JP3076084B2 - Method for producing unidirectional silicon steel sheet with excellent surface properties - Google Patents

Method for producing unidirectional silicon steel sheet with excellent surface properties

Info

Publication number
JP3076084B2
JP3076084B2 JP03124526A JP12452691A JP3076084B2 JP 3076084 B2 JP3076084 B2 JP 3076084B2 JP 03124526 A JP03124526 A JP 03124526A JP 12452691 A JP12452691 A JP 12452691A JP 3076084 B2 JP3076084 B2 JP 3076084B2
Authority
JP
Japan
Prior art keywords
silicon steel
rolled
rolling
slab
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03124526A
Other languages
Japanese (ja)
Other versions
JPH04329832A (en
Inventor
武彦 港
嘉明 飯田
央修 下向
文彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP03124526A priority Critical patent/JP3076084B2/en
Publication of JPH04329832A publication Critical patent/JPH04329832A/en
Application granted granted Critical
Publication of JP3076084B2 publication Critical patent/JP3076084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、主にトランスやその
他の電気機器の鉄心材料として使用される方向性けい素
鋼板における表面性状の改善に有利に適合する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method advantageously adapted for improving the surface properties of a grain-oriented silicon steel sheet mainly used as a core material of transformers and other electric appliances.

【0002】この種電気機器の鉄心材料としては、磁気
特性に優れること、具体的には磁場の強さ800 A/mに
おける磁束密度B8 (T)が高く、また50Hzの交流磁束
密度1.7 Tにおける鉄損特性W17/50 (W/kg)が低い
ことが要求される。このため方向性けい素鋼板は、2次
再結晶を利用して{110}<001>方位いわゆるゴ
ス方位の結晶粒を発達させたものである。そして磁気特
性の優れた材料を得るには、磁化容易軸である<001
>軸を圧延方向に高度に揃えることが必要であり、適当
な圧延と熱処理を組合せた諸工程によって、ゴス方位に
2次再結晶粒を安定して発達させることが重要である。
特にインヒビターと呼ばれるAlN 又はMnS,MnSe等の析出
物を均一かつ微細に分散させることが肝要である。
[0002] As a core material of this kind of electric equipment, it has excellent magnetic properties, specifically, a high magnetic flux density B 8 (T) at a magnetic field strength of 800 A / m, and an AC magnetic flux density of 1.7 T at 50 Hz. Is required to have low iron loss characteristics W 17/50 (W / kg). For this reason, grain-oriented silicon steel sheets are obtained by developing crystal grains having a {110} <001> orientation, so-called Goss orientation, by utilizing secondary recrystallization. In order to obtain a material having excellent magnetic properties, the axis of easy magnetization is <001.
> It is necessary to align the axis in the rolling direction to a high degree, and it is important to stably develop secondary recrystallized grains in the Goss orientation by various steps combining appropriate rolling and heat treatment.
In particular, it is important to uniformly and finely disperse a precipitate called AlN or MnS or MnSe, which is called an inhibitor.

【0003】[0003]

【従来の技術】上記の用途に供する方向性けい素鋼板の
製造において出発材となるスラブは、主に生産性の向上
から、その他の低級鋼と同様に連続鋳造法にて得られた
ものを用いる傾向にある。しかしながら連続鋳造法は、
鋳造中に Al2O3, SiO2, MgO,CaO 等の介在物が鋼中に巻
込まれることから、けい素鋼板の製造において特に、Al
N をインヒビターとする場合に、得られたスラブを高温
加熱するとAlN が分解してN2ガスが発生し、このN2ガス
は介在物付近の微小空洞に集まり、高温で抗張力の低下
したスラブ中に割れが導入さらに進展され、最終的には
へげやふくれに代表される表面欠陥として鋼板に残るこ
とになる。従ってAlやNの含有量を制限する必要がある
が、インヒビターとして機能させるには所定量の含有が
要求される。
2. Description of the Related Art A slab used as a starting material in the production of grain-oriented silicon steel sheets for the above-mentioned applications is mainly obtained by continuous casting like other low-grade steels in order to improve productivity. Tend to use. However, continuous casting is
Especially in the production of silicon steel sheet, Al inclusions such as Al 2 O 3 , SiO 2 , MgO, CaO are caught in the steel during casting.
When N is used as an inhibitor, when the obtained slab is heated to a high temperature, AlN is decomposed and N 2 gas is generated, and this N 2 gas collects in microcavities near the inclusions, and in the slab where the tensile strength has decreased at high temperature. Cracks are introduced and further developed, and eventually remain on the steel sheet as surface defects typified by bulges and blisters. Therefore, it is necessary to limit the contents of Al and N. However, in order to function as an inhibitor, a predetermined amount is required.

