JPS6256922B2 - - Google Patents

Info

Publication number
JPS6256922B2
JPS6256922B2 JP58009398A JP939883A JPS6256922B2 JP S6256922 B2 JPS6256922 B2 JP S6256922B2 JP 58009398 A JP58009398 A JP 58009398A JP 939883 A JP939883 A JP 939883A JP S6256922 B2 JPS6256922 B2 JP S6256922B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
less
annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58009398A
Other languages
Japanese (ja)
Other versions
JPS59157259A (en
Inventor
Yoshiaki Shimoyama
Kunisuke Myoshi
Takeshi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58009398A priority Critical patent/JPS59157259A/en
Priority to DE8383300393T priority patent/DE3361738D1/en
Priority to AT83300393T priority patent/ATE17376T1/en
Priority to AU10765/83A priority patent/AU551071B2/en
Priority to EP83300393A priority patent/EP0084980B1/en
Publication of JPS59157259A publication Critical patent/JPS59157259A/en
Priority to AU45681/85A priority patent/AU4568185A/en
Publication of JPS6256922B2 publication Critical patent/JPS6256922B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉄損が低くかつ磁束密度のすぐれた
無方向性電磁鋼板およびその製造法に関するもの
である。 無方向性電磁鋼板はモータ、変圧器の鉄心など
に使用されるが、最近ではこれらの電気機器は省
エネルギータイプとすることを強く要請されてい
る。 特に、従来から比較的に安価な無方向性電磁鋼
板を主に使用していた中小型電気機器に関して、
価格が比較的安く、磁束密度が高いという無方向
性電磁鋼板の利点を保ちながら、更に鉄損が低い
素材の開発要請が強い。 これに対応するには、鉄損がw15/50で4.5w/
Kg以下と低くかつ磁束密度がB50で1.71Tesla以上
のすぐれた無方向性電磁鋼板を製造する必要があ
る。 無方向性電磁鋼板の磁気特性として周知の如く
鉄損と磁束密度があり、該鉄損および磁束密度の
値によりS60級からS9級までグレード付けされて
いる。 ところで鉄損の低い高級グレードを製造するに
はSi含有量を増すことが一般に行なわれることで
あり、例えばS60級はSi含有量は零に近いが、
S23級は約1.5%、S18級は約2.0%、S9級は約3.0
%となつている。一方このSi含有量の増加につれ
て磁束密度は減少するので、従来の無方向性電磁
鋼板の鉄損値と磁束密度値の関係は第1図におい
て曲線1,1′で示すようであり、即ち鉄損が低
くなる程、磁束密度は減少している。またこの図
において2はJIS規格C2552におけるS09〜S23の
限界値をむすぶ直線である。 従来においても、磁気特性を改良するには単に
Si含有量を増すのみでなく、Alの添加、Cの低
減、Sの減少、Bの添加などの成分的な処置や、
焼鈍温度を高くすること、仕上焼鈍前の冷間圧下
率を高くするなどの工夫がなされている。 またSnを含有させて鉄損の低い無方向性電磁
鋼板を製造することが、例えば特開昭56−102520
号公報にて提案されている。Snの含有により鉄
損は低くなるが、該Sn含有の作用を奏するに
は、熱延板焼鈍において冷却速度を遅くし、また
最終焼鈍における加熱速度を遅くする必要がある
等の作業上の制約を受ける。またSnの含有によ
つて鉄損の低下は図られても磁束密度についてそ
れ程でなく、やはり前記第1図の曲線1,1′の
範囲内にあり、鉄損が低くかつ磁束密度のすぐれ
た無方向性電磁鋼板を製造する要請に応えること
はできない。 本発明はかかる実情から、鉄損がw15/50
4.5w/Kg以下と低鉄損でかつ磁束密度が
B501.71Tesla以上すなわち、少なくとも第1図の
線3と等しい無方向性電磁鋼板を提供することを
目的とする。 また、本発明は上述のとうり規定した鉄損およ
び磁束密度を有する無方向性電磁鋼板の製造方法
を提供することを目的とする。 本発明者等は、珪素鋼にSnを含有させるとと
もにMn含有量を高め、脱酸以外の目的のAlを含
有させた鋼を熱間圧延した後、熱延板焼鈍するか
或は、熱間圧延後700℃以上の高温域で巻取り自
己焼鈍すると、鉄損が低くかつ磁束密度が高い電
磁鋼が得られ、前記目的を達成できることを見出
した。 また前記熱延板焼鈍は連続短時間焼鈍が適用で
き、さらに冷間圧延後の仕上焼鈍も連続短時間焼
鈍が適用できることをつきとめた。即ち本発明の
無方向性電磁鋼板は比較的短時間の製造日数でか
つ処理コストの安い工程にて製造できる。 本発明は、前述の知見に基づいてなされたもの
であり、その要旨とする処は、重量%で、C:
0.015%以下、Si:0.3〜2.0%、Mn:1.0%を超え
1.5%以下、Sn:0.02〜0.20%、酸可溶性Al:0.1
%を超え0.2%以下、残部Feおよび不可避的不純
物からなる、鉄損が低くかつ磁束密度がすぐれた
無方向性電磁鋼板、及び、重量%で、C:0.015
%以下、Si:0.3〜2.0%、Mn:1.0%を超え1.5%
以下、Sn:0.02〜0.20%、酸可溶性Al:0.1%を
超え0.2%以下、残部Feおよび不可避的不純物か
らなる鋼を、熱間圧延した後、700℃以上の温度
域で巻取り自己焼鈍するか或は、熱間圧延後750
℃以上の温度域で熱延板焼鈍し、次いで1回若し
くは中間焼鈍過程を介挿する2回以上の冷間圧延
を行ない、750℃以上の温度域で連続焼鈍を行な
うことを特徴とする鉄損が低くかつ磁束密度がす
ぐれた無方向性電磁鋼板の製造法にある。さらに
他の要旨とする処は、冷延板の前記連続焼鈍の後
に、圧下率2〜10%でスキンパス圧延する点にあ
る。 以下に、本発明を、詳細に説明する。 先ず、鋼の成分について述べる。 Cは鉄損を高める有害な成分で、磁気時効の原
因となるので0.015%以下とする。Mn、Snおよび
脱酸以外の目的の酸可溶Alとの複合含有により
鉄損の低下と磁束密度を高めるのに好ましいC含
有量は0.005%以下である。 Siは周知のように鉄損を低下させる作用のある
成分であり、この作用を奏するためには0.3%以
上含有させる。一方、その含有量が増えると前述
のように磁束密度が低下し、また圧延作業性が劣
化し、またコスト高となるので2.0%以下とす
る。 脱酸以外の目的の酸可溶性Alは、Alnの析出を
防止するために、0.1%を超える量が必要であ
る。 一方、酸可溶性Alの含有量が0.20%を超える
と、磁束密度が低下する。 SnはMn及び脱酸以外の目的の酸可溶性Alとの
複合含有により、鉄損を低下しかつ磁束密度を高
める作用があるが、この作用を奏するためには
0.02%以上必要である。一方この含有が増えても
その作用は飽和しコスト高を招くので0.20%以下
とする。 Mnは酸化物や硫化物などの非金属介在物を生
成し易いために、従来は無方向性電磁鋼板の磁気
特性向上に利用されていなかつたが、高純度鋼製
造技術の発展によつてその利用が可能になつた。
本発明者の発見によれば、Mnは磁気的性質に望
ましい〔100〕および〔110〕集合組織を発達させ
かつ磁気特性には望ましくない〔111〕集合組織
を抑制する作用を有する。Mnの含有量はこの作
用をもたらすよう特願昭56−213368号にて提案し
た様に0.75%を超える量が必要であるが、後述の
Snとの複合作用を発揮させるためには1.0%を超
える量であることが望ましい。Mnはフエライ
ト・オーステナイト変態温度を低下させるので、
Mn含有量が1.5%を超えると熱延板の焼鈍中にフ
エライト・オーステナイト変態が起こつて、Mn
の集合組織改良作用および磁性改良作用がなくな
る。したがつて、Mnの含有量は1.0%を超え1.5
%以下とする。 上述の成分以外は、Feおよび不可避的不純物
である。 次に、本発明の特徴とする複合作用について説
明する。 Snは主として粒界に偏析して、粒界で開始さ
れる〔111〕方位の再結晶を抑制し粒内での再結
晶を促進する。また、Mnは上述のように〔110〕
および〔100〕集合組織を発達させる作用を有す
る。 本発明鋼にあつては、Nは、再結晶中に核とし
て挙動する化合物または、析出物を形成せず、ま
たNは、0.1%超の高含有量の酸可溶性Alの存在
によつて、製品の磁性にとつて有害なAlNとして
化合することもない。 本発明鋼では、上述の〔110〕および〔100〕集
合組織形成が、MnおよびSnの作用に加えて、酸
可溶性AlがNの有害性を除去することによつ
て、促進されている。 これに加えて、酸可溶性Alが、珪素鋼の固有
抵抗を高め、製品の鉄損を低くする利点もある。 上述のところから理解されるように本発明の無
方向性電磁鋼板においては、高いMn含有量が磁
気特性向上に重要な役割を担つている。このMn
含有量に対する磁気特性の依存性を第2図に示
す。この図面に示す無方向性電磁鋼板は第1表に
示す組成の鋼を、2.3mmに熱間圧延し、750℃で捲
取り、900℃で2分間焼鈍し、0.53mmの鋼帯に冷
間圧延し、850℃で1分間仕上焼鈍し、6%の圧
下率でスキンパス圧延し、そして100%N2雰囲気
で1時間790℃にて応力除去焼なましを行つて製
造したものである。
The present invention relates to a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density, and a method for manufacturing the same. Non-oriented electrical steel sheets are used for the cores of motors, transformers, etc., and recently there has been a strong demand for these electrical devices to be energy-saving types. In particular, regarding small and medium-sized electrical equipment that has traditionally mainly used relatively inexpensive non-oriented electrical steel sheets,
There is a strong demand for the development of a material that maintains the advantages of non-oriented electrical steel sheets, such as relatively low price and high magnetic flux density, but also has lower iron loss. To deal with this, the iron loss is w 15/50 and 4.5w/
It is necessary to produce an excellent non-oriented electrical steel sheet with a low magnetic flux density of less than Kg and a magnetic flux density of B50 and more than 1.71 Tesla. As is well known, the magnetic properties of non-oriented electrical steel sheets include iron loss and magnetic flux density, and they are graded from S60 class to S9 class based on the values of iron loss and magnetic flux density. By the way, in order to manufacture high-grade grades with low iron loss, it is common practice to increase the Si content. For example, the Si content of S60 grade is close to zero, but
S23 class is approximately 1.5%, S18 class is approximately 2.0%, S9 class is approximately 3.0%
%. On the other hand, as the Si content increases, the magnetic flux density decreases, so the relationship between the iron loss value and the magnetic flux density value of conventional non-oriented electrical steel sheets is shown by curves 1 and 1' in Figure 1, that is, The lower the loss, the lower the magnetic flux density. Further, in this figure, 2 is a straight line connecting the limit values of S09 to S23 in JIS standard C2552. In the past, to improve magnetic properties, it was simply a matter of
In addition to increasing the Si content, component treatments such as adding Al, reducing C, reducing S, and adding B,
Efforts have been made to increase the annealing temperature and the cold reduction rate before final annealing. In addition, manufacturing non-oriented electrical steel sheets with low iron loss by incorporating Sn has been proposed, for example, in Japanese Patent Application Laid-Open No. 56-102520.
It has been proposed in the Publication No. The inclusion of Sn lowers the iron loss, but in order to take advantage of the effects of the Sn content, there are operational constraints such as the need to slow down the cooling rate during hot-rolled sheet annealing and slow down the heating rate during final annealing. receive. Furthermore, although the iron loss is reduced by the inclusion of Sn, the magnetic flux density is not so great, and is still within the range of curves 1 and 1' in Fig. 1, indicating that the iron loss is low and the magnetic flux density is excellent. We cannot meet the request to manufacture non-oriented electrical steel sheets. In view of this situation, the present invention has an iron loss of w 15/50.
Low iron loss of 4.5w/Kg or less and magnetic flux density
The object of the present invention is to provide a non-oriented electrical steel sheet with a B 50 of 1.71 Tesla or more, that is, at least equal to line 3 in FIG. Another object of the present invention is to provide a method for producing a non-oriented electrical steel sheet having the defined core loss and magnetic flux density as described above. The present inventors made silicon steel contain Sn and increased the Mn content, and hot-rolled the steel containing Al for purposes other than deoxidation, and then annealed the hot-rolled sheet or hot-rolled the steel. It has been found that when rolled and self-annealed at a high temperature of 700° C. or higher after rolling, an electromagnetic steel with low core loss and high magnetic flux density can be obtained, and the above object can be achieved. In addition, it has been found that continuous short-time annealing can be applied to the hot-rolled sheet annealing, and continuous short-time annealing can also be applied to finish annealing after cold rolling. That is, the non-oriented electrical steel sheet of the present invention can be manufactured in a relatively short manufacturing period and in a process with low processing cost. The present invention has been made based on the above-mentioned knowledge, and the gist thereof is that in weight %, C:
0.015% or less, Si: 0.3 to 2.0%, Mn: over 1.0%
1.5% or less, Sn: 0.02-0.20%, acid-soluble Al: 0.1
% to 0.2%, the balance being Fe and unavoidable impurities, non-oriented electrical steel sheet with low core loss and excellent magnetic flux density, and C: 0.015 in weight %
% or less, Si: 0.3 to 2.0%, Mn: over 1.0% and 1.5%
The following steel is made of Sn: 0.02 to 0.20%, acid-soluble Al: more than 0.1% and less than 0.2%, and the balance Fe and unavoidable impurities. After hot rolling, the steel is coiled and self-annealed in a temperature range of 700°C or higher. Or 750 after hot rolling
An iron characterized by hot-rolled plate annealing in a temperature range of 750°C or higher, followed by cold rolling once or twice or more with an intervening intermediate annealing process, and continuous annealing in a temperature range of 750°C or higher. A method for manufacturing non-oriented electrical steel sheets with low loss and excellent magnetic flux density. Yet another point is that after the continuous annealing of the cold rolled sheet, skin pass rolling is performed at a rolling reduction of 2 to 10%. The present invention will be explained in detail below. First, let's talk about the ingredients of steel. C is a harmful component that increases iron loss and causes magnetic aging, so it should be kept at 0.015% or less. The preferable C content is 0.005% or less in order to reduce core loss and increase magnetic flux density through composite inclusion of Mn, Sn, and acid-soluble Al for purposes other than deoxidation. As is well known, Si is a component that has the effect of reducing iron loss, and in order to exhibit this effect, it is contained in an amount of 0.3% or more. On the other hand, if the content increases, the magnetic flux density decreases as described above, rolling workability deteriorates, and costs increase, so it is set to 2.0% or less. Acid-soluble Al for purposes other than deoxidation is required in an amount exceeding 0.1% in order to prevent precipitation of Aln. On the other hand, when the content of acid-soluble Al exceeds 0.20%, the magnetic flux density decreases. Sn has the effect of reducing core loss and increasing magnetic flux density due to its composite content with Mn and acid-soluble Al for purposes other than deoxidation, but in order to achieve this effect, it is necessary to
0.02% or more is required. On the other hand, even if its content increases, its effect will be saturated and the cost will increase, so it should be kept at 0.20% or less. Conventionally, Mn was not used to improve the magnetic properties of non-oriented electrical steel sheets because it easily forms non-metallic inclusions such as oxides and sulfides, but with the development of high-purity steel manufacturing technology, Mn has been It has become available.
According to the findings of the present inventors, Mn has the effect of developing [100] and [110] textures that are desirable for magnetic properties and suppressing [111] textures that are undesirable for magnetic properties. The Mn content needs to exceed 0.75% as proposed in Japanese Patent Application No. 56-213368 to bring about this effect.
In order to exhibit a composite effect with Sn, it is desirable that the amount exceeds 1.0%. Mn lowers the ferrite-austenite transformation temperature, so
If the Mn content exceeds 1.5%, ferrite-austenite transformation occurs during annealing of the hot-rolled sheet, and Mn
The texture-improving effect and magnetism-improving effect of . Therefore, the Mn content exceeds 1.0% and 1.5
% or less. Components other than those mentioned above are Fe and inevitable impurities. Next, the combined effect that is a feature of the present invention will be explained. Sn mainly segregates at grain boundaries, suppresses recrystallization in the [111] orientation that starts at the grain boundaries, and promotes recrystallization within the grains. Also, as mentioned above, Mn is [110]
and [100] has the effect of developing texture. In the steel of the present invention, N does not form compounds or precipitates that behave as nuclei during recrystallization, and due to the presence of acid-soluble Al with a high content of more than 0.1%, It does not combine into AlN, which is harmful to the product's magnetism. In the steel of the present invention, the formation of the above-mentioned [110] and [100] textures is promoted by the action of Mn and Sn, as well as by acid-soluble Al removing the harmful effects of N. In addition, acid-soluble Al has the advantage of increasing the specific resistance of silicon steel and lowering the iron loss of the product. As understood from the above, in the non-oriented electrical steel sheet of the present invention, the high Mn content plays an important role in improving the magnetic properties. This Mn
Figure 2 shows the dependence of magnetic properties on content. The non-oriented electrical steel sheet shown in this drawing is made by hot rolling steel with the composition shown in Table 1 to 2.3 mm, rolling it at 750℃, annealing it at 900℃ for 2 minutes, and cold rolling it into a 0.53mm steel strip. It was manufactured by rolling, finish annealing at 850°C for 1 minute, skin pass rolling at a rolling reduction of 6%, and stress relief annealing at 790°C for 1 hour in a 100% N2 atmosphere.

【表】 第2図から分かるように、Mn含有量が1%を
超える場合に、Snを含有する無方向性電磁鋼の
鉄損及び磁束密度が、Snを含有しないものと比
較して改良されている。 以下、本発明による製造方法を詳しく説明す
る。 前記成分からなる鋼は、転炉あるいは電気炉な
どで溶製され、連続鋳造あるいは造塊後分塊圧延
によりスラブとされる。 次いで所定の温度に加熱し熱間圧延されるが、
この熱間圧延においては熱間圧延後に700℃以上
の温度で捲取り、熱間コイルの保有する熱で自己
焼鈍させる。この自己焼鈍にさいしては熱間コイ
ルに熱の放散を防ぐ保熱カバーを被せると都合が
よい。ところで700℃以上で捲取るのは、この温
度未満ではその後の焼鈍時に微細な析出物が形成
され結晶粒の成長を抑制するからである。また該
温度以下ではSnとMnと脱酸以外の目的の酸可溶
Alを複合して含有させていても鉄損を低下しか
つ磁束密度を高めることができない。 また熱間圧延において700℃以上の温度に捲取
つて自己焼鈍させるのに代えて、熱間圧延後750
℃以上の温度で熱延板焼鈍する。これによつても
鉄損を低くしかつ磁束密度を高めることができる
が、この作用効果を奏せしめるには750℃以上の
温度で焼鈍する必要がある。 この熱延板焼鈍においては、加熱速度および冷
却速度がともに速い方がすぐれており、連続焼鈍
を適用することができる。 次いで1回の冷間圧延または中間焼鈍をはさん
で、2回以上の冷間圧延により所定の板厚とされ
る。 仕上焼鈍においては、低い加熱速度よりむしろ
急速加熱した場合が鉄損の低下と磁束密度を高め
る作用があるので連続焼鈍を行なう。このさいの
焼鈍温度は750℃以上で所望の磁気特性に応じて
変えられる。 本発明において、連続焼鈍が好ましいと言うこ
とは、磁気特性の向上の他に生産性を高める面か
らも有利なことであり、SnとMnと脱酸目的以外
のAlとの複合含有の作用効果である。 以上で、無方向性電磁鋼板が製造されるが、次
いで応力除去焼なましを行うか、あるいはスキン
パスを2〜10%の圧下率で行ない、所定形状に打
抜き後に歪取り焼鈍が施されるいわゆるセミプロ
セスタイプの無方向性電磁鋼板を製造してもよ
い。 スキンパス率を2〜10%とするのは2%以下で
は歪取り焼鈍において磁気特性がすぐれないから
であり、また上限を10%とするのは、これ以上に
なると磁気特性が劣化するからである。 次に実施例を示す。 実施例 1 表2に示す成分の鋼を、同表に示す処理条件に
て製造し、磁気特性を測定した。その測定結果も
同表に示している。
[Table] As can be seen from Figure 2, when the Mn content exceeds 1%, the iron loss and magnetic flux density of non-oriented electrical steel containing Sn are improved compared to those without Sn. ing. The manufacturing method according to the present invention will be explained in detail below. Steel made of the above-mentioned components is melted in a converter or electric furnace, and is made into a slab by continuous casting or ingot-forming and then blooming rolling. It is then heated to a predetermined temperature and hot rolled.
In this hot rolling, the coil is rolled up at a temperature of 700°C or higher after hot rolling, and self-annealed using the heat possessed by the hot coil. During this self-annealing, it is convenient to cover the hot coil with a heat retaining cover to prevent heat dissipation. By the way, the reason why the steel is rolled at a temperature of 700°C or higher is that if the temperature is lower than this, fine precipitates are formed during subsequent annealing, which suppresses the growth of crystal grains. Also, below this temperature, Sn and Mn are soluble in acids for purposes other than deoxidizing.
Even if Al is contained in combination, it is not possible to reduce iron loss and increase magnetic flux density. In addition, instead of self-annealing by rolling to a temperature of 700℃ or higher during hot rolling,
Hot-rolled sheets are annealed at temperatures above ℃. Although this also makes it possible to lower the core loss and increase the magnetic flux density, it is necessary to perform annealing at a temperature of 750° C. or higher in order to achieve this effect. In this hot-rolled sheet annealing, it is better to have both a faster heating rate and a faster cooling rate, and continuous annealing can be applied. Next, the sheet is cold rolled two or more times with one cold rolling or intermediate annealing in between to obtain a predetermined thickness. In final annealing, continuous annealing is performed because rapid heating rather than a low heating rate has the effect of reducing core loss and increasing magnetic flux density. The annealing temperature at this time is 750°C or higher and can be changed depending on the desired magnetic properties. In the present invention, the fact that continuous annealing is preferable is advantageous not only from the viewpoint of improving magnetic properties but also from the viewpoint of increasing productivity. It is. With the above steps, a non-oriented electrical steel sheet is manufactured.Next, stress relief annealing is performed, or skin pass is performed at a rolling reduction ratio of 2 to 10%, and strain relief annealing is performed after punching into a predetermined shape. A semi-process type non-oriented electrical steel sheet may be manufactured. The reason why the skin pass rate is set to 2 to 10% is because if it is less than 2%, the magnetic properties will not be excellent during strain relief annealing, and the reason why the upper limit is set to 10% is because if it exceeds this, the magnetic properties will deteriorate. . Next, examples will be shown. Example 1 Steels having the components shown in Table 2 were manufactured under the treatment conditions shown in Table 2, and their magnetic properties were measured. The measurement results are also shown in the same table.

【表】【table】

【表】 第1図に鋼No.11の組成を有する無方向性電磁鋼
板の磁気特性を示す。 実施例 2 前記実施例1で用いた鋼の熱延板を酸洗後0.52
mmに冷間圧延し、750℃×60秒の連続焼鈍を行な
い、次いで圧下率4%でスキンパス圧延を施し
た。 その後、エプスタイン試料に切断し、790℃×
1hrの歪取り焼鈍を行ない磁気特性を測定した。 その結果を表3に示す。
[Table] Figure 1 shows the magnetic properties of a non-oriented electrical steel sheet having the composition of Steel No. 11. Example 2 After pickling the hot-rolled steel plate used in Example 1, the
mm, continuous annealing was performed at 750°C for 60 seconds, and then skin pass rolling was performed at a rolling reduction of 4%. Then cut into Epstein samples and 790°C
Strain relief annealing was performed for 1 hour and magnetic properties were measured. The results are shown in Table 3.

【表】 この磁気特性を第1図にNo.11sとして示す。 以上のように本発明によれば鉄損が低くかつ磁
束密度のすぐれた無方向性電磁鋼板が提供されう
る。
[Table] This magnetic property is shown in Figure 1 as No. 11s. As described above, according to the present invention, a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の無方向性電磁鋼板および本発明
で目標とする鉄損w15/50と磁束密度B50の関係を
示す図、第2図はMn含有量と鉄損w15/50と磁束
密度B50の関係を示す図である。
Figure 1 is a diagram showing the relationship between iron loss w 15/50 and magnetic flux density B 50 targeted for conventional non-oriented electrical steel sheets and the present invention, and Figure 2 is a diagram showing the relationship between Mn content and iron loss w 15/50 . FIG. 3 is a diagram showing the relationship between magnetic flux density B50 .

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.015%以下、Si:0.3〜2.0
%、Mn:1.0%を超え1.5%以下、Sn:0.02〜0.20
%、酸可溶性Al:0.1%を超え0.2%以下、残部Fe
および不可避的不純物からなる、鉄損が低くかつ
磁束密度がすぐれた無方向性電磁鋼板。 2 重量%で、C:0.015%以下、Si:0.3〜2.0
%、Mn:1.0%を超え1.5%以下、Sn:0.02〜0.20
%、酸可溶性Al:0.1%を超え0.2%以下、残部Fe
および不可避的不純物からなる鋼を、熱間圧延し
た後、700℃以上の温度域で巻取り自己焼鈍する
か或は、熱間圧延後750℃以上の温度域で熱延板
焼鈍し、次いで1回若しくは中間焼鈍過程を介挿
する2回以上の冷間圧延を行ない、750℃以上の
温度域で連続焼鈍を行なうことを特徴とする鉄損
が低くかつ磁束密度がすぐれた無方向性電磁鋼板
の製造法。
[Claims] 1% by weight, C: 0.015% or less, Si: 0.3 to 2.0
%, Mn: more than 1.0% and less than 1.5%, Sn: 0.02 to 0.20
%, acid-soluble Al: more than 0.1% and less than 0.2%, balance Fe
A non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density, which is composed of iron and unavoidable impurities. 2 Weight%: C: 0.015% or less, Si: 0.3 to 2.0
%, Mn: more than 1.0% and less than 1.5%, Sn: 0.02 to 0.20
%, acid-soluble Al: more than 0.1% and less than 0.2%, balance Fe
After hot rolling, the steel consisting of unavoidable impurities is coiled and self-annealed at a temperature range of 700°C or higher, or after hot rolling, it is annealed in a hot rolled sheet at a temperature range of 750°C or higher, and then 1 A non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density, characterized by cold rolling two or more times with an intervening or intermediate annealing process, and continuous annealing in a temperature range of 750°C or higher. manufacturing method.
JP58009398A 1982-01-27 1983-01-25 Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production Granted JPS59157259A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58009398A JPS59157259A (en) 1983-01-25 1983-01-25 Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
DE8383300393T DE3361738D1 (en) 1982-01-27 1983-01-26 Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
AT83300393T ATE17376T1 (en) 1982-01-27 1983-01-26 NON-CORE-ORIENTED ELECTRICAL SHEET WITH LOW WATTLESS AND HIGH MAGNETIC FLUX DENSITY AND METHOD FOR ITS MANUFACTURE.
AU10765/83A AU551071B2 (en) 1982-01-27 1983-01-26 Non-oriented electrical silicon steel sheet with b, sn.
EP83300393A EP0084980B1 (en) 1982-01-27 1983-01-26 Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
AU45681/85A AU4568185A (en) 1982-01-27 1985-07-31 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009398A JPS59157259A (en) 1983-01-25 1983-01-25 Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15881987A Division JPS6333518A (en) 1987-06-27 1987-06-27 Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production

Publications (2)

Publication Number Publication Date
JPS59157259A JPS59157259A (en) 1984-09-06
JPS6256922B2 true JPS6256922B2 (en) 1987-11-27

Family

ID=11719314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009398A Granted JPS59157259A (en) 1982-01-27 1983-01-25 Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production

Country Status (1)

Country Link
JP (1) JPS59157259A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643614B2 (en) * 1986-11-22 1994-06-08 住友金属工業株式会社 Manufacturing method of semi-processed electrical steel sheet
JPH068489B2 (en) * 1988-12-28 1994-02-02 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent weldability after magnetic annealing
JPH086135B2 (en) * 1991-04-25 1996-01-24 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR101650406B1 (en) * 2014-12-24 2016-08-23 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
WO2019049362A1 (en) * 2017-09-11 2019-03-14 新潟原動機株式会社 Engine operation method and engine system
WO2022113264A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet

Also Published As

Publication number Publication date
JPS59157259A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
JPS6256225B2 (en)
JPH0469223B2 (en)
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JPS6323262B2 (en)
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPS6256922B2 (en)
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH0419297B2 (en)
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2701352B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100340503B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
JP2701349B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH0477067B2 (en)
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
KR100268853B1 (en) The manufacturing method of non oriented electric steel sheet with excellent magnetic properties
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet