JP3086482B2 - Titanium materials for batteries - Google Patents

Titanium materials for batteries

Info

Publication number
JP3086482B2
JP3086482B2 JP41369990A JP41369990A JP3086482B2 JP 3086482 B2 JP3086482 B2 JP 3086482B2 JP 41369990 A JP41369990 A JP 41369990A JP 41369990 A JP41369990 A JP 41369990A JP 3086482 B2 JP3086482 B2 JP 3086482B2
Authority
JP
Japan
Prior art keywords
titanium
corrosion resistance
resistance
carbonitride
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP41369990A
Other languages
Japanese (ja)
Other versions
JPH04223054A (en
Inventor
千博 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP41369990A priority Critical patent/JP3086482B2/en
Publication of JPH04223054A publication Critical patent/JPH04223054A/en
Application granted granted Critical
Publication of JP3086482B2 publication Critical patent/JP3086482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池用チタン材料に係
り、特にリチウム電池における正極活物質を支えるチタ
ン材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium material for a battery, and more particularly to a titanium material for supporting a positive electrode active material in a lithium battery.

【0002】[0002]

【従来の技術】近年、カメラ、コンピュータ等の精密機
器のより高性能化に伴い、電池に要求される諸特性も益
々きびしいものとなってきている。これに対応して電池
特性が非常に優れたリチウム電池が広く一般に使用され
るようになった。特にメモリーバックアップ用に使用さ
れるリチウム電池は非常にきびしい信頼性が要求され、
これに使用される材料に対する諸特性も非常にきびしく
制約されるようになっている。
2. Description of the Related Art In recent years, with the advancement of performance of precision instruments such as cameras and computers, various characteristics required for batteries have become increasingly severe. Correspondingly, lithium batteries having extremely excellent battery characteristics have been widely and generally used. In particular, lithium batteries used for memory backup require extremely strict reliability.
The properties for the materials used for this are also very severely restricted.

【0003】[0003]

【発明が解決しようとする課題】このような状況下、リ
チウム電池の正極活物質である非常に腐食性が強い電解
二酸化マンガンやフッ化カーボンを支えている材料の耐
食性を向上させることが重要な課題となってきた。ステ
ンレス鋼は、比較的安価でしかも耐食性も比較的高いた
め当初よりリチウム電池の正極活物質の支持材として使
用されているが、上記の理由から一部きびしい環境下で
使用されるリチウム電池では腐食の可能性があり、正極
活物質の支持材に純チタンが使用されるようになってき
た。しかしながら、これでもまだ十分とはいえずさらに
耐食性の高い材料の開発が望まれている。
Under these circumstances, it is important to improve the corrosion resistance of the material supporting the highly corrosive electrolytic manganese dioxide and carbon fluoride, which are the positive electrode active material of the lithium battery. It has been an issue. Since stainless steel is relatively inexpensive and has relatively high corrosion resistance, stainless steel has been used as a support material for the positive electrode active material of lithium batteries from the beginning. Pure titanium has come to be used as a support for the positive electrode active material. However, this is still not enough, and there is a demand for the development of a material having higher corrosion resistance.

【0004】本発明は上記の事情に鑑みてなされたもの
であり、耐食性が良く、かつ表面硬さが大きくならず、
しかも接触抵抗が上昇しない電池用チタン材料を提供す
ることを目的としている。
[0004] The present invention has been made in view of the above circumstances, has good corrosion resistance, does not increase the surface hardness,
Moreover, it is an object of the present invention to provide a battery titanium material that does not increase contact resistance.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するために、本発明者が鋭意努力した結果、本発明を
完成したものである。すなわち本発明の特徴は、窒化チ
タン、炭化チタン、炭窒化チタンの1種以上から成る皮
膜が、チタン表面積の20%以上80%以下のチタン表
面に、微細に均一に分散されて独立して形成され、前記
独立して形成された各皮膜の一個当たりの表面積は0.
05mm 2 以下とされていることを特徴とする電池用チ
タン材料である。
Means for Solving the Problems The present invention has been accomplished as a result of the inventor's intensive efforts to achieve the above objects. That feature of the present invention, Ji nitride
A skin made of at least one of titanium, titanium carbide and titanium carbonitride
The film is made of titanium having a surface area of 20% to 80% of the titanium surface area.
On the surface, finely and uniformly dispersed and independently formed, the
The surface area of each independently formed film is 0.1 mm.
A titanium material for a battery, characterized in that the thickness is not more than 05 mm 2 .

【0006】窒化チタン、炭化チタン、炭窒化チタンを
チタン面上に被覆する方法は種々有り、その代表的な方
法としてはイオンプレーティング、蒸着、ガス窒化(ガ
ス炭窒化)が挙げられるが、これらの方法による表面処
理は、一般的にチタン面上に一様均一に被覆される。し
かしながら、本発明者が研究した結果によれば、上記方
法によりチタン面上に一様均一に窒化チタン、炭化チタ
ン、炭窒化チタンを被覆すると耐食性は向上するが、電
池用チタン材料としては大きな欠点が生じることが判明
した。つまり、第1にリチウム電池の正極活物質の支持
材は、ラス加工を行なう必要があることから前記方法に
より製造されたチタン材は表面が非常に硬く実質的に加
工が非常に困難となる欠点が生じる。第2に、支持材は
当然のことながら電流を流す必要があり、窒化チタン、
炭化チタン、炭窒化チタンがチタン面上に存在すると接
触抵抗が上昇し、電池特性が著しく悪化するという欠点
が生じることを見出した。
There are various methods for coating titanium nitride, titanium carbide, and titanium carbonitride on a titanium surface. Typical methods include ion plating, vapor deposition, and gas nitriding (gas carbonitriding). Is generally uniformly coated on the titanium surface. However, according to the results of research conducted by the present inventor, corrosion resistance is improved when titanium nitride, titanium carbide, and titanium carbonitride are uniformly and uniformly coated on the titanium surface by the above method, but a major drawback as a titanium material for batteries. Was found to occur. That is, first, since the support material for the positive electrode active material of the lithium battery needs to be lathed, the titanium material produced by the above method has a very hard surface and is substantially difficult to process. Occurs. Second, the support must, of course, carry current, and titanium nitride,
It has been found that when titanium carbide and titanium carbonitride are present on the titanium surface, the contact resistance increases, and the disadvantage that the battery characteristics are significantly deteriorated occurs.

【0007】つまり、窒化チタン、炭化チタン、炭窒化
チタンがチタンを全面被覆しなければ耐食性が維持され
ないのではなく、これらの物質は電気的化学的にチタン
を貴に保つ効果がある。このため、本発明者は、窒化チ
タン、炭化チタン、炭窒化チタンの1種以上から成る皮
膜を部分的に独立させて形成する耐食性に優れたチタン
材の製造方法を開発した(特開平1−159364号公
報)が、前記製造方法で製造したチタン材料は、前記し
た耐食性、表面硬さ及び接触抵抗の面で未だ不十分であ
ることが判明した
That is, if titanium nitride, titanium carbide, and titanium carbonitride do not entirely cover titanium, corrosion resistance is not maintained, but these substances have an effect of electrochemically keeping titanium noble . For this reason, the present inventor has developed a skin made of at least one of titanium nitride, titanium carbide, and titanium carbonitride.
Titanium with excellent corrosion resistance that forms the film partially independently
A method for manufacturing a material has been developed (Japanese Patent Laid-Open No. 1-159364).
Report), but the titanium material produced by the production method
Corrosion resistance, surface hardness and contact resistance are still insufficient.
Turned out to be .

【0008】本発明者は、窒化チタン、炭化チタン、炭
窒化チタンの被覆量及び独立した各皮膜の大きさと、耐
食性、表面硬さ及び接触抵抗との間には密接な関係があ
ことを見い出した。そこで、窒化チタン、炭化チタ
ン、炭窒化チタンの皮膜表面積のチタンの表面積に対す
る割合、すなわち、被覆率を適切な範囲に調整するとと
もに、これらの物質チタン面上に微細にしかも均一に
分散して形成することにより、耐食性を向上させなが
ら、第1の欠点である表面硬さの上昇を低く抑えること
ができるとともに、金属チタン表面が直接正極活物質と
微細に接触できるようになり、第2の欠点である接触抵
抗の上昇も低く抑えることができ、しかも被覆量が比較
的少なくても十分な耐食効果が得られることが判明し
た。この知見によって発明を完成するに至った。
The present inventor has found that there is a close relationship between the coating amount of titanium nitride, titanium carbide and titanium carbonitride and the size of each independent film, and the corrosion resistance, surface hardness and contact resistance. I found it. Therefore, titanium nitride, titanium carbide
The surface area of titanium carbonitride coating to the surface area of titanium
To adjust the coverage to an appropriate range.
Moni, by these substances formed by finely and uniform dispersed on titanium surface, but such improved corrosion resistance
Thus, the first disadvantage, that is, an increase in surface hardness can be suppressed to a low level, and the surface of the titanium metal can directly contact the positive electrode active material.
It has been found that fine contact can be achieved, and that the second disadvantage, that is, an increase in contact resistance can be suppressed, and a sufficient corrosion resistance effect can be obtained even when the coating amount is relatively small. This finding has led to the completion of the present invention.

【0009】[0009]

【実施例】以下本発明の具体的な実施例により本発明の
有効性を説明する。JIS1種相当品の0.1mm厚み
のチタンの表面を、ガス炭窒化、蒸着、イオンプレーテ
ィングにより炭窒化物を全面被覆した供試材、および圧
延、焼鈍により炭窒化物の被覆面積のチタン材料表面
積に対する割合を11%〜82%の範囲で変化させた供
試材を用意し(特願昭62−226867号参照)、そ
れぞれ金型磨耗量、電気抵抗量、耐食性を調べた。金型
摩耗量の測定は、実際のラス加工で金型が摩耗してチタ
ンにバリがでるまでの処理量を比較した。電気抵抗量
は、実際に電池に供試材を組み込み電池の内部抵抗の測
定を行った。耐食性は、実際に電池に供試材を組み込み
温度をかけ供試材が腐食するかどうか測定を行った結果
を表1に示す。
EXAMPLES The effectiveness of the present invention will be described below with reference to specific examples of the present invention. The surface of the titanium emission of 0.1mm thickness JIS1 or equivalent, gas carbonitride, deposition, test materials carbonitrides was entirely covered by an ion plating, and rolling of the covering sheet area of carbonitrides by annealing Titanium material surface
Test materials were prepared in which the ratio to the product was varied in the range of 11% to 82% (see Japanese Patent Application No. 62-226867), and the amount of mold wear, electric resistance, and corrosion resistance were examined. The measurement of the mold wear amount was performed by comparing the amount of processing until the mold was worn by actual lath processing and burrs appeared on titanium. The electrical resistance was measured by actually incorporating the test material into the battery and measuring the internal resistance of the battery. The corrosion resistance is shown in Table 1 as a result of actually incorporating the test material into the battery and applying a temperature to determine whether the test material corrodes.

【0010】表1 被覆表面積を変化させた場合の結果 Table 1 Results when coating surface area is changed

【0011】上記表1において、金型摩耗量の欄におけ
る○印は表面に何も処理されていないチタンと同程度の
金型摩耗を示し、△印は表面に何も処理されていないチ
タンよりやや金型摩耗が激しいものを示し、×印は表面
に何も処理されていないチタンに比較し非常に金型摩耗
が激しいものを示している。
In Table 1 above, a circle in the column of the amount of mold wear indicates the same level of mold wear as titanium whose surface is not treated, and a mark Δ indicates that the titanium is not treated. The ones with slightly severe mold wear are shown, and the crosses indicate those with extremely severe mold wear compared to titanium whose surface is not treated.

【0012】同じく抵抗量の欄における○印は表面に何
も処理されていないチタンと同程度の抵抗量を示し、△
印は表面に何も処理されていないチタンよりやや抵抗が
高いものを示し、×印は表面に何も処理されていないチ
タンに比較し非常に抵抗が高いものを示している。
Similarly, a circle in the column of resistance indicates a resistance equivalent to that of titanium whose surface is not treated.
The mark indicates that the resistance is slightly higher than that of the titanium that has not been treated on the surface, and the cross indicates that the resistance is much higher than that of the titanium that has not been treated on the surface.

【0013】同じく耐食性の欄における○印は表面に何
も処理されていないチタンと比較し非常に耐食性が高い
(実用上全く問題なし)ものを示し、△印は表面に何も
処理されていないチタンよりやや耐食性が高い(実用上
問題あり)ものを示し、×印は表面に何も処理されてい
ないチタンと同程度の耐食性(非常に悪い)を示してい
る。
[0013] Similarly, in the column of corrosion resistance, a circle indicates that the surface has very high corrosion resistance as compared with titanium whose surface is not treated (no problem in practical use), and a triangle indicates that the surface is not treated at all. The ones having slightly higher corrosion resistance than titanium (there is a problem in practice) are shown, and the crosses indicate the same level of corrosion resistance (very bad) as titanium whose surface is not treated at all.

【0014】また、表1のNo.8はガス炭窒化により
炭窒化物を全面被覆した供試材であり、No.9は蒸着
により炭窒化物を全面被覆した供試材であり、No.1
0はイオンプレーティングにより炭窒化物を全面被覆し
た供試材である。
Further, in Table 1, No. No. 8 is a test material coated entirely with carbonitride by gas carbonitriding. No. 9 is a test material coated entirely with carbonitride by vapor deposition. 1
Reference numeral 0 denotes a test material coated entirely with carbonitride by ion plating.

【0015】表1から判るように、No.1〜No.3
窒化チタン、炭化チタン、炭窒化チタンの皮膜表面積
のチタンの表面積に対する割合、すなわち、被覆率が1
8%までの場合は耐食性が不十分であり使用に問題があ
り、一方、No.7〜No.10の被覆率が82%以上
の場合にも金型磨耗が激しく量産において実質的にラス
加工が不可能であり、しかも抵抗値も高くなることから
被覆率を抑える必要がある。以上の結果から被覆率は2
0〜80%の範囲が良好であることが判る。次に、被覆
率を24%とし独立した皮膜一当たり面積を変化さ
せた場合の耐食性の変化を調査した。その結果を表2に
示す。
As can be seen from Table 1, 1 to No. 3
Surface area of titanium nitride, titanium carbide and titanium carbonitride
Is the ratio to the surface area of titanium, that is, the coverage is 1
If it is up to 8%, the corrosion resistance is insufficient and there is a problem in use. 7-No. Even when the coating rate of No. 10 is 82% or more, the mold is severely worn, so that lath processing cannot be substantially performed in mass production, and the resistance value becomes high. Therefore, it is necessary to suppress the coating rate. From the above results, the coverage was 2
It turns out that the range of 0 to 80% is good. Next, the coverage investigate the change in the corrosion resistance in the case of changing was independent coating one per table area 24%. Table 2 shows the results.

【0016】表2 皮膜一つ当たりの面積と耐食性の関
Table 2 Relationship between area per coating and corrosion resistance

【0017】表2から明らかなように、チタン材料表面
に島状に独立して形成された皮膜当たりの面積
が大きくなるにつれて耐食性が劣化することが判り、こ
れによりチタン材料表面に島状に独立して形成される
は、その当たりの面積を0.05mm2以下に
して微細に分散させる必要があることが判る。なお、本
発明は皮膜の厚みについては特に限定していないが、当
然の事ながら皮膜の厚みを増せば金型の摩耗は激しくな
り、電気抵抗も上昇すると考えられる。よって、膜厚は
制御できる範囲内で薄くするのが好ましい。本実施例で
用いた供試材の膜厚は、それぞれの皮膜生成方法で可能
な範囲で膜厚を薄くしたものを使用している。
As is clear from Table 2, the titanium material surface
As the table area one per island to separate formed film becomes large understand that the corrosion resistance is deteriorated, thereby skins <br/> formed independently of the titanium material surface in an island shape membrane, the table area of one per its 0.05 mm 2 or less
It is necessary to disperse finely . In the present invention, the thickness of the coating is not particularly limited. However, it is considered that, as a matter of course, if the thickness of the coating is increased, the abrasion of the mold is increased and the electric resistance is also increased. Therefore, it is preferable that the film thickness be reduced within a controllable range. The thickness of the test material used in the present example was reduced as much as possible in each film forming method.

【0018】[0018]

【発明の効果】上記説明した発明によれば、窒化チタ
ン、炭化チタン、炭窒化チタンの1種以上から成る皮膜
を、チタン表面積の20%以上80%以下のチタン表面
に、微細に均一に分散して独立させて形成し、前記独立
して形成された各皮膜の一個当たりの表面積を0.05
mm 2 以下としたから、リチウム電池の正極活物質支持
用材料として最適なチタン材料である。
According to the above-described invention, titanium nitride
Of at least one of titanium, titanium carbide and titanium carbonitride
The titanium surface of 20% to 80% of the titanium surface area
In addition, finely and uniformly dispersed and formed independently, the independent
The surface area of each film formed by
Since the thickness is not more than mm 2, it is an optimal titanium material as a positive electrode active material supporting material for a lithium battery.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化チタン、炭化チタン、炭窒化チタン
の1種以上から成る皮膜が、チタン表面積の20%以上
80%以下のチタン表面に、微細に均一に分散されて独
立して形成され、前記独立して形成された各皮膜の一個
当たりの表面積は0.05mm 2 以下とされていること
を特徴とする電池用チタン材料。
1. Titanium nitride, titanium carbide, titanium carbonitride
Of at least 20% of the surface area of titanium
80% or less of titanium surface
One of each of the coatings formed upright and independently formed
A titanium material for a battery, wherein a surface area per unit is 0.05 mm 2 or less .
JP41369990A 1990-12-25 1990-12-25 Titanium materials for batteries Expired - Lifetime JP3086482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41369990A JP3086482B2 (en) 1990-12-25 1990-12-25 Titanium materials for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41369990A JP3086482B2 (en) 1990-12-25 1990-12-25 Titanium materials for batteries

Publications (2)

Publication Number Publication Date
JPH04223054A JPH04223054A (en) 1992-08-12
JP3086482B2 true JP3086482B2 (en) 2000-09-11

Family

ID=18522282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41369990A Expired - Lifetime JP3086482B2 (en) 1990-12-25 1990-12-25 Titanium materials for batteries

Country Status (1)

Country Link
JP (1) JP3086482B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269972A (en) * 2007-04-20 2008-11-06 Nissan Motor Co Ltd Nonaqueous secondary battery
JP4928584B2 (en) * 2009-06-03 2012-05-09 株式会社神戸製鋼所 Titanium plate, manufacturing method thereof, and manufacturing method of heat exchange member of plate heat exchanger
JP6263127B2 (en) * 2011-12-14 2018-01-17 エオス エナジー ストレージ, エルエルシー Electrically rechargeable metal anode cell and battery system and method
CN111435747B (en) * 2020-01-17 2022-11-22 蜂巢能源科技有限公司 Cobalt-free layered cathode material, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JPH04223054A (en) 1992-08-12

Similar Documents

Publication Publication Date Title
EP0674725B1 (en) Electrodeposition of nickel-tungsten amorphous and microcrystalline coatings
EP2343763B1 (en) Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
Dundar et al. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates
US20150037710A1 (en) Coating with conductive and corrosion resistance characteristics
JP2010236091A (en) Corrosion-resistant conductive member, method of manufacturing the same and fuel cell
JP2008091225A (en) Separator for solid polymer fuel cell and its manufacturing method
EP4088332B1 (en) Carbon coated hydrogen fuel cell bipolar plates
EP3316364B1 (en) Electrolytic copper foil for lithium secondary battery and lithium secondary battery including same
JP3086482B2 (en) Titanium materials for batteries
JP2002530810A (en) Battery sleeve made of shaped cold rolled sheet metal and method of manufacturing battery sleeve
JP5621186B2 (en) Method for producing stainless steel for polymer electrolyte fuel cell separator
JP2003123781A (en) Separator for solid polymer electrolyte fuel cell and its manufacturing method
KR20020042719A (en) Method for producing an electrolytically coated cold rolled strip, preferably for use in the production of battery sheaths, and battery sheath produced according to said method
JP2004134276A (en) Material for solid polymer type fuel cell, and its manufacturing method
Zhou et al. Electrodeposition of copper on thermally oxidized 316 L stainless steel substrates
JP6111058B2 (en) FUEL CELL SEPARATOR, FUEL CELL CELL, FUEL CELL STACK, AND METHOD FOR MANUFACTURING FUEL CELL SEPARATOR
JP2001006694A (en) Separator for solid polymer fuel cell
JP5217712B2 (en) Coated cemented carbide member
JP2021026839A (en) Manufacturing method of separator for fuel cell
KR20210078821A (en) Surface-treated copper foil, manufacturing method thereof and negative electrode for secondary battery including same
US4564565A (en) Method of making low contact resistance metallic coatings and electrical contacts so produced
JP2004265694A (en) Separator for fuel cell
JP3719847B2 (en) Sliding material and manufacturing method thereof
Pring et al. The influence of the physical condition of metals on cathodic overvoltage
Msaadi et al. Evolution of Electrochemical Behavior, Electrical Conductivity, and Microhardness of Electrodeposited W Coatings Enhanced by Ni During Long Immersion in 3% NaCl Media

Legal Events

Date Code Title Description
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350