【0004】一方特公昭50-37009号公報には、AlN をイ
ンヒビターとして使用する一方向性けい素鋼板におい
て、スラブに適当な分塊圧延を施すことによって磁気特
性を改善する方法が示されている。この手法は、スラブ
高温加熱時の粒成長を抑えることを目的としたものであ
り、表面欠陥の防止については何ら触れられていない。
On the other hand, Japanese Patent Publication No. 50-37009 discloses a method of improving the magnetic properties of a grain-oriented silicon steel sheet using AlN as an inhibitor by subjecting a slab to appropriate slab rolling. . This method aims at suppressing grain growth during slab high-temperature heating, and does not mention anything about prevention of surface defects.

【0005】[0005]

【発明が解決しようとする課題】この発明は、インヒビ
ター形成成分として有効なAl及びN量を減らすことなし
に、スラブ加熱時に発生する割れを防止し、へげやふく
れ等の表面欠陥のない優れた表面性状を有する一方向性
けい素鋼板を製造する方法について提案することを目的
とする。
SUMMARY OF THE INVENTION The present invention is intended to prevent cracks occurring during slab heating without reducing the effective amounts of Al and N as inhibitor-forming components, and to prevent surface defects such as bulges and blisters. It is an object of the present invention to propose a method for producing a grain-oriented silicon steel sheet having a modified surface texture.

【0006】[0006]

【課題を解決するための手段】発明者らが上記の表面欠
陥の発生原因について検討したところ、連続鋳造時に生
成した介在物(柱状組織と等軸品組織境界面付近)付近
の微少空洞に、スラブの高温加熱工程でAlN から分解し
たN2 ガスが集まり、ここを起点として、高温に晒され
抗張力の低下したスラブ中に割れが発生することが、表
面欠陥の発生原因であることを究明し、さらにその対策
としてスラブを1000〜1300℃の高温域に加熱したのち2
%以上の圧下率で圧延し、次いで1300℃以上の高温加熱
を施すことが、表面欠陥の発生を抑制するのに有効であ
ることを見出した。
Means for Solving the Problems The inventors of the present invention have studied the causes of the above-mentioned surface defects, and found that the microcavities near the inclusions (in the vicinity of the boundary between the columnar structure and the structure of the equiaxed product) formed during continuous casting are: N 2 gas is gathered decomposed from AlN at a high temperature heating step of slab, as a starting point here is that cracks are generated in a slab having a reduced tensile strength exposed to high temperatures, to investigate that the cause of surface defects As a countermeasure, heat the slab to a high temperature range of
It has been found that rolling at a rolling reduction of not less than 1% and then heating at a high temperature of not less than 1300 ° C. is effective in suppressing the occurrence of surface defects.

【0007】すなわちこの発明は、C:0.06〜0.12wt%
(以下単に%と示す)を含み、さらにインヒビター形成
成分として、少なくともsol.Al:0.01〜0.06%及びN:
0.0085〜0.0120%を含有する含けい素鋼の連続鋳造スラ
ブを、熱間圧延して熱延板とした後、この熱延板に1回
法又は2回法の冷間圧延を施したのち、脱炭焼鈍ついで
最終仕上げ焼鈍を施す一連の工程によって方向性けい素
鋼板を製造するに当たり、上記スラブに熱間圧延を施す
に先立ち、1000℃〜1300℃の温度域に加熱したのち2%
以上の圧下率で圧延し、次いで1300℃以上の高温域に加
熱することを特徴とする表面性状の優れた一方向性けい
素鋼板の製造方法である。
That is, according to the present invention, C: 0.06 to 0.12 wt%
(Hereinafter simply referred to as%), and at least sol.Al: 0.01 to 0.06% and N:
After continuously rolling a continuous cast slab of silicon-containing steel containing 0.0085 to 0.0120% into a hot-rolled sheet, the hot-rolled sheet is subjected to one-time or two-time cold rolling. In producing a grain-oriented silicon steel sheet by a series of steps of decarburizing annealing followed by final finish annealing, prior to hot rolling the slab, it was heated to a temperature range of 1000 ° C to 1300 ° C and then 2%
This is a method for producing a unidirectional silicon steel sheet having excellent surface properties, characterized by rolling at the above reduction ratio and then heating to a high temperature range of 1300 ° C. or higher.

【0008】この発明の素材である含けい素鋼として
は、上記したCおよびインヒビター形成成分を含む、従
来公知の成分組成のものいずれもが適合するが、代表組
成を掲げると次のとおりである。 C:0.06〜0.12% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なず、ゴス方位の発達に有用な元素であり、少なくとも
0.06%以上で含有する。しかしながら0.12%を超えて含
有されるとかえってゴス方位に乱れが生じるので上限は
0.12%程度が好ましい。 Si:2.0 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5 %を上回ると冷延性が損なわれ、一方2.0 %に
満たないと比抵抗が低下するだけでなく、2次再結晶・
純化のために行われる最終高温焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Si量は 2.0〜4.5 %程度とするのが
好ましい。 Mn:0.02〜0.15% Mnは、熱間脆化を防止するため少なくとも0.02%程度を
必要とするが、あまりに多すぎると磁気特性を劣化させ
るので、上限は0.15%程度に定めるのが好ましい。
[0008] As the silicon-containing steel which is the material of the present invention, any of the conventionally known component compositions including the above-mentioned C and the inhibitor-forming component are suitable, but typical compositions are as follows. . C: 0.06 to 0.12% C is an element useful not only for uniform micronization of the structure during hot rolling and cold rolling, but also for the development of the Goss orientation.
It is contained at 0.06% or more. However, if the content exceeds 0.12%, the Goss orientation will be disturbed, so the upper limit is
About 0.12% is preferable. Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss. However, if it exceeds 4.5%, the cold-rolling property is impaired, whereas if it is less than 2.0%, the specific resistance only decreases. Not secondary recrystallization
Since the crystal orientation is randomized by the α-γ transformation during the final high-temperature annealing performed for purification, and a sufficient iron loss improvement effect cannot be obtained, the Si content is preferably about 2.0 to 4.5%. Mn: 0.02 to 0.15% Mn needs to be at least about 0.02% in order to prevent hot embrittlement, but if it is too much, the magnetic properties are degraded. Therefore, the upper limit is preferably set to about 0.15%.

【0009】インヒビターとしては、いわゆる上記のAl
N 系のほかに、MnS,MnSe系がある。まずAlN 系の場合
は、 sol.Al:0.01〜0.06% N:0.0085〜0.0120% Al及びNは、方向性けい素鋼板の2次再結晶を制御する
インヒビターとして有力な元素である。抑制力確保の観
点からは、少なくともAlは0.01%及びNは0.0085%を必
要とするが、Alは0.060 %及びNは0.0120%を超えると
その効果が損なわれるので、その下限はそれぞれAl:0.
01%及びN:0.0085%、上限はAl:0.06%及びN:0.01
20%とする。またMnS, MnSe系の場合は、Se, Sのうち
から選ばれる少なくとも1種:0.005 〜0.060 %Se, S
の範囲についても、上述したAlN 系の場合と同様な理由
により、上記の範囲に定めた。なお上記したMnS, MnSe
系及び AlN系はそれぞれ併用が可能である。
As the inhibitor, the above-mentioned Al
In addition to the N system, there are MnS and MnSe systems. First, in the case of AlN system, sol. Al: 0.01 to 0.06% N: 0.0085 to 0.0120% Al and N are effective elements as inhibitors for controlling secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing the suppressing force, at least 0.01% of Al and 0.0085% of N are required. However, if the content of Al exceeds 0.060% and the content of N exceeds 0.0120%, the effects are impaired. .
01% and N: 0.0085%, upper limit is Al: 0.06% and N: 0.01
20%. In the case of MnS and MnSe, at least one selected from Se and S: 0.005 to 0.060% Se, S
Is also set in the above range for the same reason as in the case of the AlN system described above. Note that MnS and MnSe described above
The system and the AlN system can be used together.

【0010】インヒビター成分としては上記したS, S
e, Alの他、Cu, Ni, Sn, Cr、Ge, Sb, Mo, Zn, Te, Bi
およびPなども有利に適合するので、それぞれ少量併せ
て含有させることもできる。ここに上記成分の好適添加
範囲はそれぞれ、Cu, Ni, Sn,Cr:0.01〜0.15%、Ge, S
b, Mo, Zn, Te, Bi:0.005〜0.1%、P:0.01〜0.2%で
あり、これらの各インヒビター成分についても、単独使
用および複合使用いずれもが可能である。
[0010] As the inhibitor component, S, S
e, Al, Cu, Ni, Sn, Cr, Ge, Sb, Mo, Zn, Te, Bi
Since P and P are also advantageously used, they can be contained together in small amounts. Here, the preferable addition ranges of the above components are respectively 0.01 to 0.15% for Cu, Ni, Sn, and Cr, and for Ge, S
b, Mo, Zn, Te, Bi: 0.005 to 0.1%, P: 0.01 to 0.2%, and these inhibitor components can be used alone or in combination.

【0011】[0011]

【作用】さて上記の成分組成になるけい素鋼スラブは、
所定成分に溶製された溶鋼から、連続鋳造により製造さ
れる。そしてこのけい素鋼スラブは、1000〜1300℃の温
度域に加熱した後2%以上の圧下率で圧延し、次いで13
00℃以上の高温域に加熱した後に、熱間圧延を施す。
[Action] The silicon steel slab having the above composition is as follows.
It is manufactured by continuous casting from molten steel melted to a predetermined component. The silicon steel slab is heated to a temperature range of 1000 to 1300 ° C., rolled at a rolling reduction of 2% or more, and then 13%.
After heating to a high temperature region of 00 ° C. or higher, hot rolling is performed.

【0012】ここで熱間圧延に先立つ1回目の加熱は、
1000℃未満ではスラブ材の強度が低下しないため、連続
鋳造中に巻込まれる介在物付近に発生する微小空洞を、
引き続く2%以上の軽圧延で押しつぶすことができな
い。一方1回目の加熱温度が1300℃をこえるとスラブ材
の抗張力が低下するため、既に空洞内に集まったN2
スに起因した割れが進展してしまい、この割れは後に続
く2%以上の軽圧延では圧着せず、最終的にふくれやへ
げの表面欠陥となる。従って1回目の加熱は、1000〜13
00℃の温度域とする。なお加熱時間は、スラブ寸法とく
に厚さによって決まり、肉厚中心まで所定の温度域に達
するまでの時間とする。
Here, the first heating prior to hot rolling is as follows:
Since the strength of the slab material does not decrease below 1000 ° C, the minute cavities generated near the inclusions involved during continuous casting
It cannot be crushed by subsequent light rolling of 2% or more. On the other hand, if the first heating temperature exceeds 1300 ° C., the tensile strength of the slab material decreases, so cracks caused by N 2 gas already gathered in the cavities develop, and the cracks are subsequently reduced by 2% or more. Rolling does not perform pressure bonding, and eventually causes surface defects such as blisters and bulges. Therefore, the first heating is 1000 ~ 13
The temperature range is 00 ° C. The heating time is determined by the slab dimensions, particularly the thickness, and is the time required to reach a predetermined temperature range up to the center of the thickness.

【0013】また続く圧延における圧下率は、2%未満
では空洞を圧延によって押しつぶすことができないた
め、2%以上は必要である。なお30%を越えて圧下率を
増やしても効果がほとんど変わらないにもかかわらず、
スラブ厚が減少することにより次の高温加熱炉の寸法制
約から、スラブの単重を小さくせねばならないなど操業
上のデメリットが生じるので上限は30%とすることが望
ましい。
If the rolling reduction in the subsequent rolling is less than 2%, the cavities cannot be crushed by rolling, so that the rolling reduction is required to be 2% or more. Although the effect is hardly changed even if the rolling reduction is increased beyond 30%,
Due to the following dimensional restrictions of the high-temperature heating furnace due to the reduction in the slab thickness, there are disadvantages in operation such as the need to reduce the unit weight of the slab, so the upper limit is preferably set to 30%.

【0014】さらに上記圧延後に再度加熱する際の温度
は、1300℃未満では2次再結晶が不安定になるため、13
00℃以上とする。すなわちAlN の析出物はゴス方位2次
再結晶に効果があり、中でも有効な特定微少サイズのAl
N を得るためには、熱間圧延時のスラブ加熱の段階で一
度AlN を地鉄中に固溶させる必要があり、このAlN の固
溶に要する最低温度が1300℃である。なお加熱時間は、
主にスラブの厚さによって決まり、肉厚中心まで所定の
温度域に到達する時間とする。上記した熱間圧延に先立
つ処理後は、熱間圧延及び冷間圧延を公知の手法にて実
施することにより、へげやふくれのない一方向性けい素
鋼板を得ることができる。
Further, when the temperature for reheating after the above-mentioned rolling is less than 1300 ° C., secondary recrystallization becomes unstable.
Set to 00 ° C or higher. That is, the precipitate of AlN is effective for the secondary recrystallization of Goss orientation, and particularly effective
In order to obtain N, it is necessary to once dissolve AlN in the ground iron at the stage of slab heating during hot rolling, and the minimum temperature required for the solid solution of AlN is 1300 ° C. The heating time is
It is mainly determined by the thickness of the slab, and is the time required to reach a predetermined temperature range to the center of the thickness. After the above-mentioned treatment prior to the hot rolling, the hot rolling and the cold rolling are performed by a known method, so that a unidirectional silicon steel sheet free from bulge and blister can be obtained.

【0015】[0015]

【実施例】実施例1 C:0.06%、Si:3.05%、sol.Al:0.023 %、Mn:0.07
5 %、S:0.025 %、N:0.0085%を含み、残部実質的
に鉄及び不可避不純物からなる、連続鋳造にて得た多数
のけい素鋼スラブを、 900〜1300℃の範囲の種々の温度
で20分間加熱した後、0〜30%の範囲の種々の圧下率で
圧延を施し、さらに1370℃で30分間加熱してから、1.8
mm厚に熱間圧延した。次いで熱延板を1050℃で連続焼鈍
した後60秒間で常温まで急冷し、その後88.9%の圧下率
で冷間圧延し、0.20mmの最終板厚とし、引き続き脱炭焼
鈍、そしてH2 :25%及びN2 :75%の雰囲気中で1200
℃の最終焼鈍を施した。かくして得られた最終製品にお
けるへげ及びふくれの発生数について調べた結果を、製
品コイル1000m当たりの発生数として、図1に示す。同
図から、熱間圧延に先立って、この発明に従う処理を施
すことにより、表面欠陥の少ない表面性状の優れた一方
向性けい素鋼板が得られることがわかる。
EXAMPLES Example 1 C: 0.06%, Si: 3.05%, sol.Al: 0.023%, Mn: 0.07
A number of silicon steel slabs, each containing 5%, S: 0.025%, N: 0.0085% and consisting essentially of iron and unavoidable impurities, obtained by continuous casting, were subjected to various temperatures ranging from 900 to 1300 ° C. At 20% for 30 minutes, and then rolled at various rolling reductions in the range of 0 to 30%.
It was hot rolled to a thickness of mm. Next, the hot-rolled sheet was continuously annealed at 1050 ° C., rapidly cooled to room temperature for 60 seconds, and then cold-rolled at a reduction of 88.9% to a final sheet thickness of 0.20 mm, followed by decarburizing annealing, and H 2 : 25. % And N 2 : 1200 in an atmosphere of 75%
A final anneal of 0 ° C was performed. FIG. 1 shows the results obtained by examining the number of bulges and blisters generated in the final product thus obtained as the number of bulges and blisters generated per 1000 m of product coil. From the figure, it can be seen that by performing the treatment according to the present invention prior to hot rolling, a unidirectional silicon steel sheet having less surface defects and excellent surface properties can be obtained.

【0016】実施例2 C:0.06%、Si:3.05%、sol.Al:0.028 %、Mn:0.07
0 %、Se:0.020 %、N:0.0090%を含み、残部実質的
に鉄及び不可避不純物からなる、連続鋳造にて得た多数
のけい素鋼スラブを、900 〜1300℃の範囲の種々の温度
で20分間加熱した後、0〜30%の範囲の種々の圧下率で
圧延を施し、さらに1400℃で30分間加熱してから、1.8m
m 厚に熱間圧延した。次いで熱延板を1100℃で連続焼鈍
した後60秒間で常温まで急冷し、その後87.2%の圧下率
で冷間圧延し、0.23mmの最終板厚とし、引き続き脱炭焼
鈍、そしてH2 :25%及びN2 :75%の雰囲気中で1200
℃の最終焼鈍を施した。かくして得られた最終製品にお
けるへげ及びふくれの発生数について調べた結果を、製
品コイル1000m当たりの発生数として、図2に示す。同
図から、熱間圧延に先立って、この発明に従う処理を施
すことにより、表面欠陥の少ない表面性状の優れた一方
向性けい素鋼板が得られることがわかる。また、1回目
の加熱温度1100℃、その後の圧延の圧下率15%の熱延板
について2回目の加熱を1250, 1300, 1400℃の種々の加
熱温度で行なった結果を図3に示す。同図から、1300℃
以上で外観が改善されることが分かった。
Example 2 C: 0.06%, Si: 3.05%, sol. Al: 0.028%, Mn: 0.07
A number of silicon steel slabs, each containing 0%, Se: 0.020%, N: 0.0090% and consisting essentially of iron and unavoidable impurities, obtained by continuous casting, were subjected to various temperatures ranging from 900 to 1300 ° C. And then rolled at various rolling reductions in the range of 0 to 30%, and further heated at 1400 ° C for 30 minutes, then 1.8m
It was hot rolled to a thickness of m. Next, the hot-rolled sheet was continuously annealed at 1100 ° C., rapidly cooled to room temperature for 60 seconds, and then cold-rolled at a reduction of 87.2% to a final sheet thickness of 0.23 mm, followed by decarburizing annealing, and H 2 : 25. % And N 2 : 1200 in an atmosphere of 75%
A final anneal of 0 ° C was performed. FIG. 2 shows the results obtained by examining the number of bulges and blisters generated in the final product thus obtained, as the number of generations per 1000 m of the product coil. From the figure, it can be seen that by performing the treatment according to the present invention prior to hot rolling, a unidirectional silicon steel sheet having less surface defects and excellent surface properties can be obtained. FIG. 3 shows the results of performing the second heating at various heating temperatures of 1250, 1300, and 1400 ° C. on the hot-rolled sheet having the first heating temperature of 1100 ° C. and the subsequent rolling reduction of 15%. From the figure, 1300 ° C
From the above, it was found that the appearance was improved.

【0017】実施例3 C:0.06%、Si:3.05%、sol.Al:0.030 %、N:0.00
95%を含み、残部実質的に鉄及び不可避不純物からな
る、連続鋳造にて得た多数のけい素鋼スラブを、900 〜
1300℃の範囲の種々の温度で20分間加熱した後、0〜30
%の範囲の種々の圧下率で圧延を施し、さらに1250と13
50℃で50分間加熱してから、1.8mm 厚に熱間圧延した。
次いで熱延板を1050℃で連続焼鈍した後60秒間で常温ま
で急冷し、その後88.9%の圧下率で冷間圧延し0.20mmの
最終板厚とし、引き続き脱炭焼鈍、そしてH2 :25%及
びN2 :75%の雰囲気中で1200℃の最終焼鈍を施した。
かくして得られた最終製品におけるへげ及びふくれの発
生数について調べた結果を、表1に示す。
Example 3 C: 0.06%, Si: 3.05%, sol. Al: 0.030%, N: 0.00
A large number of silicon steel slabs obtained by continuous casting, containing 95% and the balance substantially consisting of iron and unavoidable impurities,
After heating at various temperatures in the range of 1300 ° C for 20 minutes, 0-30
% And various rolling reductions in the range of 1250 and 13
After heating at 50 ° C. for 50 minutes, it was hot-rolled to a thickness of 1.8 mm.
Next, the hot-rolled sheet was continuously annealed at 1050 ° C., rapidly cooled to room temperature in 60 seconds, and then cold-rolled at a reduction of 88.9% to a final sheet thickness of 0.20 mm, followed by decarburizing annealing, and H 2 : 25% And a final annealing at 1200 ° C. in an atmosphere of N 2 : 75%.
Table 1 shows the results obtained by examining the number of bulges and blisters generated in the final product thus obtained.

【0018】[0018]

【表1】 同表から、熱間圧延に先立って、この発明に従う処理を
施すことにより、表面欠陥の少ない表面性状の優れた一
方向性けい素鋼板が得られることがわかる。
[Table 1] It can be seen from the table that, by performing the treatment according to the present invention prior to hot rolling, a unidirectional silicon steel sheet having few surface defects and excellent surface properties can be obtained.

【0019】[0019]

【発明の効果】この発明によれば、インヒビター形成成
分として有効なAl及びN量を減らすことなしに、スラブ
加熱時に発生する割れを防止し、へげやふくれ等の表面
欠陥のない優れた表面性状を有する一方向性けい素鋼板
を製造でき、特に電気機器の積層鉄心の材料に最適の製
品を提供し得る。
According to the present invention, it is possible to prevent cracks generated during slab heating without reducing the amounts of Al and N effective as inhibitor-forming components, and to provide an excellent surface free from surface defects such as bulges and blisters. It is possible to manufacture a unidirectional silicon steel sheet having properties and to provide a product most suitable for a material of a laminated iron core of electric equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スラブ加熱温度と表面欠陥発生率との関係を示
すグラフである。
FIG. 1 is a graph showing a relationship between a slab heating temperature and a surface defect occurrence rate.

【図2】スラブ加熱温度と表面欠陥発生率との関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a slab heating temperature and a surface defect occurrence rate.

【図3】スラブ加熱温度と表面欠陥発生率との関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a slab heating temperature and a surface defect occurrence rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 文彦 千葉県千葉市川崎町1番地 川崎製鉄株 式会社 技術研究本部内 (56)参考文献 特開 昭62−149815(JP,A) 特公 昭54−27820(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 H01F 1/16 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumihiko Takeuchi 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corp. Technical Research Division (56) References JP-A-62-149815 (JP, A) Akira Tokubo 54-27820 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/12 H01F 1/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.06〜0.12wt%を含み、さらにイン
ヒビター形成成分として、少なくともsol.Al:0.01〜0.
06wt%及びN:0.0085〜0.0120wt%を含有する含けい素
鋼の連続鋳造スラブを、熱間圧延して熱延板とした後、
この熱延板に1回法又は2回法の冷間圧延を施したの
ち、脱炭焼鈍ついで最終仕上げ焼鈍を施す一連の工程に
よって方向性けい素鋼板を製造するに当たり、上記スラ
ブに熱間圧延を施すに先立ち、1000℃〜1300℃の温度域
に加熱したのち2%以上の圧下率で圧延し、次いで1300
℃以上の高温域に加熱することを特徴とする表面性状の
優れた一方向性けい素鋼板の製造方法。
(1) C: 0.06 to 0.12 wt%, and at least sol.Al: 0.01 to 0.1 as an inhibitor-forming component.
A continuous cast slab of silicon steel containing 06 wt% and N: 0.0085 to 0.0120 wt% is hot-rolled into a hot-rolled sheet,
After producing a grain-oriented silicon steel sheet by a series of steps of subjecting this hot-rolled sheet to cold rolling of a one-time method or a two-time method, followed by decarburizing annealing and final finishing annealing, the slab is hot-rolled. Prior to application, the steel is heated to a temperature range of 1000 ° C to 1300 ° C, then rolled at a rolling reduction of 2% or more, and then 1300 ° C.
A method for producing a grain-oriented silicon steel sheet having excellent surface properties, characterized in that the sheet is heated to a high temperature range of at least ℃.
JP03124526A 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties Expired - Fee Related JP3076084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03124526A JP3076084B2 (en) 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03124526A JP3076084B2 (en) 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH04329832A JPH04329832A (en) 1992-11-18
JP3076084B2 true JP3076084B2 (en) 2000-08-14

Family

ID=14887667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03124526A Expired - Fee Related JP3076084B2 (en) 1991-04-30 1991-04-30 Method for producing unidirectional silicon steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3076084B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427820A (en) * 1977-08-02 1979-03-02 Shoei Kikai Seisakusho Kk Device for preventing wrong entry of paper to blade of buckle folding machine
JPS62149815A (en) * 1985-12-24 1987-07-03 Kawasaki Steel Corp Production of low iron loss grain oriented silicon steel sheet having decreased surface defect

Also Published As

Publication number Publication date
JPH04329832A (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
JPS6256225B2 (en)
JPH0567683B2 (en)
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3076084B2 (en) Method for producing unidirectional silicon steel sheet with excellent surface properties
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS6256922B2 (en)
JP2709549B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0419297B2 (en)
JP2735929B2 (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3232148B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH0726156B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees