JP3095182B2 - Method for producing I-III-VI compound semiconductor thin film - Google Patents

Method for producing I-III-VI compound semiconductor thin film

Info

Publication number
JP3095182B2
JP3095182B2 JP03124955A JP12495591A JP3095182B2 JP 3095182 B2 JP3095182 B2 JP 3095182B2 JP 03124955 A JP03124955 A JP 03124955A JP 12495591 A JP12495591 A JP 12495591A JP 3095182 B2 JP3095182 B2 JP 3095182B2
Authority
JP
Japan
Prior art keywords
film
gas
iii
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03124955A
Other languages
Japanese (ja)
Other versions
JPH04326525A (en
Inventor
英治 菊地
典也 石田
裕 光根
和人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP03124955A priority Critical patent/JP3095182B2/en
Publication of JPH04326525A publication Critical patent/JPH04326525A/en
Application granted granted Critical
Publication of JP3095182B2 publication Critical patent/JP3095182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池やフォトセン
サ等の光起電力素子および光学素子として利用されるI-
III-VI族系化合物半導体薄膜の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic element such as a solar cell or a photo sensor and an optical element used as an optical element.
The present invention relates to a method for producing a group III-VI compound semiconductor thin film.

【0002】[0002]

【従来の技術】従来、I-III-VI族系化合物半導体薄膜の
製造法として、以下に示すものが公知となっている。す
なわち、銅およびインジウム層を電気メッキにより順次
または同時に基板上に電着し、その後セレン含有ガス存
在下で熱処理してCuInSe2 を得る方法と、銅およ
びインジウムの層上に元素状セレンを蒸着し、その後不
活性ガス雰囲気中で熱処理する方法とが特開昭 61-2374
76に開示されている。また、成分元素の同時蒸着や金属
間化合物の蒸着といった真空蒸着による方法が特開昭 5
7-502196に開示されており、銅、インジウムおよびセレ
ンを順次蒸着し、セレン量を必要とされる化学量論比以
下にした状態で、セレンおよび硫黄含有ガス存在の下で
熱処理を行う方法が特開平1-231313に開示されている。
さらに、スプレーパイロシス法でセレン源および硫黄源
の溶液供給比率を逐次変更し、膜厚方向にSeとSの濃
度分布を形成させる方法が特開平 2-73674に開示されて
いる。
2. Description of the Related Art Hitherto, the following methods have been known as methods for producing I-III-VI group compound semiconductor thin films. That is, a method in which copper and indium layers are sequentially or simultaneously electrodeposited on a substrate by electroplating, and then heat-treated in the presence of a selenium-containing gas to obtain CuInSe 2 , and elemental selenium is deposited on the copper and indium layers. And then heat treatment in an inert gas atmosphere is disclosed in
76. Further, a method by vacuum deposition such as simultaneous deposition of component elements and deposition of an intermetallic compound is disclosed in
7-502196, a method of sequentially depositing copper, indium and selenium, and performing a heat treatment in the presence of a selenium and sulfur-containing gas in a state where the amount of selenium is equal to or less than a required stoichiometric ratio. It is disclosed in JP-A-1-231313.
Further, Japanese Patent Application Laid-Open No. 2-73674 discloses a method in which the solution supply ratios of a selenium source and a sulfur source are successively changed by a spray pyrolysis method to form a Se and S concentration distribution in a film thickness direction.

【0003】上記のような方法によるとI-III-VI族系化
合物半導体の性能に大きく影響する組成比、特にCuお
よびAgなどのI族元素とInおよびGaなどの III族
元素との組成比は、これらを積層する際に膜厚を変える
ことにより制御されていた。しかしながら、Inおよび
Gaなどの III族元素は膜として堆積される際、基板面
に対して垂直方向に成長しやすいため縞状組織となりや
すく、膜表面を平滑にすることが困難であった。また、
たとえ平滑面が得られたとしても、InおよびGaが金
属状態であると、SeおよびS含有ガス雰囲気下におけ
る加熱処理の際、Cu2 SeやCu2Sなどの低温安定
型の中間生成物の生成が避けられなかった。このような
中間生成物は、高温熱処理を施しても完全には消失しな
いため、最終生成物を所望の単一化合物相にすることが
非常に困難となる。
According to the above-described method, the composition ratio which greatly affects the performance of the I-III-VI group compound semiconductor, particularly the composition ratio of a group I element such as Cu and Ag and a group III element such as In and Ga. Has been controlled by changing the film thickness when laminating them. However, when a group III element such as In and Ga is deposited as a film, it tends to grow in a direction perpendicular to the substrate surface, so that it tends to form a stripe structure, and it is difficult to smooth the film surface. Also,
Even if a smooth surface is obtained, if In and Ga are in a metallic state, a low-temperature stable intermediate product such as Cu 2 Se or Cu 2 S during heat treatment in an atmosphere of a gas containing Se and S will be obtained. Generation was inevitable. Since such an intermediate product does not completely disappear even when subjected to a high-temperature heat treatment, it is very difficult to make the final product into a desired single compound phase.

【0004】すなわち、上記従来の方法によると、最も
重要とされる組成制御性に問題があり、ミクロ的な成分
の偏析が発生しやすく、場合によってはI-III-VI族系カ
ルコパイライト相以外にCu2 SeやCu2Sなどの中
間生成物の混在が避けられないという問題点があったの
である。
That is, according to the above-mentioned conventional method, there is a problem in composition controllability, which is the most important, and micro-segregation of components tends to occur, and in some cases, other than the I-III-VI group chalcopyrite phase. In addition, there is a problem that intermediate products such as Cu 2 Se and Cu 2 S cannot be avoided.

【0005】一方、上記のような中間生成物を生成させ
ずに、単一相の三元化合物を得るために、 200℃以上の
温度でSeおよびSと反応させる方法、または 200℃以
下の温度においてはN2 などの不活性ガス雰囲気とし、
200℃以上の温度でSeおよびS含有ガスを導入すると
いった方法がとられていた。しかしながら、Inおよび
Gaは、その融点がそれぞれ 153℃および30℃と極めて
低く、しかも表面張力が大きいため、各元素の相互拡
散、すなわち硫化やセレン化が始まる前に凝集したりI
nおよびGaの液相が生じてしまっていた。このよう
に、InおよびGaが凝集したりInやGaの液相が存
在したりすると、その周辺部においてピンホールや膜剥
離が生じる原因となり、また、最終生成物である三元化
合物膜の表面状態は、InやGaの表面状態をそのまま
再現するため、表面精度が悪く凹凸が多いという問題点
があった。
On the other hand, in order to obtain a single-phase ternary compound without producing the above-mentioned intermediate product, a method of reacting with Se and S at a temperature of 200 ° C. or more, or a method of an inert gas atmosphere such as N 2 in,
A method of introducing Se and S-containing gas at a temperature of 200 ° C. or higher has been adopted. However, since In and Ga have extremely low melting points of 153 ° C. and 30 ° C., respectively, and a high surface tension, they can aggregate before the interdiffusion of each element, that is, before sulfuration or selenization starts, or I and Ga can be agglomerated.
A liquid phase of n and Ga had been generated. As described above, when In and Ga are aggregated or a liquid phase of In or Ga is present, pinholes or film peeling are caused in the peripheral portion thereof, and the surface of the ternary compound film as a final product is generated. Since the state reproduces the surface state of In or Ga as it is, there is a problem that surface accuracy is poor and there are many irregularities.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述従来の
技術の問題点を解決し、組成制御性を向上させ、ミクロ
偏析がなく、しかも膜表面が平滑であるI-III-VI族系化
合物半導体膜の製造法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, improves the composition controllability, has no micro-segregation, and has a smooth film surface. It is an object of the present invention to provide a method for manufacturing a compound semiconductor film.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため鋭意研究したところ、InおよびGaの
一方または両方を酸化物膜としてCuおよびAgの一方
または両方の膜上に形成し、これをSeおよびSの一方
または両方を含有する還元性ガス雰囲気下で熱処理する
ことによって、金属酸化物の還元と同金属のセレン化お
よび硫化とが同時に進行し、中間生成物の存在しない三
元化合物薄膜が得られることを見い出し、本発明を提供
することができた。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and found that one or both of In and Ga are formed as oxide films on one or both of Cu and Ag films. By subjecting this to a heat treatment in a reducing gas atmosphere containing one or both of Se and S, reduction of the metal oxide and selenization and sulfidation of the same metal proceed simultaneously, and no intermediate product is present. The inventors have found that a ternary compound thin film can be obtained, and have provided the present invention.

【0008】 すなわち本発明は、一般式(Cu1-x
x)(In1-yGay)(Se1-zz2(ただし、0≦
x、y、z≦1)で表されるI−III−VI族系化合物から
なる半導体薄膜の製造法であって、CuおよびAgの一
方または両方並びに酸化インジウムおよび酸化ガリウ
ム、好ましくはIn23およびGa23の一方または両
方を個別にまたは同時に堆積した後、Se源およびS源
の一方または両方を含有する還元性ガス雰囲気下で20
0℃以上の温度で熱処理することを特徴とする上記I−I
II−VI族系化合物半導体薄膜の製造法を提供するもので
ある。
That is, the present invention provides a compound represented by the general formula (Cu 1-x A
g x ) (In 1-y G ay ) (Se 1-z S z ) 2 (where 0 ≦
x, y, z ≦ 1) a method for producing a semiconductor thin film comprising a group I-III-VI compound represented by the formula (1), wherein one or both of Cu and Ag, indium oxide and gallium oxide, preferably In 2 O After depositing one or both of 3 and Ga 2 O 3 individually or simultaneously, the deposition is performed under a reducing gas atmosphere containing one or both of the Se source and the S source.
The above II, wherein the heat treatment is performed at a temperature of 0 ° C or more.
It is intended to provide a method for producing a II-VI group compound semiconductor thin film.

【0009】本発明では、前記Se源としてH2 Seガ
スおよびSeガスの一方または両方を用いることがで
き、また前記S源としてH2 SガスおよびSガスの一方
または両方を用いることができ、さらに前記還元性ガス
としてH2 およびCOの一方または両方を用いることが
できる。
In the present invention, one or both of H 2 Se gas and Se gas can be used as the Se source, and one or both of H 2 S gas and S gas can be used as the S source, Further, one or both of H 2 and CO can be used as the reducing gas.

【0010】また、本発明におけるCuおよびAgの堆
積膜は、金属であっても酸化物であっても良く、また金
属と酸化物とが共存したものであっても良い。
Further, the deposited film of Cu and Ag in the present invention may be a metal or an oxide, or may be a coexistence of a metal and an oxide.

【0011】[0011]

【作用】本発明において、CuおよびAg膜を基板上に
堆積する方法として、通常行われている蒸着法、スパッ
タ法または電着法等を用いることができる。なお、これ
らの方法は、膜表面を平滑に形成したり膜厚の制御性に
優れることが工業的規模で確認されている。また、Cu
およびAgが酸化物であったり、または一部が酸化され
たものであっても、CuおよびAgの含有量が既知であ
れば問題はない。これは、I族元素と III族元素との比
率が、後から堆積されるIII族元素の酸化物層の膜厚で
制御することが可能であり、しかもI族の金属であるC
uおよびAgの酸化物が III族の金属の酸化物であるI
2 3 やGa2 3 に比してはるかに還元されやすい
ためである。
In the present invention, as a method for depositing a Cu and Ag film on a substrate, a commonly used vapor deposition method, sputtering method, electrodeposition method or the like can be used. It has been confirmed on an industrial scale that these methods form a film surface smoothly and have excellent controllability of the film thickness. Also, Cu
Even if Ag and Ag are oxides or partially oxidized, there is no problem as long as the contents of Cu and Ag are known. This is because the ratio between the group I element and the group III element can be controlled by the thickness of the oxide layer of the group III element which is deposited later, and the group I metal C
the oxides of u and Ag are oxides of Group III metals
This is because it is much more easily reduced than n 2 O 3 or Ga 2 O 3 .

【0012】一方、In2 3 またはGa2 3 を堆積
する場合においても、蒸着法、スパッタ法またはディッ
プコーティング法などのような化学的堆積法であれば問
題はない。これは、In2 3 やGa2 3 が、金属I
nやGaよりも融点がはるかに高く、成膜性に優れてい
るためであり、In2 3 にSnO2 を添加した透明導
電性ITO膜は精度良く形成できることが良く知られて
いることからも明らかである。
On the other hand, when depositing In 2 O 3 or Ga 2 O 3 , there is no problem if a chemical deposition method such as an evaporation method, a sputtering method, or a dip coating method is used. This is because In 2 O 3 or Ga 2 O 3 is a metal I
This is because the melting point is much higher than that of n or Ga, and the film formability is excellent, and it is well known that a transparent conductive ITO film obtained by adding SnO 2 to In 2 O 3 can be formed with high accuracy. Is also clear.

【0013】 上記のようにして作製した積層膜は、S
およびSeの一方または両方を含有する還元性ガス雰囲
気下で熱処理が施される。その際、In23やGa23
は高温下でSおよびSeガスを導入しても何等反応を示
さないため、H2等の還元性ガスと、SおよびSeの一
方または両方のガスとを共存させる必要がある。また、
熱処理温度は、200℃未満では酸化物の還元反応が事
実上ほとんど進行しないため、200℃以上に加熱する
必要がある。200℃未満の熱処理温度で還元反応が進
行しないということは、中間生成物の生成がなく、単一
相の三元化合物を得やすいということである。
The laminated film manufactured as described above has S
The heat treatment is performed in a reducing gas atmosphere containing one or both of Se and Se. At that time, In 2 O 3 or Ga 2 O 3
Does not show any reaction even when S and Se gases are introduced at a high temperature, it is necessary to coexist a reducing gas such as H 2 with one or both of S and Se. Also,
If the heat treatment temperature is lower than 200 ° C., the reduction reaction of the oxides hardly progresses, so that it is necessary to heat the heat treatment to 200 ° C. or higher. The fact that the reduction reaction does not proceed at a heat treatment temperature of less than 200 ° C. means that there is no generation of an intermediate product and a single-phase ternary compound is easily obtained.

【0014】さらに、In2 3 やGa2 3 は熱的に
安定であって、 200℃程度の加熱では変質しない。その
ため、成膜時の表面状態が熱処理時の高温状態において
も保持され、得られる膜の表面に凹凸ができにくくな
る。したがって、成膜時の表面状態を保ちつつ、所望の
温度でのセレン化および硫化が可能となり、高品質三元
化合物薄膜を得ることができるのである。なお、セレン
化または硫化される温度に達するまでは、N2 ガスなど
の不活性ガス雰囲気下であっても問題はない。
Further, In 2 O 3 and Ga 2 O 3 are thermally stable, and do not deteriorate when heated at about 200 ° C. Therefore, the surface state at the time of film formation is maintained even at the high temperature state at the time of heat treatment, and the surface of the obtained film is unlikely to have irregularities. Therefore, selenization and sulfurization at a desired temperature can be performed while maintaining the surface state at the time of film formation, and a high-quality ternary compound thin film can be obtained. It should be noted that there is no problem even under an inert gas atmosphere such as N 2 gas until the temperature at which selenization or sulfidation is reached.

【0015】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は、以下の実施例により
制限されるものではない。
Hereinafter, the present invention will be described in more detail by way of examples. However, the scope of the present invention is not limited by the following examples.

【0016】[0016]

【実施例1】本実施例では、真空蒸着法によりコーニン
グ社の #7059ガラス基板上に膜厚が2000A(オングスト
ローム)となるようにCuを積層し、この上に原子比が
Cu:In=1:1、膜厚が5300Aとなるように、スパ
ッタ法によってIn2 3 を積層した。なお、該スパッ
タ法におけるIn2 3 ターゲットは、In2 3 粉末
を加圧成形した後、1400℃で焼結したものを用いた。ま
た、この積層膜の表面粗さ(Ra)は約1000Aであっ
た。
EXAMPLE 1 In this example, Cu was laminated on a # 7059 glass substrate of Corning Co., Ltd. by a vacuum deposition method so as to have a film thickness of 2000 A (angstrom), and an atomic ratio of Cu: In = 1 on top of this. 1: In 2 O 3 was deposited by sputtering so that the film thickness became 5300A. As the In 2 O 3 target in the sputtering method, an In 2 O 3 powder obtained by pressing and molding at 1400 ° C. was used. The surface roughness (Ra) of the laminated film was about 1000A.

【0017】次に、該積層膜を反応管内に入れ、N2
ス雰囲気下、5℃/minの速度で 400℃まで昇温した。 4
00℃に達したところでH2 SおよびH2 Seを、流量モ
ル比がH2 S/(H2 Se+H2 S)=0.9 となるよう
に導入し、2時間後、N2 ガスに切り替えて常温まで冷
却した。
Next, the laminated film was placed in a reaction tube and heated to 400 ° C. at a rate of 5 ° C./min in an N 2 gas atmosphere. Four
The H 2 S and H 2 Se Upon reaching 00 ° C., the flow rate molar ratio was introduced so that the H 2 S / (H 2 Se + H 2 S) = 0.9, after 2 hours, is switched to N 2 gas ambient temperature Cooled down.

【0018】上記のようにして得られた膜は灰黒色であ
り、ピンホールや剥離などの発生は認められなかった。
また、得られた膜の化学組成を調べたところ、Cu:I
n:S:Se= 24.4 : 25.2 : 4.7 : 45.7(原子%)
であり、ほぼ目標とする組成の膜を得ることができた。
さらに、得られた膜についてX線解析を行ったところ、
カルコパイライト単相であり他の異相の存在は認められ
なかった。なお、得られた膜の表面粗さ(Ra)は約20
00Aであり、熱処理前と比べてほとんど変化していなか
った。
The film obtained as described above was gray-black, and no occurrence of pinholes or peeling was observed.
When the chemical composition of the obtained film was examined, it was found that Cu: I
n: S: Se = 24.4: 25.2: 4.7: 45.7 (atomic%)
Thus, a film having almost the target composition could be obtained.
Further, when an X-ray analysis was performed on the obtained film,
It was a chalcopyrite single phase, and no other heterophase was observed. The surface roughness (Ra) of the obtained film was about 20
00A, which was almost the same as before the heat treatment.

【0019】[0019]

【実施例2】In2 3 をGa2 3 に置き換え、真空
蒸着法によりGa2 3 を7300Aの膜厚で積層したこと
以外は実施例1と同様にして膜を作製した。
Replacing Example 2 In 2 O 3 to Ga 2 O 3, except that a laminate of Ga 2 O 3 with a thickness of 7300A was produced film in the same manner as in Example 1 by vacuum evaporation.

【0020】得られた膜は灰黒色であり、ピンホールや
剥離などの発生は認められなかった。また、得られた膜
の化学組成は、Cu:Ga:S:Se= 23.8 : 25.2 :
5.0:46.0(原子%)であり、ほぼ目標とする組成の膜
を得ることができた。さらに、得られた膜についてX線
解析を行ったところ、カルコパイライト単相であり他の
異相の存在は認められなかった。なお、得られた膜の表
面粗さ(Ra)は約2200Aであり、熱処理前のRaは約
1200Aであり、ほとんど変化していなかった。
The obtained film was gray-black, and no occurrence of pinholes or peeling was observed. The chemical composition of the obtained film was Cu: Ga: S: Se = 23.8: 25.2:
5.0: 46.0 (atomic%), and a film having almost the target composition could be obtained. Further, when the obtained film was analyzed by X-ray, it was a chalcopyrite single phase, and the presence of another hetero phase was not recognized. The surface roughness (Ra) of the obtained film was about 2200 A, and the Ra before the heat treatment was about 2200 A.
It was 1200 A, which was almost unchanged.

【0021】[0021]

【実施例3】二元同時蒸着によりIn2 3 を約4800
A、Ga2 3 を約 700A積層したこと以外は実施例2
と同様にして膜を作製した。なお、本実施例において
は、In2 3 とGa2 3 とは、原子比でGa:In
= 0.1:0.9 を目標とした。
[Embodiment 3] Approximately 4800 In 2 O 3 was deposited by binary simultaneous evaporation.
Example 2 except that A and Ga 2 O 3 were laminated at about 700A.
A film was produced in the same manner as described above. In this embodiment, In 2 O 3 and Ga 2 O 3 are Ga: In in atomic ratio.
= 0.1: 0.9.

【0022】得られた膜は灰黒色であり、ピンホールや
剥離等の発生は認められなかった。また、得られた膜の
化学組成は、Cu:In:Ga:S:Se= 23.9 : 2
4.2 :2.3 : 4.8 : 44.8 (原子%)であり、ほぼ目標と
する組成の膜を得ることができた。さらに、得られた膜
についてX線解析を行ったところ、カルコパイライト単
相であり他の異相の存在は認められなかった。なお、得
られた膜の表面粗さ(Ra)は約2700Aであり、熱処理
前と比べてほとんど変化していなかった。
The obtained film was gray black, and no occurrence of pinholes or peeling was observed. The chemical composition of the obtained film is Cu: In: Ga: S: Se = 23.9: 2
4.2: 2.3: 4.8: 44.8 (atomic%), and a film having almost the target composition could be obtained. Further, when the obtained film was analyzed by X-ray, it was a chalcopyrite single phase, and the presence of another hetero phase was not recognized. The surface roughness (Ra) of the obtained film was about 2700 A, which was almost unchanged from that before the heat treatment.

【0023】[0023]

【比較例1】200℃で10時間の熱処理を行ったこと以外
は実施例1と同様にして膜を作製したところ、得られた
膜は熱処理前と外観上変化がなかった。得られた膜につ
いてX線解析を行ったところ、CuとIn2 3 が認め
られただけで置換反応は起こっていなかった。
Comparative Example 1 A film was prepared in the same manner as in Example 1 except that the heat treatment was performed at 200 ° C. for 10 hours. As a result, the appearance of the obtained film was unchanged from that before the heat treatment. When an X-ray analysis was performed on the obtained film, only substitution of Cu and In 2 O 3 was observed, but no substitution reaction occurred.

【0024】[0024]

【比較例2】CuおよびInを真空蒸着法により順次積
層し、CuおよびInの膜厚をそれぞれ2000Aおよび41
00Aとしたこと以外は実施例1と同様にして膜を作製し
た。
Comparative Example 2 Cu and In were sequentially laminated by a vacuum evaporation method, and the film thicknesses of Cu and In were set to 2,000 A and 41, respectively.
A film was prepared in the same manner as in Example 1 except that the film thickness was changed to 00A.

【0025】得られた膜は灰黒色であったが、膜の所々
に剥離が認めらた。また、得られた膜の化学組成は、C
u:In:S:Se= 27.8 : 21.7 : 4.9 : 44.6 (原
子%)であり、目標とする組成から大きくずれていた。
さらに、得られた膜についてX線解析を行ったところ、
カルコパイライト相以外にCuSまたはCu2 Sと考え
られるピークが存在していた。なお、得られた膜の表面
粗さ(Ra)は、熱処理前が4500A、熱処理後が 18600
Aであり、膜表面の凹凸が著しく大きくなっていた。
Although the obtained film was gray-black, peeling was observed in some parts of the film. The chemical composition of the obtained film is C
u: In: S: Se = 27.8: 21.7: 4.9: 44.6 (atomic%), which greatly deviated from the target composition.
Further, when an X-ray analysis was performed on the obtained film,
In addition to the chalcopyrite phase, there was a peak considered to be CuS or Cu 2 S. The surface roughness (Ra) of the obtained film was 4500 A before heat treatment and 18600 A after heat treatment.
A, and the irregularities on the film surface were significantly large.

【0026】[0026]

【発明の効果】本発明の開発により、ミクロ的な成分の
偏析の発生がなく、かつ膜表面の平滑なI-III-VI族系化
合物半導体膜を、組成の制御性良く製造することができ
るようになった。
According to the development of the present invention, it is possible to produce an I-III-VI group compound semiconductor film having no microscopic segregation of components and having a smooth film surface with good controllability of the composition. It became so.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 和人 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 昭62−20381(JP,A) 特開 平1−248627(JP,A) 特開 平1−160060(JP,A) 特開 平1−39076(JP,A) 特開 平1−231313(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/203,21/363 C23C 14/58 H01L 31/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuto Ito 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-62-20381 (JP, A) JP-A Heihei 1-248627 (JP, A) JP-A-1-160060 (JP, A) JP-A-1-39076 (JP, A) JP-A-1-231313 (JP, A) (58) Fields investigated (Int. Cl. 7, DB name) H01L 21 / 203,21 / 363 C23C 14/58 H01L 31/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式(Cu1-xAgx)(In1-y
y)(Se1-zz2(ただし、0≦x、y、z≦1)
で表されるI−III−VI族系化合物からなる半導体薄膜の
製造法であって、CuおよびAgの一方または両方並び
に酸化インジウムおよび酸化ガリウムの一方または両方
を個別にまたは同時に堆積した後、Se源およびS源
一方または両方を含有する還元性ガス雰囲気下で200
℃以上の温度で熱処理することを特徴とする上記I−III
−VI族系化合物半導体薄膜の製造法。
[Claim 1] The general formula (Cu 1-x Ag x ) (In 1-y G
a y ) (Se 1 -z S z ) 2 (where 0 ≦ x, y, z ≦ 1)
A method for producing a semiconductor thin film comprising a group I-III-VI compound represented by the formula: wherein one or both of Cu and Ag and one or both of indium oxide and gallium oxide are deposited individually or simultaneously, source and S source
Under a reducing gas atmosphere containing one or both
The above I-III, wherein the heat treatment is performed at a temperature of not less than ℃.
-A method for producing a group VI compound semiconductor thin film.
【請求項2】 0≦x≦1、0≦y≦1、0<z<1で
ある請求項1記載の製造法。
2. When 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, and 0 <z <1.
The method according to claim 1.
【請求項3】 酸化インジウムおよび酸化ガリウムがそ
れぞれIn23およびGa23である請求項1または2
記載の製造法。
Wherein indium oxide and gallium oxide are In 2 O 3 and Ga 2 O 3, respectively claim 1 or 2
Production method as described.
【請求項4】 前記Se源がH2SeガスおよびSeガ
スの一方または両方であり、前記S源がH2Sガスおよ
びSガスの一方または両方であり、前記還元性ガスがH
2およびCOの一方または両方である請求項1、2また
は3記載の製造法。
4. The Se source is one or both of H 2 Se gas and Se gas, the S source is one or both of H 2 S gas and S gas, and the reducing gas is H gas.
Which is one or both of the 2 and CO according to claim 1, 2 or
Is the production method described in 3 .
JP03124955A 1991-04-25 1991-04-25 Method for producing I-III-VI compound semiconductor thin film Expired - Fee Related JP3095182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03124955A JP3095182B2 (en) 1991-04-25 1991-04-25 Method for producing I-III-VI compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03124955A JP3095182B2 (en) 1991-04-25 1991-04-25 Method for producing I-III-VI compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH04326525A JPH04326525A (en) 1992-11-16
JP3095182B2 true JP3095182B2 (en) 2000-10-03

Family

ID=14898355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03124955A Expired - Fee Related JP3095182B2 (en) 1991-04-25 1991-04-25 Method for producing I-III-VI compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JP3095182B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710368B2 (en) * 2011-05-06 2015-04-30 株式会社東芝 Photoelectric conversion element and solar cell
KR101389832B1 (en) * 2012-11-09 2014-04-30 한국과학기술연구원 Cigs or czts based film solar cells and method for preparing thereof
JP7068798B2 (en) * 2017-10-26 2022-05-17 出光興産株式会社 Manufacturing method of photoelectric conversion element
JP2021084838A (en) * 2019-11-28 2021-06-03 トヨタ自動車株式会社 Method for producing semiconductor material

Also Published As

Publication number Publication date
JPH04326525A (en) 1992-11-16

Similar Documents

Publication Publication Date Title
US7867551B2 (en) Processing method for group IBIIIAVIA semiconductor layer growth
JP3064701B2 (en) Method for producing chalcopyrite-type compound thin film
US8192594B2 (en) Technique and apparatus for depositing thin layers of semiconductors for solar cell fabrication
US5028274A (en) Group I-III-VI2 semiconductor films for solar cell application
JP3258667B2 (en) Manufacturing method of high efficiency Cu (In, Ga) (Se, S) 2 thin film for solar cell
Schulz et al. Cu-In-Ga-Se nanoparticle colloids as spray deposition precursors for Cu (In, Ga) Se 2 solar cell materials
Krunks et al. Structural and optical properties of sprayed CuInS2 films
US5674555A (en) Process for preparing group Ib-IIIa-VIa semiconducting films
US8415559B2 (en) Method for forming copper indium gallium chalcogenide layer with shaped gallium profile
EP0318315B1 (en) Process for making thin film solar cell
US20080023336A1 (en) Technique for doping compound layers used in solar cell fabrication
US8053029B2 (en) Method for fabricating CuInS2 thin film by metal organic chemical vapor deposition, CuInS2 thin film fabricated by the same and method for fabricating In2S3 thin film therefrom
CN101040390A (en) Method for producing a thin-film chalcopyrite compound
US20080096307A1 (en) Method and apparatus for controlling composition profile of copper indium gallium chalcogenide layers
CN102237439A (en) Solar battery manufacturing method
US8425753B2 (en) Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US20120258567A1 (en) Reaction methods to form group ibiiiavia thin film solar cell absorbers
US8153469B2 (en) Reaction methods to form group IBIIIAVIA thin film solar cell absorbers
US20120003786A1 (en) Electroplating methods and chemistries for cigs precursor stacks with conductive selenide bottom layer
JP3095182B2 (en) Method for producing I-III-VI compound semiconductor thin film
US20090283140A1 (en) Method of making contact to a solar cell employing a group ibiiiavia compound absorber layer
Basol et al. Preparation of Cd (Zn) Te and CuInSe2 films and devices by a two-stage process
US20100139557A1 (en) Reactor to form solar cell absorbers in roll-to-roll fashion
JP3133136B2 (en) Manufacturing method of ternary compound semiconductor thin film
US8012788B1 (en) Multi-stage formation of thin-films for photovoltaic devices

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees