JP3087140B2 - Combustion device and combustion method - Google Patents

Combustion device and combustion method

Info

Publication number
JP3087140B2
JP3087140B2 JP03340175A JP34017591A JP3087140B2 JP 3087140 B2 JP3087140 B2 JP 3087140B2 JP 03340175 A JP03340175 A JP 03340175A JP 34017591 A JP34017591 A JP 34017591A JP 3087140 B2 JP3087140 B2 JP 3087140B2
Authority
JP
Japan
Prior art keywords
combustion
gas
fuel gas
premixed
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03340175A
Other languages
Japanese (ja)
Other versions
JPH05296412A (en
Inventor
忠人 宮原
雅晶 森
敦之 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Publication of JPH05296412A publication Critical patent/JPH05296412A/en
Application granted granted Critical
Publication of JP3087140B2 publication Critical patent/JP3087140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排ガス中の窒素酸化物
(NOX)の濃度を低減させた燃焼装置および燃焼方法に
関する。
The present invention relates to a nitrogen oxides (NO X) concentration for reduced combustion apparatus and combustion method was of the exhaust gas.

【0002】[0002]

【従来技術】近年、環境面への配慮から、燃焼により生
成される窒素酸化物(NOX )の大気への放出が大きな
問題となっているが、通常の燃焼装置から排出されるN
Xは空気中の窒素が高温領域において酸化されるいわ
ゆるサーマルNOX である。ここで燃焼装置の1つとし
てガスタービン用燃焼器を例にとって考えてみると、従
来の燃焼器では安定した燃焼の得られる拡散燃焼が用い
られているが、この種の燃焼器においては燃料・空気混
合気の燃焼は2000°C前後の断熱的な火炎温度を生
じる。この高温の燃焼ガスは温度を下げるために空気と
混合されるが、拡散火炎表面が高温度であるという理由
によって許容できない量のNOX が生成される。しかし
NOX の生成は温度の上昇に対し指数関数的に上昇する
ために、燃焼火炎の温度を少し下げることによってNO
X の生成は大幅に低減できる。燃焼火炎の温度を下げる
ための有効な手段の一つとして、燃料と燃焼空気を燃焼
前に混合し、稀薄な混合ガスとして燃焼させる予混合燃
焼法が公知の技術として知られている。
BACKGROUND ART In recent years, N in consideration of environmental, although release into the atmosphere of nitrogen oxides generated by combustion (NO X) is a major problem, which is discharged from a normal combustion apparatus
O X is a so-called thermal NO X which nitrogen in the air are oxidized in the high temperature region. Here, taking as an example a combustor for a gas turbine as one of the combustion devices, a conventional combustor employs diffusion combustion capable of obtaining stable combustion. The combustion of the air mixture produces an adiabatic flame temperature of around 2000 ° C. This high-temperature combustion gas is mixed with the air to lower the temperature, NO X amount unacceptable for reason diffusion flame surface is high temperature is generated. However, since the generation of NO X increases exponentially with the rise in temperature, the NO x can be reduced by slightly lowering the temperature of the combustion flame.
X generation can be greatly reduced. As one of effective means for lowering the temperature of the combustion flame, a premixed combustion method in which fuel and combustion air are mixed before combustion and burned as a lean mixed gas is known as a known technique.

【0003】[0003]

【発明が解決しようとする課題】ところが、予混合燃焼
の実用化上の一番の問題点として燃料ガスが稀薄なとき
の燃焼安定範囲が狭いことが知られている。そこで特開
昭63−217141においては、低負荷時に着火がス
ムーズで燃焼が安定した拡散燃焼を行い、燃焼が安定し
た後定格までの負荷において予混合燃焼を行ってNOX
を低減すること、また拡散燃焼の併用と予混合する際負
荷に応じて燃焼空気流量を制御する可変機構を採用する
ことで予混合燃焼を安定化させることが開示されてい
る。
However, it is known that the most problematic point of practical use of premixed combustion is that the combustion stability range when fuel gas is lean is narrow. Therefore, Japanese Patent Application Laid-Open No. 63-217141 discloses that diffusion combustion in which ignition is smooth and combustion is stable at a low load is performed, and premixed combustion is performed at a load up to the rated value after the combustion is stabilized to NO X
And stabilizing the premixed combustion by adopting a variable mechanism that controls the combustion air flow rate according to the load when premixing with the combined use of diffusion combustion.

【0004】しかし、低負荷時とはいえ拡散燃焼を採用
するためにNOX の減少には限界があるし、燃焼空気の
流量を制御する可変機構のために燃焼器の構造が複雑に
なり、小型化が困難である。
However, to the reduction of the NO X to adopt the said diffusion combustion at the time of low load is limited, the structure of the combustor is complicated because of the variable mechanism for controlling the flow rate of combustion air, It is difficult to reduce the size.

【0005】本発明は上記の点にかんがみてなされたも
ので、燃焼用空気量の制御を必要としない、簡素な構造
で低NO x が実現できる燃焼装置および燃焼方法を提供
することを目的とするものである。
The present invention has been made in view of the above points, and has a simple structure that does not require control of the amount of combustion air.
In providing a combustion device and a combustion method low NO x can be achieved
It is intended to do so.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、外側容器と内側容器から構成さ
れ、該外側容器と該内側容器との間に外部から空気が供
給される燃焼装置において、前記内側容器の中心部分に
着火用燃料ガス噴出孔を有し、さらに該着火用燃料ガス
噴出孔の周囲に円筒状の空気通路であり、かつ該通路へ
の空気の流入時に一定量の燃料ガスを予め混合して空気
と燃料ガスとの混合比が一定となった1次燃焼用予混合
ガスの噴出孔でもある孔を同心円状に設け、さらに該第
1次燃焼用予混合ガスの噴出孔の外周にも円筒状の空気
通路であり、かつ該通路への空気の流入時に負荷に応じ
て供給量を制御される燃料ガスを予め混合して空気と燃
料ガスとの混合比を可変とした2次燃焼用予混合ガスの
噴出孔でもある孔を同心円状に設け、さらに前記1次燃
焼用予混合ガス噴出孔と2次燃焼用予混合ガス噴出孔と
が同一流入方向で隔壁のみにより隔てられ、かつ該隔壁
は前記1次燃焼用予混合ガス噴出孔の下流につばのよう
にせり出して前記2次燃焼用予混合ガス噴出孔までの間
に小さな窪みを形成し、該窪みは1次燃焼用予混合ガス
による火炎の根元部分のみが収まる程度に主燃焼室に比
べ非常に小さく、該窪みより下流の1次燃焼用予混合ガ
スによる火炎の残り部分が前記2次燃焼用予混合ガス噴
出孔に達し、2次燃焼用予混合ガスと一体となって燃焼
するように構成したことを特徴とする。また、本発明は
前記燃焼装置の燃焼方法であって、中心部に設けた着火
用燃料ガス噴出孔から着火用燃料ガスを噴出させて燃焼
させ、これと同時に燃焼装置形状により流入量が一定と
なる空気と、空気と燃料ガスとの混合比が燃焼室での火
炎を安定に維持するに必要な一定の混合比になるよう
定量に制御された燃料ガスとからなる1次燃焼用混合ガ
スを前記着火用燃料ガス噴出孔の周囲に設けた1次燃焼
用混合ガス噴出孔から噴出して燃焼させ、1次燃焼用混
合ガスの着火後着火用燃料ガスの供給を必要に応じて停
止もしくは減量し、その後負荷に応じて増減量する燃料
ガスと負荷によらず燃焼装置形状により流入量が一定と
なる空気とからなる2次燃焼用混合ガスを前記1次燃焼
用混合ガス噴出孔の外周に設けた2次燃焼用混合ガス噴
出孔から噴出して燃焼させ、その後は2次燃焼用混合ガ
ス中の燃料ガスの比率を負荷に応じて制御することを特
徴とする。
According to the present invention, there is provided a combustion apparatus comprising an outer container and an inner container, wherein air is supplied from the outside between the outer container and the inner container. In the apparatus, an ignition fuel gas ejection hole is provided at a central portion of the inner container, and further, a cylindrical air passage is formed around the ignition fuel gas ejection hole, and a predetermined amount is supplied when air flows into the passage. And a concentric hole for ejecting the primary combustion premixed gas, in which the mixing ratio of the air and the fuel gas is made constant by mixing the fuel gas in advance, and the primary combustion premixed gas is further provided. of a cylindrical air passage to the outer periphery of the ejection hole, and mixing of the fuel gas premixed with air and fuel gas to be controlled supply amount according to the load when the inflow of air into said passage A hole that is also an outlet for premixed gas for secondary combustion with a variable ratio The primary combustion premixed gas outlet and the secondary combustion premixed gas outlet are separated by only a partition in the same inflow direction, and the partition is provided with the primary combustion premixed gas. It protrudes like a brim downstream of the injection hole to form a small depression between the secondary combustion premixed gas injection hole and the depression, so that only the root portion of the flame by the primary combustion premixed gas is contained. The remaining portion of the flame of the primary combustion premixed gas downstream of the depression reaches the secondary combustion premixed gas injection hole, and is very small as compared with the main combustion chamber. And is configured to burn. Further, the present invention is the combustion method of the combustion device, wherein the ignition fuel gas is ejected from an ignition fuel gas ejection hole provided at a central portion and burned, and at the same time, the inflow amount is constant by the shape of the combustion device. And a fuel gas that is uniformly controlled so that the mixing ratio of the air and the fuel gas becomes a constant mixing ratio required to stably maintain the flame in the combustion chamber. It is necessary to supply the ignition fuel gas after the primary combustion mixed gas is ignited by burning the combustion mixed gas from the primary combustion mixed gas ejection hole provided around the ignition fuel gas ejection hole. The secondary combustion mixed gas is composed of a fuel gas which is stopped or reduced according to the load, and then increases or decreases according to the load, and air which has a constant inflow depending on the shape of the combustion device regardless of the load. Gas mixture for secondary combustion provided on the outer periphery of the injection hole And it ejected burned from Deana, then characterized by controlled according to the load ratio of the fuel gas in the secondary combustion gas mixture.

【0007】[0007]

【作用】本発明においては、起動時は着火用燃料ガス噴
出孔から着火用燃料ガスを噴出させて燃焼させるととも
に、1次燃焼用混合ガス噴出孔からは空気と1次燃料ガ
スとの混合ガスを噴出させて燃焼させ、起動後は2次燃
焼用混合ガス噴出孔から負荷に対応した組成比の空気と
2次燃料ガスとの混合ガスを噴出させて燃焼させ、その
後着火用燃料ガスを絞り込み、1次燃焼用混合ガスは一
定に供給して燃焼を継続するようにしたので、排ガス中
にNOX 成分の多い拡散燃焼は起動時のみとなり、その
後は空気比1.3〜3.5程度の広い領域において未燃
焼分の排出を低い値に抑えたままでNOX の排出を抑え
ることができ、従来の燃焼装置に比べて大幅な低NOX
化が実現できる。
According to the present invention, at the time of startup, the ignition fuel gas is ejected from the ignition fuel gas ejection hole to burn it, and the mixed gas of air and the primary fuel gas is emitted from the primary combustion mixed gas ejection hole. After startup, a mixed gas of air and secondary fuel gas having a composition ratio corresponding to the load is ejected from the secondary combustion mixed gas ejection hole and burned, and then the ignition fuel gas is narrowed down. since the primary combustion gas mixture was set to continue the combustion by supplying a constant, high diffusion combustion of NO X components in the exhaust gas is only the startup, then about air ratio 1.3 to 3.5 while suppressing the emission of unburnt low value in a wide area can be suppressed emission of NO X, largely as compared with the conventional combustion apparatus a low NO X
Can be realized.

【0008】[0008]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0009】図1はガスタービンに適用した本発明によ
る燃焼装置の一実施例の軸方向断面図であり、図2は同
燃焼装置の端面図である。
FIG. 1 is an axial sectional view of an embodiment of a combustion apparatus according to the present invention applied to a gas turbine, and FIG. 2 is an end view of the combustion apparatus.

【0010】両図を参照して説明すると、燃焼装置は、
外側容器となるフランジ付き筒体100の内部の軸方向
ほぼ中央より前部(図において左側)に燃焼ガス噴出ブ
ロック10が支持され、後部(図において右側)は内側
容器となる燃焼室20を形成している。
Referring to both drawings, the combustion device is as follows.
A combustion gas ejection block 10 is supported at a front portion (left side in the figure) of the inside of the flanged cylindrical body 100 serving as an outer container from a substantially axial center (left side in the figure), and an inner side is provided at a rear portion (right side in the figure).
A combustion chamber 20 serving as a container is formed.

【0011】燃焼ガス噴出ブロック10には、図2から
よくわかるように、中央に着火用燃料ガス噴出孔1が形
成され、その周囲に環状の1次燃焼用混合ガス噴出孔2
が形成され、さらにその周囲に環状の2次燃焼用混合ガ
ス噴出孔3が形成されており、1次燃焼用混合ガス噴出
孔2と2次燃焼用混合ガス噴出孔3は同一流入方向でつ
ば4で示す隔壁のみにより隔てられ、かつ該隔壁は前記
1次燃焼用予混合ガス噴出孔2の下流につばのようにせ
り出し、前記2次燃焼用予混合ガス噴出孔3までの間に
小さな窪みのごとく燃焼空間Sを形成している(図3参
照)。この小さな窪みのような燃焼空間Sは1次燃焼用
予混合ガスが燃焼する際に、非常に空気量比率が大きく
希薄で燃焼しにくくなる2次燃焼用希薄予混合ガスによ
る影響により、不安定化し易い1次燃焼用予混合ガスに
よる火炎の根元部分のみを安定化させる空間となり、ま
た、1次燃焼用予混合ガスによる火炎の初期燃焼で発生
した熱はつば4を伝わり、噴出される前の2次燃焼用混
合ガスを加熱する。しかしながら、燃焼空間Sは主燃焼
室に比べて非常に小さく、燃焼空間Sより下流に1次燃
焼用予混合ガスによる火炎のかなりの部分が吹き出し、
2次燃焼用予混合ガス噴出孔に達し、非常に空気量比率
が大きく希薄で燃焼し難い2次燃焼用予混合ガスと一体
となって燃焼を支援できる程度の深さ形状としている。
As can be clearly understood from FIG. 2, an ignition fuel gas ejection hole 1 is formed at the center of the combustion gas ejection block 10, and an annular primary combustion mixed gas ejection hole 2 is formed therearound.
Is formed, and an annular mixed gas injection hole 3 for secondary combustion is formed therearound.
The hole 2 and the secondary combustion mixed gas outlet 3 are connected in the same inflow direction.
For example, it is separated only by the partition shown by 4, and the partition is
Downstream of the primary combustion premixed gas outlet 2 like a brim
Between the premixed gas injection holes 3 for secondary combustion
A combustion space S is formed like a small depression (see FIG. 3).
See). The combustion space S like this small hollow is for primary combustion
When the premixed gas burns, the air ratio is very large
Lean premixed gas for secondary combustion, which is lean and difficult to burn
Premixed gas for primary combustion, which tends to be unstable due to
The space that stabilizes only the base of the flame
Also, generated by the initial combustion of the flame by the premixed gas for primary combustion
The heat is transmitted through the collar 4 and is mixed for secondary combustion before being ejected.
Heat the joint gas. However, the combustion space S is the main combustion
Very small compared to the chamber, and the primary fuel downstream of the combustion space S
A considerable portion of the flame from the premixed gas for combustion blows out,
Reached the premixed gas outlet for secondary combustion, very air ratio
Integrated with premixed gas for secondary combustion, which is large and lean and difficult to burn
As a result, it has a depth shape that can support combustion.

【0012】ここで図2および図3に示すように、環状
の1次燃焼用混合ガス噴出孔2の内径をd1 、外径をd
2 とし、つば4の内径をd3 、環状の2次燃焼用混合ガ
ス噴出孔3の外径をd4 とし、1次燃焼用混合ガス噴出
孔2の先端(噴出端面)からつば4の先端までの距離を
1 、つば4の先端から燃焼室20の左端面までの距離
をL2 とする。
Here, as shown in FIGS. 2 and 3, the annular primary combustion mixed gas injection hole 2 has an inner diameter d 1 and an outer diameter d 1 .
2 , the inner diameter of the collar 4 is d 3 , and the outer diameter of the annular secondary combustion mixed gas ejection hole 3 is d 4 , from the tip (ejection end face) of the primary combustion mixed gas ejection hole 2 to the tip of the collar 4. L 1 , and the distance from the tip of the collar 4 to the left end face of the combustion chamber 20 is L 2 .

【0013】着火用燃料ガス噴出孔1には導管11を介
して着火用燃料ガスが供給され、1次燃焼用混合ガス噴
出孔2には導管12の先端から1次燃料ガスが噴出さ
れ、2次燃焼用混合ガス噴出孔3には導管13の先端か
ら2次燃料ガスが噴出されるようになっている。1次お
よび2次の燃焼用混合ガス噴出孔2および3の噴出端と
は反対端に旋回器(スワラー)14、15が取り付けら
れている。これらの旋回器14、15は、前述の1次燃
料ガスおよび2次燃料ガスの噴出流に遠心力を与えて燃
焼室20内の外壁方向に飛散させ、燃焼室20内の中心
部分に存在する火炎と、燃焼室20内の外壁に近い外側
部分に存在する予混合気との混合・攪拌を循環的に促進
し、燃焼の安定化をより効果的にするものである。これ
らの旋回器14、15は燃焼用空気量を制御するもので
ない。
An ignition fuel gas is supplied to the ignition fuel gas ejection hole 1 through a conduit 11, and a primary fuel gas is ejected from the tip of the conduit 12 to a primary combustion mixed gas ejection hole 2. The secondary fuel gas is jetted from the tip of the conduit 13 to the mixed gas jetting hole 3 for the next combustion. Swirlers (swirlers) 14 and 15 are attached to the opposite ends of the primary and secondary combustion mixed gas discharge holes 2 and 3 from the discharge ends. These swirlers 14 and 15 are provided with the primary fuel described above.
The centrifugal force is applied to the jet flow of the feed gas and the secondary fuel gas to
Scattered in the direction of the outer wall in the firing chamber 20,
The flame present in the part and the outside near the outer wall in the combustion chamber 20
Circularly promotes mixing and agitation with premixed gas present in the part
And stabilizes combustion more effectively. this
These swirlers 14 and 15 control the amount of combustion air.
Absent.

【0014】一方、筒体100の後部(図において右
側)には空気導入口100aが形成されており、ここか
ら燃焼用空気が供給される。また1次および2次の燃焼
用混合ガス噴出孔2および3の噴出端とは反対側の端部
は旋回器14および15を介して筒体100の内部と連
通しており、空気も導入できるようになっている。
On the other hand, an air inlet 100a is formed at the rear (right side in the figure) of the cylindrical body 100, from which combustion air is supplied. Also, the ends of the primary and secondary combustion mixed gas injection holes 2 and 3 opposite to the injection ends communicate with the inside of the cylindrical body 100 via the swirlers 14 and 15, and air can be introduced. It has become.

【0015】次に上記構成の燃焼装置の燃焼方法につい
て説明する。
Next, a description will be given of a combustion method of the above-structured combustion apparatus.

【0016】まず、起動に当たって着火用燃料ガスを導
管11から着火用燃料ガス噴出孔1に供給し、拡散燃焼
を行わせる。次いでガスタービン起動後、運転が安定し
ガスタービンから燃焼装置への空気供給量が一定となっ
た後に、導管12から1次燃料ガスを一定の供給量で供
給し、かつ、燃焼装置に導入され燃焼装置の内側容器に
設けられた各空気流入通路全面積のうち、旋回器14の
通路面積に比例して分配され流入する空気と旋回器14
の直前で混合し、空気比1.3前後の1次燃焼用予混合
ガスにして噴出孔2に供給し、着火用燃料ガス噴出孔1
からの拡散火炎により着火される。1次燃焼用予混合ガ
スの着火後は、導管11への着火用燃料ガス供給は停止
できる。その後、導管13から2次燃料ガスの供給を開
始し、その供給量を負荷に応じて制御し、かつ旋回器1
5の通路面積に比例して分配され流入する空気と旋回器
15の直前で混合し、2次燃焼用予混合ガス噴出孔3か
ら噴出し予混合燃焼を行わせる。この2次燃料ガスによ
希薄予混合燃焼はガスタービンの最高負荷において空
気比1.4前後で行わせる。この空気比1.4は2次燃
料ガスの供給量制御により調整されるものであって、燃
焼用空気は前記のように旋回器15の通路面積に比例し
て分配され流入するものである。このため、ガスタービ
ンの部分負荷においては、一般的に燃焼装置に流入する
総空気量は変化せず、2次燃料ガス供給量のみが負荷に
応じて減量するため、2次燃料ガスによる予混合火炎の
燃焼はガスタービンの最高負荷時に比べ著しく空気比が
大きくなり、通常独自では燃焼の継続が困難な超希薄予
混合燃焼になり、失火もしくは燃焼が不安定となる。し
かしながら、前述したように火炎の基底部のみが非常に
小さな燃焼空間Sで守られ安定燃焼している1次燃料ガ
スによる予混合火炎自体と2次燃焼用予混合ガス噴出孔
3直後で一体となり、1次予混合火炎から熱と活性基を
供給され、さらに前述の旋回器14、15の作用によつ
て安定燃焼を維持することができる。また、2次燃焼用
予混合ガス自体も2次燃焼用予混合ガス噴出孔3から噴
出される前に通路部分において、1次燃焼用予混合ガス
噴出孔2の下流に設置された隔壁を通して、1次燃焼用
予混合ガスによる予混合火炎からの熱を伝えられ加熱さ
れ、2次燃焼用予混合ガス噴出孔3から噴出された時点
での燃焼開始を行い易い燃 焼装置構造となっている。上
記のような燃焼を実施するためには、1次燃焼用予混合
ガスの空気比λ を前述した空気比1.3前後に設定し
予混合火炎の伝播速度を考慮すると共に、燃焼の安定化
に最低限必要な基底部のみを保護し、残りの火炎部分を
独自で燃焼維持が困難な空気量比率が大きい2次燃焼用
予混合ガスに対し十分接触させ、安定に燃焼継続させる
ことを可能とする、後述する燃焼空間Sの形状範囲で設
定することが重要である。これは燃焼空間Sが小さす
ぎ、1次燃焼用予混合ガス噴出孔22次燃焼用予混合
ガス噴出孔3の位置関係が近づきすぎた場合には、1次
燃焼用予混合ガスの火炎は希薄で燃焼不安定な2次燃焼
用予混合ガスの影響を大きく受け不安定化し失火するた
め、2次燃料ガスをあまり減量できず、一定で良好な燃
焼を維持しつつ燃焼装置全体での燃焼負荷を大きく変化
させることができない。また、燃焼空間Sが大きすぎる
と、1次燃焼用予混合ガスの火炎は燃焼空間S内で燃焼
を完結し、2次燃焼用予混合ガスへの着火能力が低下す
るため、やはり2次燃料ガスをあまり減量できず、安定
で良好な燃焼を維持しつつ燃焼装置全体での燃焼負荷を
大きく変化させることができない。 上述したように、
次燃料ガスによる予混合火炎がパイロット火炎的に使用
でき、ガスタービン負荷に応じ混合気の空気比が変化す
2次燃料ガスによる予混合火炎の燃焼を促進させるよ
うになるので、従来の技術のような希薄予混合火炎に比
べ遥かに安定に燃焼するため用いられてきた拡散火炎パ
イロット燃焼を一切必要とせず、着火用燃料ガスは必要
に応じ流量を絞るか供給を停止し、従来は燃焼が不安定
で低NO と負荷変化の両立が困難であった希薄予混合
燃焼のみで、燃焼の大きな負荷変化にも対応し、かつ非
常に低NO かつ安定な燃焼を実現できる。また、前記
とは別の希薄予混合燃焼だけを用いた従来技術にあるよ
うな、比較的大きな予混合燃焼室を段階的に接続したよ
うな燃焼装置構造である必要も無く、また、予混合燃焼
安定化のためガスタービン負荷に応じ減量された燃料ガ
スに比例して各混合気噴出孔へ流入する空気の量を制御
する必要もなく、燃焼の大きな負荷変化にも対応し、か
つ非常に低NO かつ安定な燃燃を実現できる。前述の
1次燃焼用予混合ガスおよび2次燃焼用予混合ガスの設
定空気比は、燃焼用空気が予熱される場合にはより大き
な値に設定できる。
First, at the time of startup, an ignition fuel gas is supplied from a conduit 11 to the ignition fuel gas ejection hole 1 to cause diffusion combustion. Then, after the gas turbine started, operation became stable.
Air supply from the gas turbine to the combustion device is constant
After that, the primary fuel gas is supplied from the conduit 12 at a constant supply amount, and is introduced into the combustion device and is supplied to the inner container of the combustion device.
Of the entire area of each provided air inflow passage,
Inflow air and swirler 14 distributed and in proportion to the passage area
And the mixture is supplied as a pre-mixed gas for primary combustion having an air ratio of about 1.3 to the ejection hole 2, and is supplied to the ignition fuel gas ejection hole 1.
It is ignited by a diffusion flame from Premixing gas for primary combustion
After the ignition of the gas, the supply of fuel gas for ignition to the conduit 11 is stopped.
it can. Thereafter, the supply of the secondary fuel gas from the conduit 13 is started.
Start, the supply amount is controlled in accordance with the load, and
Air and swirler distributed in proportion to the passage area 5
Mixing just before 15
To perform premixed combustion. The lean premixed combustion using the secondary fuel gas is performed at an air ratio of about 1.4 at the maximum load of the gas turbine . The air ratio 1.4 is adjusted by controlling the supply amount of the secondary fuel gas, and the combustion air is proportional to the passage area of the swirler 15 as described above.
Is distributed and flows in. For this reason, gas turbine
At the partial load of the gas, it generally flows into the combustion device
The total air volume does not change and only the secondary fuel gas supply is the load
Of the premixed flame with the secondary fuel gas
Combustion has a significantly higher air ratio than when the gas turbine is at maximum load.
Ultra-lean premix, which is usually difficult to continue burning on its own
Mixed combustion occurs, causing misfire or unstable combustion. I
However, as mentioned above, only the base of the flame is very
Primary fuel gas that is protected in a small combustion space S and is performing stable combustion
Premixed flame itself and premixed gas outlet for secondary combustion
Immediately after 3 the heat and active radicals from the primary premixed flame
Supplied by the swirlers 14 and 15 described above.
Thus, stable combustion can be maintained. Also for secondary combustion
The premixed gas itself is also injected from the premixed gas outlet 3 for the secondary combustion.
Premixed gas for primary combustion in the passage section before being discharged
For primary combustion through a partition wall installed downstream of the outlet 2
Heat from the premixed flame by the premixed gas is transferred and heated
At the time when it is ejected from the premixed gas ejection hole 3 for secondary combustion
It has become easy combustion apparatus structure performs the start of combustion in. Up
In order to perform combustion as described above, premixing for primary combustion
Air ratio mentioned above the air ratio lambda 1 gas 1.3 Set around
Consider the propagation speed of premixed flame and stabilize combustion
Only the bare base needed for
For secondary combustion with a large air volume ratio that is difficult to maintain independently
Make sufficient contact with premixed gas and keep burning stable
In the shape range of the combustion space S described later.
Is important. This reduces the combustion space S
For pre-mixing gas 2 for primary combustion and pre-mixing for secondary combustion
If the positional relationship of the gas ejection holes 3 is too close, the primary
The flame of the premixed gas for combustion is a lean and unstable secondary combustion
Greatly affected by premixed gas for use
Secondary fuel gas can not be reduced so much
Significantly changes the combustion load of the entire combustion device while maintaining burning
I can't let it. Also, the combustion space S is too large
And the flame of the premixed gas for primary combustion burns in the combustion space S
And the ability to ignite the premixed gas for secondary combustion is reduced
As a result, the amount of secondary fuel gas cannot be reduced so much and is stable
While maintaining good combustion and reducing the combustion load of the entire combustion device.
It cannot be changed significantly. As mentioned above, 1
The premixed flame by the secondary fuel gas can be used as a pilot flame, and the air ratio of the mixture changes according to the gas turbine load.
Since the combustion of the premixed flame by the secondary fuel gas is promoted, compared with the lean premixed flame as in the prior art,
Diffusion flames that have been used for much more stable combustion
Does not require any burning of the ilot and requires fuel gas for ignition
The flow is reduced or the supply is stopped according to
In lean premixed balance of the load change and the low NO x has been difficult
Combustion only, responds to large changes in combustion load, and
Always achieve low NO x and stable combustion. Also,
There is another technology that uses only lean premixed combustion.
A relatively large premixed combustion chamber was connected in stages.
It is not necessary to have a combustion device structure such as
Fuel gas reduced according to gas turbine load for stabilization
Control the amount of air flowing into each mixture outlet in proportion to
Without having to deal with large changes in combustion load.
One possible to achieve very low NO x and stable combusted. The set air ratio of the primary combustion premixed gas and the secondary combustion premixed gas can be set to a larger value when the combustion air is preheated.

【0017】図4は大気圧条件下で1次燃焼用予混合ガ
スの空気比λ の設定値を0.6から1.5まで数種類
に変化させたときの、燃焼装置の負荷を示す燃焼装置全
体の空気比λとO2濃度0%換算で示したNOの排出
量及び燃焼可能範囲の結果を示す。
FIG. 4 shows a premixing gas for primary combustion under atmospheric pressure conditions .
Several nest the set value of the air ratio λ 1 from 0.6 to 1.5
The total combustion device showing the load of the combustion device when changed to
The results of emissions and combustion range of the NO x shown in air ratio λ and the O2 concentration of 0% in terms of the body.

【0018】この図からわかるように、1次燃焼用予混
合ガスの空気比λ は0.6〜1.5の広い範囲で安定
に燃焼し、かつNOの排出量も少ない。ただし、NO
の排出量を非常に低い値(たとえば20ppm以下)
に抑える場合は、1次燃焼用予混合ガスの空気比λ
1.1以上が望ましい。また広い燃焼装置の負荷範囲す
なわち燃焼装置全体の空気比λでの燃焼の安定性を考え
た場合は、1次燃焼用予混合ガスの空気比λ は1.3
以下が望ましい。世つて、超低NO性と広い燃焼装置
の負荷範囲での火炎安定性を同時に達成する場合は、空
気比1.1〜1.3の範囲が1次燃焼用予混合ガスの空
気比λ の最適値であるといえる。
As can be seen from this figure , the premix for primary combustion
Air ratio lambda 1 of the multiplexer gas stably combusted in a wide range of 0.6 to 1.5, and emissions of the NO x is small. However, NO
Extremely low x emissions (eg less than 20 ppm)
In this case, the air ratio λ 1 of the premixed gas for primary combustion is desirably 1.1 or more. Also, the load range of the wide combustion device
That is, when considering the stability of combustion at the air ratio λ of the entire combustion apparatus, the air ratio λ 1 of the premixed gas for primary combustion is 1.3.
The following is desirable. World connexion, ultra low NO x and broad combustor
In the case of simultaneously achieving flame stability in the load range, the air ratio in the range of 1.1 to 1.3 must be equal to the empty space of the premixed gas for primary combustion.
It can be said that the optimum value of the air ratio λ 1.

【0019】図5は負荷変動に対する1次燃料ガスと2
次燃料ガスの供給量の変化を示す。この図からわかるよ
うに、1次燃料ガスの供給量は負荷の変化にかかわらず
常に一定であり、負荷によらず一定量流入する空気と混
合し、一定の空気比(理論空気量に対する実際の空気量
の比)で安定燃焼を行う。これに対して2次燃料ガスの
供給量は負荷の変動に対応して増減させる。このような
燃焼形態をとることにより、NOx の生成量が多い拡散
燃焼を用いることなく安定燃焼が得られる。
FIG . 5 shows primary fuel gas and 2
The change in the supply amount of the secondary fuel gas is shown. As can be seen from this figure, the supply amount of the primary fuel gas is always constant irrespective of the change in the load, and is mixed with a constant amount of air flowing in regardless of the load.
At the same time , stable combustion is performed at a constant air ratio (the ratio of the actual air amount to the theoretical air amount). On the other hand, the supply amount of the secondary fuel gas is increased or decreased in accordance with the change in the load. By taking such a combustion mode, stable combustion is obtained without using the diffusion combustion products a large amount of NO x.

【0020】ところで、本実施例による燃焼装置のノズ
ル構造の良否は、燃焼振動や保炎性などの燃焼安定性と
ノズル部の過熱耐久性等をもとに判断されるものであ
り、この予混合ノズルの場合は、一次予混合ガス噴出口
下流側に形成される燃焼空間Sの形状と大きさがこれら
に大きく影響するものと考えられる。
By the way, the quality of the nozzle structure of the combustion apparatus according to the present embodiment is determined based on combustion stability such as combustion vibration and flame holding properties, and overheat durability of the nozzle portion. In the case of the mixing nozzle, it is considered that the shape and size of the combustion space S formed downstream of the primary premixed gas ejection port greatly affect these.

【0021】そこで本発明者らはノズル部の寸法d1
2 、d3 、d4 、L1 、L2 を種々変えて燃焼実験を
したところ、次のようなことが判明した。
Therefore, the present inventors have determined the dimensions d 1 of the nozzle portion,
Combustion experiments with various changes in d 2 , d 3 , d 4 , L 1 , L 2 revealed the following.

【0022】(a)L1 /d3 が小さいと1次予混合ガ
スによる火炎が充分な燃焼空間を確保できず、外側の2
次予混合ガスの影響を受けるため保炎性能が低下する。
また、L1 /d3 が大きいと隔壁のつば4が過熱される
ため耐久性の点で問題がある。
(A) If L 1 / d 3 is small, the flame by the primary premixed gas cannot secure a sufficient combustion space, and the outer 2
Flame holding performance decreases due to the influence of the next premixed gas.
Also, if L 1 / d 3 is large, the flange 4 of the partition wall is overheated, so that there is a problem in durability.

【0023】(b)L2 /d3 の値が大きいと、1次予
混合ガスによる火炎が2次予混合ガスの影響を受けるた
め保炎性の低下や燃焼振動が発生し易くなる。この値が
マイナスになるとすなわち隔壁が燃焼室内へ極端に突き
出ると、この部分が過熱され、耐久性の点で問題があ
る。
(B) If the value of L 2 / d 3 is large, the flame due to the primary premixed gas is affected by the secondary premixed gas, so that the flame holding property is reduced and combustion oscillation is liable to occur. If this value becomes negative, that is, if the partition wall protrudes extremely into the combustion chamber, this portion is overheated, and there is a problem in durability.

【0024】(c)d2 /d3 の値が大きいと1次混合
ガスによる火炎が充分な燃焼空間を確保できずに保炎性
能が低下する。d2 /d3 の値の最小値は特にないが、
小さいと全体のノズル形が大きくなるので適正ではな
い。
(C) If the value of d 2 / d 3 is large, the flame due to the primary mixed gas cannot secure a sufficient combustion space, and the flame holding performance decreases. Although there is no particular minimum value of d 2 / d 3 ,
If it is small, the overall nozzle shape becomes large, so it is not appropriate.

【0025】その結果、上記(a),(b),(c)に
ついて次の条件を満足すれば燃焼装置として満足するも
のが得られることが判明した。
As a result, it was found that if the following conditions (a), (b) and (c) were satisfied, a satisfactory combustion device could be obtained.

【0026】(a) 0.2 < L1 / d3 < 1.0 (b)−0.5 < L2 / d3 < 0.5 0.1 < d2 / d3 < 1.0 上記条件はすべて満足する必要はないが、多くを満足す
るほど好ましい結果が得られることは言うまでもない。
[0026] (a) 0.2 <L 1 / d 3 <1.0 (b) -0.5 <L 2 / d 3 <0.5 0.1 <d 2 / d 3 <1.0 above Not all of the conditions need to be satisfied, but it goes without saying that the more the more, the better the results.

【0027】1次燃焼用混合ガス噴出孔2と2次燃焼用
混合ガス噴出孔3との間につば4が設けられているため
に、1次燃焼用混合ガスの燃焼により形成される火炎が
2次燃焼用混合ガスの燃焼により形成される火炎の影響
を強く受けることがなく、低負荷時に2次燃焼用混合ガ
スの供給量が減少して火炎の勢いが弱くなっても1次燃
焼用混合ガスの燃焼により形成される火炎が消えたりす
ることがない。
Since the flange 4 is provided between the primary combustion mixed gas outlet 2 and the secondary combustion mixed gas outlet 3, a flame formed by the combustion of the primary combustion mixed gas is formed. It is not strongly affected by the flame formed by the combustion of the secondary combustion mixed gas, and is used for the primary combustion even when the supply amount of the secondary combustion mixed gas is reduced at low load and the flame becomes weak. The flame formed by the combustion of the mixed gas does not disappear.

【0028】上記実施例において定格条件での1次燃料
ガスの供給割合を20%前後とし、空気比がやや高くN
X の排出濃度の高い1次燃料ガスの供給割合を少なく
することでNOX の排出を抑制することができる。
In the above embodiment, the supply ratio of the primary fuel gas under the rated condition was set at about 20%, and the air ratio was slightly higher.
O X The feed rate of the discharge high concentration of primary fuel gas to reduce in the can suppress the emission of NO X.

【0029】上記実施例においては、着火用燃料ガス噴
出孔1の周囲に1次および2次の燃焼用混合ガス噴出孔
2および3を同心状に設けたが、さらにその外側に同心
状に燃焼用混合ガス噴出孔を設け、順次燃焼させるよう
にすれば、負荷の変動に対してさらに細かい調整ができ
る。
In the above-described embodiment, the primary and secondary combustion mixed gas discharge holes 2 and 3 are provided concentrically around the ignition fuel gas discharge hole 1, but the fuel gas discharge holes 2 and 3 are further concentrically disposed outside thereof. If the mixed gas injection holes are provided and are sequentially burned, finer adjustments can be made with respect to variations in load.

【0030】上記実施例は本発明による燃焼方法および
燃焼装置をガスタービンに適用した場合を例示したが、
本発明は、その他の装置に適用することもできることは
もちろんである。
The above embodiment has exemplified the case where the combustion method and the combustion apparatus according to the present invention are applied to a gas turbine.
The present invention can of course be applied to other devices.

【0031】[0031]

【発明の効果】以上説明したように、本発明において
は、外側容器と内側容器から構成され、該外側容器と該
内側容器との間に外部から空気が供給される燃焼装置に
おいて、前記内側容器の中心部分に着火用燃料ガス噴出
孔を有し、さらに該着火用燃料ガス噴出孔の周囲に円筒
状の空気通路であり、かつ該通路への空気の流入時に一
定量の燃料ガスをあらかじめ混合して空気と燃料ガスと
の混合比が一定となった1次燃焼用予混合ガスの噴出孔
でもある孔を同心円状に設け、さらに該1次燃焼用予混
合ガスの噴出孔の外周にも円筒状の空気通路であり、か
つ該通路への空気の流入時に燃焼全体の負荷に応じて供
給量を制御される燃料ガスをあらかじめ混合して空気と
燃料ガスとの混合比を可変とした2次燃焼用予混合ガス
の噴出孔でもある孔を同心円状に設け、さらに前記1次
燃焼用予混合ガス噴出孔と2次燃焼用予混合ガス噴出孔
とが同一流入方向で隔壁のみにより隔てられ、かつ該隔
壁は前記1次燃焼用予混合ガス噴出孔の下流につばのよ
うにせり出して前記2次燃焼用予混合ガス噴出孔までの
間に小さな窪みを形成し、該窪みは1次燃焼用予混合ガ
スによる火炎の根元部分のみが収まる程度に主燃焼室に
比べ非常に小さく、該窪みより下流の1次燃焼用予混合
ガスによる火炎の残り部分が前記2次燃焼用予混合ガス
噴出孔に達し、2次燃焼用予混合ガスと一体となって燃
焼するように構成したので、排ガス中にNO成分の多
い拡散燃焼は起動時のみとなりその後は図4に示すよう
燃焼装置全体の空気比λが1.3〜3.5程度の広い領
域において未燃分の排出を低い値に抑えたままでNO
の排出を抑えることができ、従来の燃焼装置に比べて大
幅な低NO化が実現できる。
As described above, the present invention comprises an outer container and an inner container , and the outer container and the inner container.
Combustion device to which air is supplied from outside to the inner container
Injection of fuel gas for ignition into the center of the inner container
A hole, and a cylinder around the ignition fuel gas ejection hole.
Air passage, and when air flows into the passage,
A fixed amount of fuel gas is mixed in advance and air and fuel gas
Of the premixed gas for primary combustion with a constant mixing ratio
Holes are provided concentrically and premixed for the primary combustion
Cylindrical air passages are also provided on the outer periphery of the joint gas
At the time of air flowing into the passage, depending on the overall combustion load.
Fuel gas whose supply is controlled is mixed in advance with air
Premixed gas for secondary combustion with variable mixing ratio with fuel gas
Holes are formed concentrically, and the primary
Premixed gas vent for combustion and premixed gas vent for secondary combustion
Are separated only by a partition in the same inflow direction, and the partition
The wall is a brim downstream of the primary combustion premixed gas outlet.
To the secondary combustion premixed gas outlet.
A small depression is formed between the premixing gas for the primary combustion and the depression.
In the main combustion chamber so that only the base of the flame
Premix for primary combustion downstream of the depression
The remainder of the gas flame is the premixed gas for secondary combustion
The fuel reaches the orifice and burns together with the premixed gas for secondary combustion.
And then, is baked, then large diffusion combustion of NO x components in the exhaust gas is only the startup as shown in FIG. 4
NO x remains air ratio of the entire combustion apparatus λ is suppressed emission of unburned to a low value over a wide area of about 1.3 to 3.5
It is possible to suppress the discharge, it is possible to realize great reduction NO x as compared to the conventional combustion apparatus.

【0032】さらに、負荷の変動に対しては2次燃料ガ
スの供給量のみを制御するだけでよいので、従来の燃焼
装置のように、空気量を可変するための機構が不要とな
り、装置の構造が簡潔にでき、小型化が可能となる。
Further, since only the supply amount of the secondary fuel gas needs to be controlled with respect to the fluctuation of the load, a mechanism for varying the amount of air, unlike a conventional combustion device, is not required, and the device is not required. The structure can be simplified and the size can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による燃焼装置の一実施例の軸方向断面
図である。
FIG. 1 is an axial sectional view of one embodiment of a combustion device according to the present invention.

【図2】図1に示した燃焼装置の端面図である。FIG. 2 is an end view of the combustion device shown in FIG.

【図3】本発明による燃焼装置のノズル部の寸法を示し
た部分拡大図である。
FIG. 3 is a partially enlarged view showing dimensions of a nozzle portion of the combustion device according to the present invention.

【図4】本発明による燃焼装置を用いて1次燃焼用混合
ガスの空気比/λ を変えて燃焼実験を行った結果のN
排出量の変化を示す図である。
FIG. 4 shows N as a result of performing a combustion experiment by changing the air ratio / λ 1 of the mixed gas for primary combustion using the combustion apparatus according to the present invention.
It is a figure which shows the change of Ox discharge amount.

【図5】本発明による燃焼方法における燃料の供給状態
を示す図である。
FIG. 5 is a diagram showing a fuel supply state in the combustion method according to the present invention.

【符号の説明】[Explanation of symbols]

1 着火用燃料ガス噴出孔 2 1次燃焼用混合ガス噴出孔 3 2次燃焼用混合ガス噴出孔 4 つば 11、12、13 燃料ガス供給用導管 20 燃焼室 100 筒体 100a 空気導入口 REFERENCE SIGNS LIST 1 ignition fuel gas outlet 2 primary combustion mixed gas outlet 3 secondary combustion mixed gas outlet 4 collar 11, 12, 13 fuel gas supply conduit 20 combustion chamber 100 cylinder 100 a air inlet

───────────────────────────────────────────────────── フロントページの続き 特許法第30条第1項適用申請有り 1991年10月27日〜11 月1日 GAS TURBINE SOCIETY O F JAPAN主催の「PROCEEDINGS OF THE 1991 YOKOHAMA INTERNAT IONAL GAS TURBINE CONGRES S」において文書をもって発表 (56)参考文献 特開 昭57−70322(JP,A) 特開 昭59−183202(JP,A) 特開 昭62−158906(JP,A) 特開 昭52−71735(JP,A) 特開 昭59−196964(JP,A) 実開 昭52−62525(JP,U) 実開 昭61−69671(JP,U) 実開 昭62−24274(JP,U) 実開 平2−100060(JP,U) 実開 昭59−87508(JP,U) (58)調査した分野(Int.Cl.7,DB名) F23C 11/00 326 F02C 7/22 F23R 3/28 ────────────────────────────────────────────────── ─── Continuing from the front page Application for Patent Law Article 30 (1) is available October 27-November 1, 1991 “GAME TURBINE SOCIETY OF JAPAN” (56) References JP-A-57-70322 (JP, A) JP-A-59-183202 (JP, A) JP-A-62-158906 (JP, A) JP-A-52-71735 (JP, A) JP-A-59-196964 (JP, A) JP-A-52-62525 (JP, U) JP-A-61-69671 (JP, U) JP-A-62-24274 (JP, U) 2-100060 (JP, U) Japanese Utility Model Application Showa 59-87508 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F23C 11/00 326 F02C 7/22 F23R 3/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外側容器と内側容器から構成され、該外
側容器と該内側容器との間に外部から空気が供給される
燃焼装置において、前記内側容器の中心部分に着火用燃
料ガス噴出孔を有し、さらに該着火用燃料ガス噴出孔の
周囲に円筒状の空気通路であり、かつ該通路への空気の
流入時に一定量の燃料ガスを予め混合して空気と燃料ガ
スとの混合比が一定となった1次燃焼用予混合ガスの噴
出孔でもある孔を同心円状に設け、さらに該第1次燃焼
用予混合ガスの噴出孔の外周にも円筒状の空気通路であ
り、かつ該通路への空気の流入時に負荷に応じて供給量
を制御される燃料ガスを予め混合して空気と燃料ガスと
の混合比を可変とした2次燃焼用予混合ガスの噴出孔で
もある孔を同心円状に設け、さらに前記1次燃焼用予混
合ガス噴出孔と2次燃焼用予混合ガス噴出孔とが同一流
入方向で隔壁のみにより隔てられ、かつ該隔壁は前記1
次燃焼用予混合ガス噴出孔の下流につばのようにせり出
して前記2次燃焼用予混合ガス噴出孔までの間に小さな
窪みを形成し、該窪みは1次燃焼用予混合ガスによる火
炎の根元部分のみが収まる程度に主燃焼室に比べ非常に
小さく、該窪みより下流の1次燃焼用予混合ガスによる
火炎の残り部分が前記2次燃焼用予混合ガス噴出孔に達
し、2次燃焼用予混合ガスと一体となって燃焼するよう
に構成したことを特徴とする燃焼装置。
1. A combustion device comprising an outer container and an inner container, wherein air is supplied from the outside between the outer container and the inner container, wherein a fuel gas injection hole for ignition is provided at a central portion of the inner container. And a cylindrical air passage around the ignition fuel gas ejection hole, and a predetermined amount of fuel gas is premixed when air flows into the passage so that the mixing ratio of air and fuel gas is reduced. A hole, which is also a discharge hole for the premixed gas for primary combustion which has become constant, is provided concentrically, and a cylindrical air passage is also provided on the outer periphery of the discharge hole for the premixed gas for primary combustion. is also the ejection holes of the secondary combustion premixed gas mixture ratio was variable and premixed with air and fuel gas of the fuel gas to be controlling the supply amount in accordance with the load at the time of inflow of air into the passage Holes are provided concentrically, and the premixed gas injection hole for the primary combustion and the secondary The premixed gas ejection hole for combustion is separated by only a partition wall in the same inflow direction, and the partition wall is
It protrudes like a brim downstream of the secondary combustion premixed gas outlet to form a small recess between the secondary combustion premixed gas outlet and the flame, which is formed by the primary combustion premixed gas. It is very small compared to the main combustion chamber to the extent that only the root portion is accommodated, and the remainder of the flame of the primary combustion premixed gas downstream of the depression reaches the secondary combustion premixed gas injection hole and the secondary combustion A combustion device characterized in that it is configured to burn integrally with a premixed gas for use.
【請求項2】 請求項1に記載の燃焼装置の燃焼方法に
おいて、中心部に設けた着火用燃料ガス噴出孔から着火
用燃料ガスを噴出させて燃焼させ、これと同時に燃焼装
置形状により流入量が一定となる空気と、空気と燃料ガ
スとの混合比が燃焼室での火炎を安定に維持するに必要
な一定の混合比になるよう一定量に制御された燃料ガス
とからなる1次燃焼用混合ガスを前記着火用燃料ガス噴
出孔の周囲に設けた1次燃焼用混合ガス噴出孔から噴出
して燃焼させ、1次燃焼用混合ガスの着火後着火用燃料
ガスの供給を必要に応じて停止もしくは減量し、その後
負荷に応じて増減量する燃料ガスと負荷によらず燃焼装
置形状により流入量が一定となる空気とからなる2次燃
焼用混合ガスを前記1次燃焼用混合ガス噴出孔の外周に
設けた2次燃焼用混合ガス噴出孔から噴出して燃焼さ
せ、その後は2次燃焼用混合ガス中の燃料ガスの比率を
負荷に応じて制御することを特徴とする燃焼方法。
2. The combustion method for a combustion device according to claim 1, wherein the ignition fuel gas is ejected from an ignition fuel gas ejection hole provided at a central portion to burn the fuel gas, and at the same time, the inflow amount depends on the shape of the combustion device. Primary combustion consisting of air having a constant pressure and fuel gas controlled to a constant mixture ratio such that the mixture ratio of air and fuel gas becomes a constant mixture ratio necessary for maintaining a stable flame in the combustion chamber. The primary fuel mixture gas is ejected from the primary fuel mixture gas discharge hole provided around the ignition fuel gas discharge hole and burned, and after the primary combustion mixture gas is ignited, the ignition fuel gas is supplied as required. The secondary combustion mixed gas consisting of fuel gas which is stopped or reduced in volume and then increases or decreases in accordance with the load and air whose inflow is constant depending on the shape of the combustion device regardless of the load is injected into the primary combustion mixed gas. Secondary combustion mixture provided on the outer periphery of the hole A combustion method characterized by ejecting from a joint gas ejection hole and burning, and thereafter controlling the ratio of the fuel gas in the secondary combustion mixed gas according to the load.
JP03340175A 1990-11-29 1991-11-29 Combustion device and combustion method Expired - Lifetime JP3087140B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-331897 1990-11-29
JP33189790 1990-11-29

Publications (2)

Publication Number Publication Date
JPH05296412A JPH05296412A (en) 1993-11-09
JP3087140B2 true JP3087140B2 (en) 2000-09-11

Family

ID=18248855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03340175A Expired - Lifetime JP3087140B2 (en) 1990-11-29 1991-11-29 Combustion device and combustion method

Country Status (1)

Country Link
JP (1) JP3087140B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512352B1 (en) * 2013-11-12 2015-04-23 한국생산기술연구원 Low NOx Burner using forced internal recirculation of flue gas and method thereof
JP6430339B2 (en) * 2015-07-31 2018-11-28 株式会社エコム Flameless combustion equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624805Y2 (en) * 1975-11-04 1981-06-11
JPS5770322A (en) * 1980-10-17 1982-04-30 Hitachi Ltd Premixing type burner

Also Published As

Publication number Publication date
JPH05296412A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP3183053B2 (en) Gas turbine combustor and gas turbine
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
JP3335713B2 (en) Gas turbine combustor
JPH02309124A (en) Combustor and operating method thereof
JPS6057131A (en) Fuel feeding process for gas turbine combustor
JPH02208417A (en) Gas-turbine burner and operating method therefor
US5901549A (en) Pilot burner fuel nozzle with uneven fuel injection for premixed type combustor producing long and short flames
JP3954138B2 (en) Combustor and fuel / air mixing tube with radial inflow dual fuel injector
JPH09166326A (en) Gas turbine combustion device
CA2599113C (en) Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
JP3087140B2 (en) Combustion device and combustion method
JP2010054087A (en) Gas turbine combustor and operating method of gas turbine combustor
JP7307441B2 (en) combustor
JP3873119B2 (en) In-cylinder swirl combustor
JPH11101435A (en) Gas turbine combustor
JP3035410B2 (en) Combustion device and combustion method
JPH10160163A (en) Nitrogen oxide reduction structure of gas turbine combustor
JP3110558B2 (en) Combustor combustion method
JPH05332512A (en) Burner for gas turbine combustion device
JPH0828873A (en) Gas turbine combustion device
JP3449802B2 (en) Gas combustion equipment
JPH08296851A (en) Gas turbine burner and burning method therefor
JP3951155B2 (en) Low NOx steam injection combustor
JPS59173633A (en) Gas turbine combustor
JPH05321693A (en) Gas turbine combustor and operation thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980602

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12