JP3070936B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP3070936B2
JP3070936B2 JP2231690A JP23169090A JP3070936B2 JP 3070936 B2 JP3070936 B2 JP 3070936B2 JP 2231690 A JP2231690 A JP 2231690A JP 23169090 A JP23169090 A JP 23169090A JP 3070936 B2 JP3070936 B2 JP 3070936B2
Authority
JP
Japan
Prior art keywords
carbon material
batteries
lithium
negative electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2231690A
Other languages
Japanese (ja)
Other versions
JPH04112455A (en
Inventor
育朗 中根
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2231690A priority Critical patent/JP3070936B2/en
Publication of JPH04112455A publication Critical patent/JPH04112455A/en
Application granted granted Critical
Publication of JP3070936B2 publication Critical patent/JP3070936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、リチウム等のアルカリ金属を活物質とする
負極と、二酸化マンガン、三酸化モリブデン、五酸化バ
ナジウム、硫化チタンなどを活物質とする正極とを備え
た二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a negative electrode using an alkali metal such as lithium as an active material, and a manganese dioxide, molybdenum trioxide, vanadium pentoxide, titanium sulfide or the like as an active material. And a secondary battery provided with the positive electrode.

(ロ) 従来の技術 この種電池は、負極活物質であるリチウムが、充電の
際に負極表面に樹枝状に成長して正極に接し、内部短絡
を引き起こすため、充放電サイクル寿命が極めて短いと
いう問題点がある。
(B) Conventional technology In this type of battery, the charge-discharge cycle life is extremely short because lithium, which is the negative electrode active material, grows in a dendritic manner on the negative electrode surface during charging and contacts the positive electrode, causing an internal short circuit. There is a problem.

この対策として、負極をリチウム合金で構成すること
や、負極材料として充放電によりドーピング、脱ドーピ
ングされるリチウムを結晶中に混入した黒鉛の層間化合
物を用いたり(例えば特公昭60−23433号公報参照)、
所定の結晶厚み、真密度を持つ炭素材料のnドープ体を
用いたり(特開昭62−90863号公報参照)、コークス等
の炭素材料にリチウムを吸蔵させたものを用いるもの
(特開昭62−90863号公報参照)が、提案されている。
As a countermeasure, a negative electrode may be composed of a lithium alloy, or a graphite intercalation compound in which lithium doped and dedoped by charge and discharge is mixed in a crystal may be used as a negative electrode material (for example, see Japanese Patent Publication No. 60-23433). ),
An n-doped carbon material having a predetermined crystal thickness and a true density is used (see Japanese Patent Application Laid-Open No. Sho 62-90863), or a carbon material such as coke in which lithium is occluded is used (Japanese Patent Application Laid-Open No. Sho 62-90863). -90863) has been proposed.

特に、負極を炭素材料とリチウムとの化合物で構成す
れば、二次電池の充放電サイクル特性が飛躍的に向上す
る。その反面、炭素材料中にリチウムをドーピング、或
るいは吸蔵させた材料を負極とした電池では、充電放置
した場合、自己放電による容量減少が大きく、またこの
容量の減少分はその後サイクルを繰り返しても回復しな
いという問題点がある。更に、炭素材料を負極材料とし
たリチウム二次電池では、炭素材料の活性度が高いた
め、炭素材料中にリチウムを吸蔵させる場合に、電解液
が炭素材料と反応して分解し、ガス発生が生じて電池の
内圧が上昇し、漏液が生じるなどの問題があった。
In particular, if the negative electrode is composed of a compound of a carbon material and lithium, the charge / discharge cycle characteristics of the secondary battery are dramatically improved. On the other hand, in a battery in which a carbon material doped with lithium or occluded material is used as a negative electrode, when left uncharged, the capacity decrease due to self-discharge is large, and this capacity decrease is repeated by repeating the cycle thereafter. Also does not recover. Furthermore, in a lithium secondary battery using a carbon material as a negative electrode material, the activity of the carbon material is high, so when lithium is occluded in the carbon material, the electrolytic solution reacts with the carbon material and decomposes to generate gas. As a result, there is a problem that the internal pressure of the battery increases and liquid leakage occurs.

(ハ) 発明が解決しようとする課題 本発明は、前記問題点に鑑みて成されたものであっ
て、自己放電による容量減少が小さく、またリチウムを
吸蔵するときの電解液の分解が少なくガス発生が抑制さ
れた、サイクル特性に優れた二次電池を提供しようとす
るものである。
(C) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and has a small capacity reduction due to self-discharge and a small decomposition of an electrolyte when occluding lithium. An object of the present invention is to provide a secondary battery which is suppressed in generation and has excellent cycle characteristics.

(ニ) 課題を解決するための手段 本発明の二次電池は、負極材料が、電気化学的にアル
カリ金属イオンを吸蔵・放出する炭素材料を主成分とし
てなり、前記炭素材料が水酸化リチウムと混合され且
つ150℃〜1500℃の範囲で熱処理されたものであるこ
と、前記炭素材料がpH値6〜10の範囲でアルカリ処理
され且つ150℃〜1500℃の範囲で熱処理されたものであ
ること、前記炭素材料が水酸化カリウムと混合され且
つ150℃〜1500℃の範囲で熱処理されたものであるこ
と、または、前記炭素材料がpH値6〜10の範囲でアル
カリ処理され且つ150℃〜1500℃の範囲で熱処理された
ものであること、を特徴とするものである。
(D) Means for Solving the Problems In the secondary battery of the present invention, the negative electrode material is mainly composed of a carbon material electrochemically absorbing and releasing alkali metal ions, and the carbon material is composed of lithium hydroxide and lithium hydroxide. The carbon material is mixed and heat-treated at 150 to 1500 ° C, and the carbon material is alkali-treated at a pH value of 6 to 10 and heat-treated at 150 to 1500 ° C. The carbon material is mixed with potassium hydroxide and heat-treated at 150 ° C. to 1500 ° C., or the carbon material is alkali-treated at a pH value of 6 to 10 and 150 ° C. to 1500 ° C. Characterized by being heat-treated in the range of ° C.

そして、この炭素材料としては、カーボンブラック、
コークス、グラファイト等を使用することが可能であ
る。
And as this carbon material, carbon black,
Coke, graphite and the like can be used.

(ホ) 作 用 本発明によれば、負極材料が、電気化学的にアルカリ
金属イオンを吸蔵・放出する炭素材料を主成分としてな
り、前記炭素材料が水酸化リチウムと混合され且つ15
0℃〜1500℃の範囲で熱処理されたもの、前記炭素材
料がpH値6〜10の範囲でアルカリ処理され且つ150℃〜1
500℃の範囲で熱処理されたもの、前記炭素材料が水
酸化カリウムと混合され且つ150℃〜1500℃の範囲で熱
処理されたもの、または、前記炭素材料がpH値6〜10
の範囲でアルカリ処理され且つ150℃〜1500℃の範囲で
熱処理されたもの、これら〜の炭素材料を負極材料
として使用すれば、自己放電が少なく、また電解液の分
解に起因するガス発生による漏液の少ない二次電池を提
供できる。この理由は、カーボンは、一般的に炭素原子
が主に六角形に結合した結晶構造を有するが、その結合
の端部においてはその六角構造を保つことが出来ず、端
部の炭素原子は空気中の酸素や水分と容易に結合して、
水酸基(COH)やカルボニル基(COOH)となっている。
これらの官能基は活性度が高いため、電解液と反応して
電解液を分解したり、或るいは充電時に炭素材料内に吸
蔵されたリチウムがこれらの官能基と反応して自己放電
を生じる。従って、予め、これらの官能基の活性度を低
下させることが必要である。即ち、上記官能基の水素原
子をリチウム原子に置換し、炭素材料の電解液の分解に
対する活性度を下げることが出来、電解液の分解を抑制
できる。また、これらの官能基のリチウムとの反応をも
抑制することが出来るので、自己放電の少ない二次電池
が提供できる。
(E) Operation According to the present invention, the negative electrode material is mainly composed of a carbon material electrochemically absorbing and releasing alkali metal ions, and the carbon material is mixed with lithium hydroxide.
Heat-treated at 0 ° C to 1500 ° C, wherein the carbon material is alkali-treated at a pH value of 6 to 10 and 150 ° C to 1 ° C.
Heat-treated in the range of 500 ° C., the carbon material mixed with potassium hydroxide and heat-treated in the range of 150 ° C. to 1500 ° C., or the carbon material has a pH value of 6 to 10
Alkaline treatment in the range of 150 ° C. to 1500 ° C. If these carbon materials are used as the negative electrode material, self-discharge is small and leakage due to gas generation due to decomposition of the electrolytic solution is caused. A secondary battery with little liquid can be provided. The reason is that carbon generally has a crystal structure in which carbon atoms are mainly bonded in a hexagonal manner, but cannot maintain the hexagonal structure at the end of the bond, and the carbon atom at the end is air. It easily combines with oxygen and moisture inside,
It is a hydroxyl group (COH) or a carbonyl group (COOH).
Since these functional groups have high activity, they react with the electrolytic solution to decompose the electrolytic solution, or the lithium occluded in the carbon material during charging reacts with these functional groups to cause self-discharge . Therefore, it is necessary to reduce the activity of these functional groups in advance. That is, the hydrogen atom of the functional group is replaced with a lithium atom, the activity of the carbon material against decomposition of the electrolytic solution can be reduced, and the decomposition of the electrolytic solution can be suppressed. In addition, since the reaction of these functional groups with lithium can be suppressed, a secondary battery with less self-discharge can be provided.

(ヘ) 実施例 第1図は、本発明電池の縦断面図を示す。第1図にお
いて、1は本発明の要旨とする炭素材料を主成分とする
負極(具体的な作製例は後述する)であって、負極缶2
の内底面に固着せる負極集電体3に圧着されている。4
は正極であって、活物質としてのマンガン酸化物にアセ
チレンブラック導電剤とフッ素樹脂結着剤とを、それぞ
れ80:10:10(重量比)の割合で混合した合剤を成型した
ものであり、正極缶5の内底面に圧接されている。6は
ポリプロピレン不織布よりなるセパレータであって、こ
のセパレータ6はプロピレンカーボネートと1,2ジメト
キシエタンとの等体積混合溶媒に、過塩素酸リチウムを
1モル/溶解させた非水電解液が含浸されている。7
は正、負極缶を絶縁する絶縁パッキング、電池寸法は、
直径25mmφ、厚み3.0mmである。
(F) Example FIG. 1 shows a longitudinal sectional view of the battery of the present invention. In FIG. 1, reference numeral 1 denotes a negative electrode mainly composed of a carbon material as a gist of the present invention (a specific production example will be described later).
Is pressure-bonded to the negative electrode current collector 3 which is fixed to the inner bottom surface. 4
Is a positive electrode formed by mixing a manganese oxide as an active material with an acetylene black conductive agent and a fluororesin binder in a ratio of 80:10:10 (weight ratio), respectively. , Is pressed against the inner bottom surface of the positive electrode can 5. Reference numeral 6 denotes a separator made of a polypropylene non-woven fabric. The separator 6 is obtained by impregnating a non-aqueous electrolyte obtained by dissolving lithium perchlorate at a mole ratio of 1 mol / volume in a mixed solvent of propylene carbonate and 1,2 dimethoxyethane. I have. 7
Is an insulating packing that insulates the positive and negative electrode cans.
The diameter is 25mmφ and the thickness is 3.0mm.

次に、負極の作製例について、詳述する。 Next, a production example of the negative electrode will be described in detail.

(作製例1) 水酸化リチウムと石炭系ピッチコークスを重量比で、
1:99となるように混合し、これを第1表に示す温度で焼
成させ、炭素とリチウム塩との複合体の粉末を作製し
た。
(Preparation Example 1) Lithium hydroxide and coal-based pitch coke are in a weight ratio,
The mixture was mixed at a ratio of 1:99, and the mixture was fired at the temperature shown in Table 1 to prepare a powder of a composite of carbon and a lithium salt.

この出発原料の石炭系ピッチコークスと、上記方法の
うち400℃で焼成して作製した粉末を、赤外線分光分析
により分析した結果、炭素中の水酸基、カルボニル基の
水素が、リチウムと置換されていることが分かった。
This starting material, coal-based pitch coke, and the powder produced by calcining at 400 ° C among the above methods were analyzed by infrared spectroscopy.As a result, the hydroxyl group in the carbon and the hydrogen of the carbonyl group were replaced with lithium. I understood that.

また、これらの炭素材料中の炭素と水素とリチウムの
比を測定したところ、炭素中の水素のほとんどがリチウ
ムに置換されていることが分かった。
Also, when the ratio of carbon, hydrogen and lithium in these carbon materials was measured, it was found that most of the hydrogen in the carbon was replaced by lithium.

この様にして作製された炭素材料とリチウム塩との複
合材料に、結着剤としてエチレンゴムを90:10(体積
比)の割合で混合した合剤を、1.5t/cm2の圧力で加圧成
型した。そして、直径20mm、厚さ1.0mmの炭素材料から
なる電極を得た。
A mixture obtained by mixing ethylene rubber as a binder at a ratio of 90:10 (volume ratio) to the composite material of the carbon material and the lithium salt thus produced was applied at a pressure of 1.5 t / cm 2. Press molded. Then, an electrode made of a carbon material having a diameter of 20 mm and a thickness of 1.0 mm was obtained.

このようにして得た電極を負極として作製した電池
を、本発明電池A1〜A6、比較電池X1、X2とする。
Batteries produced using the electrode thus obtained as a negative electrode are referred to as batteries A1 to A6 of the present invention and comparative batteries X1 and X2.

第1表に、本発明電池A1〜A6、比較電池X1、X2の熱処
理温度を示す。
Table 1 shows the heat treatment temperatures of the batteries A1 to A6 of the present invention and the comparative batteries X1 and X2.

このようにして作製した電池A1〜A6、X1、X2の電池特
性を比較した。
The battery characteristics of the batteries A1 to A6, X1, and X2 thus produced were compared.

第2図は、本発明電池A1〜A6、比較電池X1、X2のサイ
クル特性と、室温にて1ケ月保存後の電池の容量残存率
を示す図である。ここで電池の充放電条件は、放電電流
3mAで2Vまで放電し、充電は3mAで3.5Vを終止とした。
FIG. 2 is a diagram showing the cycle characteristics of the batteries A1 to A6 of the present invention and the comparative batteries X1 and X2, and the remaining capacity of the batteries after storage for one month at room temperature. Here, the charge / discharge condition of the battery is the discharge current
Discharging was performed at 3 mA to 2 V, and charging was terminated at 3.5 mA at 3 mA.

また、第2表は、60℃、1ケ月保存後の本発明電池A1
〜A6、比較電池X1、X2の漏液の発生状況を示すものであ
る。
Table 2 shows that the battery A1 of the present invention was stored at 60 ° C. for one month.
A6 shows the occurrence of liquid leakage in comparative batteries X1 and X2.

(作製例2) 石炭系ニードルコークスを、種々濃度の水酸化カリウ
ム水溶液中に浸漬させ、アルカリ処理を行い、過した
後、充分乾燥して水酸基やカルボニル基の水素をカリウ
ムで置換した炭素材料を得た。この炭素材料を水に分散
させ、そのpH値を測定したところ、第3表に示す値を得
た。
(Production Example 2) A carbon material obtained by immersing coal-based needle coke in aqueous potassium hydroxide solutions of various concentrations, performing an alkali treatment, passing the mixture, and then sufficiently drying the hydrogen of the hydroxyl group or the carbonyl group with potassium. Obtained. This carbon material was dispersed in water, and the pH value was measured. As a result, the values shown in Table 3 were obtained.

また、このうちpH8の炭素材料を、赤外線分光分析に
より分析したところ、炭素材料中の水酸基やカルボニル
基の水素が、カリウムに置換されていることが分かっ
た。
In addition, when the pH 8 carbon material was analyzed by infrared spectroscopy, it was found that the hydrogen of the hydroxyl group and the carbonyl group in the carbon material was replaced by potassium.

この様にして作製した炭素材料を用いる他は、前記作
製例1と同様にして作製した電池を、本発明電池B1〜B
5、比較電池Y1、Y2とする。
Batteries produced in the same manner as in Production Example 1 except that the carbon material produced in this manner was used,
5, the comparative batteries Y1 and Y2.

このようにして作製した電池B1〜B6、Y1、Y2の電池特
性を比較した。
The battery characteristics of the batteries B1 to B6, Y1, and Y2 thus manufactured were compared.

第3図は、本発明電池B1〜B5、比較電池Y1、Y2のサイ
クル特性と、室温にて1ケ月保存後の電池の容量残存率
を示す図である。
FIG. 3 is a diagram showing the cycle characteristics of the batteries B1 to B5 of the present invention and the comparative batteries Y1 and Y2, and the remaining capacity of the batteries after storage at room temperature for one month.

また、第4表は、60℃、1ケ月保存後の本発明電池B1
〜B5、比較電池Y1、Y2の漏液の発生状況を示すものであ
る。
Table 4 shows that the battery B1 of the present invention after storage at 60 ° C. for one month was used.
B5 to B5 show the occurrence of liquid leakage in the comparative batteries Y1 and Y2.

(作製例3) 石炭系ニードルコークスに水酸化リチウムを、第5表
に示す如く、混合した後、400℃で焼成してリチウムを
種々濃度で含む炭素材料を作製した。そして、この炭素
材料を使用した以外は、前記作製例1と同様にして作製
した電池を、本発明電池C1〜C5、比較電池Z1、Z2とす
る。
(Production Example 3) As shown in Table 5, lithium hydroxide was mixed with coal-based needle coke, and then calcined at 400 ° C to produce carbon materials containing lithium at various concentrations. Then, batteries manufactured in the same manner as in Manufacturing Example 1 except that this carbon material was used are referred to as batteries C1 to C5 of the present invention and comparative batteries Z1 and Z2.

第5表は、本発明電池C1〜C5、比較電池Z1、Z2で使用
した、水酸化リチウムと炭素材料の混合比を示す。
Table 5 shows the mixing ratio of lithium hydroxide and the carbon material used in the batteries C1 to C5 of the present invention and the comparative batteries Z1 and Z2.

このようにして作製した電池C1〜C6、Z1、Z2の電池特
性を比較した。
The battery characteristics of the batteries C1 to C6, Z1, and Z2 thus manufactured were compared.

第4図は、本発明電池C1〜C5、比較電池Z1、Z2のサイ
クル特性と、室温にて1ケ月保存後の電池の容量残存率
を示す図である。
FIG. 4 is a diagram showing the cycle characteristics of the batteries of the present invention C1 to C5 and the comparative batteries Z1 and Z2, and the remaining capacity of the batteries after storage at room temperature for one month.

また、第6表は、60℃、1ケ月保存後の本発明電池C1
〜C5、比較電池Z1、Z2の漏液の発生状況を示すものであ
る。
Table 6 shows that the battery C1 of the present invention was stored at 60 ° C. for one month.
7 shows the occurrence of liquid leakage in the batteries C1 to C5 and the comparative batteries Z1 and Z2.

(まとめ) これらの第2図乃至第4図、第2表、第4表及び第6
表より明らかなように、本発明電池A1〜A6、B1〜B5、C1
〜C5は、サイクル特性に優れ、また自己放電や漏液の発
生が少ないものであることが分かる。この理由は、炭素
材料中の水酸基やカルボニル基の水素を、リチウムやカ
リウムなどで置換するため、この部分の活性度が低下す
る。この結果、電解液の分解を抑制できるので電解液分
解によるガス発生や、それによる電池の漏液を抑制でき
る。また、充電によって炭素材料中に吸蔵されたリチウ
ムがこれらの官能基と反応し難くなるため、自己放電に
よる容量の低下も抑制できる。
(Summary) These FIGS. 2 to 4, Tables 2, 4 and 6
As is clear from the table, the batteries A1-A6, B1-B5, C1 of the present invention
It can be seen that C5 to C5 have excellent cycle characteristics and are less likely to cause self-discharge and liquid leakage. The reason is that the hydrogen of the hydroxyl group or the carbonyl group in the carbon material is replaced with lithium, potassium, or the like, so that the activity of this portion decreases. As a result, the decomposition of the electrolytic solution can be suppressed, so that the generation of gas due to the decomposition of the electrolytic solution and the leakage of the battery caused by the decomposition can be suppressed. In addition, since the lithium stored in the carbon material due to charging becomes difficult to react with these functional groups, a decrease in capacity due to self-discharge can be suppressed.

また更に、前記作製例1において、リチウム塩と炭素
材料の焼成温度は150℃以上1500℃以下が望ましいこと
が分かる。この理由は150℃よりも低い温度では、リチ
ウム塩と炭素材料の反応が充分に進まず、炭素材料中の
水酸基やカルボニル基の水素がアルカリ金属と置換され
ないため、これらの官能基の活性度を低下させることが
出来ないと考えられる。一方、1500℃を越えると、炭素
材料自体の結晶構造が変化し、電気化学的にリチウムを
吸蔵し難くなるものと考えらえる。
Furthermore, it is understood that in the above Preparation Example 1, the firing temperature of the lithium salt and the carbon material is desirably 150 ° C. or more and 1500 ° C. or less. The reason for this is that at temperatures lower than 150 ° C, the reaction between the lithium salt and the carbon material does not proceed sufficiently, and the hydrogen of the hydroxyl group or carbonyl group in the carbon material is not replaced with the alkali metal. It cannot be reduced. On the other hand, if the temperature exceeds 1500 ° C., the crystal structure of the carbon material itself changes, and it is considered that lithium becomes difficult to electrochemically occlude.

また、前記作製例2からは、水に分散させたときのpH
値が6以上、10以下の炭素材料が二次電池の負極材料と
して、優れた性能を有することが分かる。この理由は、
pH値が低いと、炭素材料中の水酸基やカルボニル基の水
素がアルカリ金属に充分に置換されないため、これらの
官能基の活性度を低下させることが出来ないことに起因
する。一方、pH値が高い炭素材料では、炭素材料に付着
した未反応のアルカリ金属塩が多いため、これが電解液
の分解などを生じさせ、特性を劣化させるものと考えら
れる。
Further, from Preparation Example 2, the pH when dispersed in water was
It can be seen that a carbon material having a value of 6 or more and 10 or less has excellent performance as a negative electrode material of a secondary battery. The reason for this is
When the pH value is low, the hydrogen of the hydroxyl group or the carbonyl group in the carbon material is not sufficiently substituted by the alkali metal, so that the activity of these functional groups cannot be reduced. On the other hand, in the case of a carbon material having a high pH value, since there are many unreacted alkali metal salts attached to the carbon material, it is considered that this causes decomposition of the electrolytic solution and the like, and deteriorates the characteristics.

また更に、前記作製例3についても同様の理由で、炭
素材料とリチウム塩の重量比が0.05:99.95、8:92の間が
よいものと考えられる。
For the same reason, it is considered that the weight ratio between the carbon material and the lithium salt is preferably between 0.05: 99.95 and 8:92 for Production Example 3 for the same reason.

尚、本実施例においては、扁平形電池を例示したが、
円筒形電池においても同様な効果が得られることは言う
までもない。
In the present embodiment, a flat battery is exemplified.
It goes without saying that a similar effect can be obtained in a cylindrical battery.

更に、本実施例では、炭素材料として、石炭系ピッチ
コークスや石炭系ニードルコークスを例示したが、他の
炭素材料、例えば石油系コークス、活性炭、黒鉛、膨張
黒鉛、カーボンブラック、及び種々有機化合物の熱分解
生成物、炭素繊維等の炭素材料であればよい。
Further, in this embodiment, coal-based pitch coke and coal-based needle coke have been exemplified as carbon materials, but other carbon materials, such as petroleum-based coke, activated carbon, graphite, expanded graphite, carbon black, and various organic compounds Any carbon material such as a pyrolysis product or carbon fiber may be used.

(ト) 発明の結果 以上、詳述した如く、本発明によれば、自己放電によ
る容量減少が小さく、また電解液の分解が少なくガス発
生が抑制され、サイクル特性にも優れた二次電池が提供
でき、その工業的価値は極めて大きい。
(G) Results of the present invention As described above in detail, according to the present invention, a secondary battery having a small capacity reduction due to self-discharge, a small decomposition of an electrolytic solution, a suppressed gas generation, and excellent cycle characteristics is provided. It can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の縦断面図、第2図は本発明電池A1
〜A6と比較電池X1、X2のサイクル特性と保存後の容量残
存率の比較を示す図、第3図は本発明電池B1〜B5と比較
電池Y1、Y2のサイクル特性と保存後の容量残存率の比較
を示す図、第4図は本発明電池C1〜C5と比較電池Z1、Z2
のサイクル特性と保存後の容量残存率の比較を示す図で
ある。 1……負極、2……負極缶、3……負極集電体、4……
正極、5……正極缶、6……セパレータ、7……絶縁パ
ッキング。
FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIG. 2 is a battery A1 of the present invention.
FIG. 3 shows a comparison between the cycle characteristics of the batteries A1 to A6 and the comparative batteries X1 and X2 and the residual capacity after storage. FIG. 3 shows the cycle characteristics of the batteries B1 to B5 of the present invention and the comparative batteries Y1 and Y2 and the residual capacity after storage. FIG. 4 shows a comparison between the batteries of the present invention C1 to C5 and comparative batteries Z1 and Z2.
FIG. 4 is a diagram showing a comparison between the cycle characteristics of Example 1 and the residual capacity ratio after storage. 1 ... Negative electrode, 2 ... Negative electrode can, 3 ... Negative electrode current collector, 4 ...
Positive electrode, 5 ... Positive electrode can, 6 ... Separator, 7 ... Insulating packing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−18579(JP,A) 特開 昭64−14870(JP,A) 特開 平3−285273(JP,A) 特開 平4−79170(JP,A) 実開 昭62−268056(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 10/40 H01M 4/02 - 4/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-18579 (JP, A) JP-A-64-14870 (JP, A) JP-A-3-285273 (JP, A) JP-A-4- 79170 (JP, A) Japanese Utility Model Sho 62-268056 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 10/40 H01M 4/02-4/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極材料が、電気化学的にアルカリ金属イ
オンを吸蔵・放出する炭素材料を主成分としてなり、 前記炭素材料が水酸化リチウムと混合され且つ150℃〜1
500℃の範囲で熱処理されたものであること、または、
前記炭素材料がpH値6〜10の範囲でアルカリ処理され且
つ150℃〜1500℃の範囲で熱処理されたものであるこ
と、 を特徴とする二次電池。
1. A negative electrode material comprising a carbon material electrochemically absorbing and releasing alkali metal ions as a main component, wherein the carbon material is mixed with lithium hydroxide and has a temperature of 150 ° C. to 1 ° C.
Heat-treated in the range of 500 ° C, or
A secondary battery, wherein the carbon material has been subjected to alkali treatment at a pH value in the range of 6 to 10 and heat treatment at a temperature in the range of 150 ° C to 1500 ° C.
【請求項2】負極材料が、電気化学的にアルカリ金属イ
オンを吸蔵・放出する炭素材料を主成分としてなり、 前記炭素材料が水酸化カリウムと混合され且つ150℃〜1
500℃の範囲で熱処理されたものであること、または、
前記炭素材料がpH値6〜10の範囲でアルカリ処理され且
つ150℃〜1500℃の範囲で熱処理されたものであるこ
と、 を特徴とする二次電池。
2. A negative electrode material mainly comprising a carbon material electrochemically absorbing and releasing alkali metal ions, wherein said carbon material is mixed with potassium hydroxide and has a temperature of 150 ° C. to 1 ° C.
Heat-treated in the range of 500 ° C, or
A secondary battery, wherein the carbon material has been subjected to alkali treatment at a pH value in the range of 6 to 10 and heat treatment at a temperature in the range of 150 ° C to 1500 ° C.
JP2231690A 1990-08-31 1990-08-31 Rechargeable battery Expired - Fee Related JP3070936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231690A JP3070936B2 (en) 1990-08-31 1990-08-31 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231690A JP3070936B2 (en) 1990-08-31 1990-08-31 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH04112455A JPH04112455A (en) 1992-04-14
JP3070936B2 true JP3070936B2 (en) 2000-07-31

Family

ID=16927474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231690A Expired - Fee Related JP3070936B2 (en) 1990-08-31 1990-08-31 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3070936B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69404901T2 (en) * 1993-05-14 1998-03-12 Sharp Kk Lithium secondary battery
JP3200289B2 (en) 1994-07-29 2001-08-20 シャープ株式会社 Lithium secondary battery
AU3754195A (en) * 1994-10-27 1996-05-23 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
JP3222022B2 (en) 1994-10-27 2001-10-22 シャープ株式会社 Method for producing lithium secondary battery and negative electrode active material
US6451486B1 (en) * 2000-05-01 2002-09-17 The Gillette Company Battery cathode including a mixture of manganese dioxide with carbon particles of expanded and non-expanded graphite
JP5079219B2 (en) * 2005-04-28 2012-11-21 昭和電工株式会社 Graphite material for negative electrode of non-aqueous electrolyte secondary battery
JP2008198568A (en) * 2007-02-15 2008-08-28 China Steel Chemical Corp Manufacturing method of negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery manufactured by manufacturing method, and lithium secondary battery using negative electrode material

Also Published As

Publication number Publication date
JPH04112455A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
US6991752B2 (en) Positive electrode active material for non-aqueous electrolyte secondary cell and cell using the same
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
JP3070936B2 (en) Rechargeable battery
JP4900994B2 (en) Nonaqueous electrolyte secondary battery
KR20220040889A (en) Cathode active material for lithium secondary battery and method of manufacturing the same
JP2004014300A (en) Nonaqueous electrolyte battery and its manufacturing method
KR102303213B1 (en) Cathode active material for lithium secondary battery and lithium secondary battery including the same
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPS63148550A (en) Nonaqueous secondary battery
JPH03241675A (en) Nonaqueous electrolyte secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2584246B2 (en) Non-aqueous secondary battery
JP2951013B2 (en) Non-aqueous electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
US20230187703A1 (en) Electrolyte for manganese ion battery and manganese ion battery using the same
JP2692932B2 (en) Non-aqueous secondary battery
JPH0787098B2 (en) Non-aqueous secondary battery
JP3322182B2 (en) Non-aqueous electrolyte for batteries
JPH1083837A (en) Lithium secondary battery
JPH04229562A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees