649A (en) Porous carbonaceous material
Herold et al. Nanoscale Hybrid Amorphous/Graphitic Carbon as Key Towards Next‐Generation Carbon‐Based Oxidative Dehydrogenation Catalysts
US20090041653A1 (en) Method for the preparation of porous graphite carbon with high crystallinity using sucrose as a carbon precursor
US20110312490A1 (en) Methods for preparing catalyst supports and supported catalysts from carbon nanotubes
JPH0624633B2 (en) Catalyst particles and method for producing the same
WO2003006372A1 (en) Imprinted mesoporous carbons and a method of manufacture thereof
KR20070059050A (en) Method for selectively producing ordered carbon nanotubes
JP3099976B2 (en) Carbon-based shape-selective catalyst and method for producing the same
US20210322960A1 (en) Supported transistion metal carbide catalyst and one-step synthesis method theefore
US8398894B2 (en) Catalyst for preparing carbon nanotubes by controlling its apparent density
Hu et al. Three‐Dimensionally Hierarchical Pt/C Nanocomposite with Ultra‐High Dispersion of Pt Nanoparticles as a Highly Efficient Catalyst for Chemoselective Cinnamaldehyde Hydrogenation
Qiao et al. Preparation of a pitch-based activated carbon with a high specific surface area
CN111330565A (en) Carbon-loaded nano bismuth composite material and preparation method and application thereof
JPH02289497A (en) Manufacturing process for silicon carbide whisker and nucleating agent
WO2014207096A1 (en) Method for manufacturing shaped beta-sic mesoporous products and products obtained by this method
CN112938936A (en) Metal atom loaded nano composite material and preparation method thereof
US4113651A (en) Manufacture of a metal impregnated carbon from peat material
JP3197020B2 (en) Method for producing molecular sieve carbon
Efimov et al. Novel polyacrylonitrile-based C/Co-Ru metal-carbon nanocomposites as effective catalysts for ethanol steam reforming
Li et al. Preparation and characterization of porous carbon beads and their application in dispersing small metal crystallites
JP2799187B2 (en) Porous graphitic carbon granules and support materials for chromatography using the same
Wang et al. Low-Temperature catalytic graphitization of phenolic resin using a co-ni bimetallic catalyst
JPS6359966B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees