JP3068973B2 - Combined cycle power plant - Google Patents

Combined cycle power plant

Info

Publication number
JP3068973B2
JP3068973B2 JP4349095A JP34909592A JP3068973B2 JP 3068973 B2 JP3068973 B2 JP 3068973B2 JP 4349095 A JP4349095 A JP 4349095A JP 34909592 A JP34909592 A JP 34909592A JP 3068973 B2 JP3068973 B2 JP 3068973B2
Authority
JP
Japan
Prior art keywords
steam
pressure section
section
reheat
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4349095A
Other languages
Japanese (ja)
Other versions
JPH06200707A (en
Inventor
高橋  毅
利夫 三巻
幸生 渋谷
泰久 田中
雅賀 井上
英俊 土田
政弘 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry filed Critical Toshiba Corp
Priority to JP4349095A priority Critical patent/JP3068973B2/en
Publication of JPH06200707A publication Critical patent/JPH06200707A/en
Application granted granted Critical
Publication of JP3068973B2 publication Critical patent/JP3068973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、既設の蒸気タービンプ
ラントと新設のガスタービンプラントとを組み合せたコ
ンバインドサイクル発電プラントに係り、特に、新設ガ
スタービンプラントから排熱回収ボイラに送られるター
ビン排熱と、既設蒸気タービンプラントのボイラから排
熱回収ボイラに送られる蒸気とを熱交換させる熱交換器
を排熱回収ボイラ内で適正配置したコンバインドサイク
ル発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant in which an existing steam turbine plant and a new gas turbine plant are combined, and more particularly, to turbine exhaust heat sent from a new gas turbine plant to a waste heat recovery boiler. And a heat exchanger for exchanging heat with steam sent from a boiler of an existing steam turbine plant to a waste heat recovery boiler.

【0002】[0002]

【従来の技術】近時、電力産業においては、消費電力の
増加の中、プラント熱効率の優れたコンバインドサイク
ル発電プラントが脚光を浴びている。このコンバインド
サイクル発電プラントは、ガスタービンプラントから出
た排熱を蒸気発生に利用する点で、ボイラへの燃料供給
の節約ができ、プラント熱効率を向上させることができ
る。
2. Description of the Related Art In recent years, in the electric power industry, combined cycle power plants having excellent plant thermal efficiency have been spotlighted with increasing power consumption. This combined cycle power plant utilizes waste heat generated from a gas turbine plant for steam generation, thereby saving fuel supply to a boiler and improving plant thermal efficiency.

【0003】コンバインドサイクル発電プラントは、新
設のガスタービンプラントと新設の蒸気タービンプラン
トとを組み合せる場合もあるが、立地条件、建設から据
付までの長期間を考慮すると、既に実績を多く積み重ね
た蒸気タービンプラントと新設ガスタービンプラントと
を巧みに組み合せて工期の短縮を図る、いわゆるリパワ
リング発電プラントが一般的である。
[0003] A combined cycle power plant may combine a newly-installed gas turbine plant and a newly-installed steam turbine plant. However, in consideration of location conditions and a long period of time from construction to installation, a steam turbine that has already accumulated many achievements is considered. A so-called repowering power plant is generally used in which a construction period is shortened by skillfully combining a turbine plant and a newly-installed gas turbine plant.

【0004】既に提唱されている、この種の発電プラン
トは、新設のガスタービンプラントからの排熱を、既設
の蒸気タービンプラントからの復水・給水予熱に利用さ
れることが多く、その代表的実施例は図6に示すものが
ある。
[0004] In this type of power plant, which has already been proposed, waste heat from a newly installed gas turbine plant is often used for condensing and pre-heating water from an existing steam turbine plant. An embodiment is shown in FIG.

【0005】リパワリング発電プラントは、図6にも見
られるように、全体として既設の蒸気タービンプラント
STBと、新設のガスタービンプラントGTHからな
る。
[0005] As can be seen from Fig. 6, the repowering power plant includes an existing steam turbine plant STB and a newly installed gas turbine plant GTH as a whole.

【0006】既設蒸気タービンプラントSTBは、ボイ
ラ1、蒸気タービンのタービン高圧部2、タービン中圧
部3、タービン低圧部4a,4b、各種熱交換器を備え
て閉サイクルを構成している。
The existing steam turbine plant STB has a closed cycle including a boiler 1, a turbine high-pressure section 2, a turbine intermediate-pressure section 3, turbine low-pressure sections 4a and 4b, and various heat exchangers.

【0007】ボイラ1から出た蒸気は、蒸気タービンの
タービン高圧部2に案内されてここで膨脹仕事をした
後、比較的低温・低圧となって再びボイラ1に戻され
る。ボイラ1に戻ったその蒸気は、ここで再熱器5によ
って加熱され、再熱蒸気として、ここからタービン中圧
部3に送り出される。タービン中圧部3で膨脹仕事をし
た蒸気は、タービン低圧部4a,4bに送られ、ここで
も膨脹仕事をし、これら一連の膨脹仕事によって発電機
6を回転駆動させ、電気出力を出している。
[0007] The steam discharged from the boiler 1 is guided to the turbine high-pressure section 2 of the steam turbine, where it performs expansion work, and is returned to the boiler 1 again at a relatively low temperature and low pressure. The steam returned to the boiler 1 is heated by the reheater 5 here, and is sent from here to the turbine intermediate pressure section 3 as reheated steam. The steam that has been expanded in the turbine intermediate-pressure section 3 is sent to the turbine low-pressure sections 4a and 4b, where it is also expanded, and the generator 6 is rotationally driven by the series of expansion work to generate an electric output. .

【0008】タービン低圧部4a,4bを出た蒸気は、
復水器7によってほぼ常温近くまで冷され、復水・給水
として復水ポンプ8を経て低圧給水加熱器群9に送り出
され、ここでタービン低圧部4a,4bからの抽気蒸気
によって予熱される。予熱後の復水・給水は、脱気器1
0によって加熱作用により脱気され、給水ポンプ11を
経て高圧給水加熱器群12に送り出され、ここでタービ
ン中圧部3、タービン高圧部2からの抽気蒸気によって
再び予熱されて、ボイラ1に戻り、ここで節炭器13、
蒸発器14、過熱器15を順次に通過し、過熱蒸気を生
成している。
[0008] The steam exiting the turbine low pressure sections 4a, 4b is:
The water is cooled by the condenser 7 to almost the normal temperature, sent out to the low-pressure feedwater heater group 9 via the condensate pump 8 as condensate and water supply, where it is preheated by the extracted steam from the turbine low-pressure sections 4a and 4b. Condensation and water supply after pre-heating
0, the gas is degassed by a heating action and sent out to a high pressure feed water heater group 12 via a feed water pump 11, where it is preheated again by the extracted steam from the turbine intermediate pressure section 3 and the turbine high pressure section 2, and returns to the boiler 1. , Where the economizer 13,
The steam passes through the evaporator 14 and the superheater 15 in order to generate superheated steam.

【0009】なお、符号16は空気押込み用のファンを
示し、このファン16から空気予熱器17を経てボイラ
1に与えられる空気は、ボイラ燃焼ガス生成に供するも
のである。
Reference numeral 16 denotes a fan for pushing air. The air supplied from the fan 16 to the boiler 1 via the air preheater 17 is used for generating boiler combustion gas.

【0010】新設ガスタービンプラントGTHは、大別
してガスタービン部18と排熱回収ボイラ19とを備
え、開放サイクルを構成している。
The new gas turbine plant GTH is roughly divided into a gas turbine section 18 and an exhaust heat recovery boiler 19 to constitute an open cycle.

【0011】大気中の空気を吸い込んだ圧縮機20は、
大気圧の数十倍に高圧化し、高圧空気とともに燃料が燃
焼器21に与えられ、ここで超高温作動ガスが作り出さ
れる。作動ガスは、ガスタービン22によって膨脹仕事
をし、発電機23を回転駆動して電気出力を得ている。
The compressor 20 that has sucked the air in the atmosphere
The pressure is increased to several tens times the atmospheric pressure, and fuel is supplied to the combustor 21 together with the high-pressure air, where an ultra-high temperature working gas is produced. The working gas performs expansion work by the gas turbine 22 and rotationally drives the generator 23 to obtain an electric output.

【0012】上記膨脹仕事した作動ガスは、排熱(約6
00℃)として排熱回収ボイラ19に送り出され、復水
・給水の予熱源となっている。すなわち、上述の復水器
7から低圧給水加熱器群9に送り出される復水・給水の
うち、一部は低圧ガスクーラ部(低圧ガス給水加熱器)
24によって予熱されてから脱気器10に戻され、さら
に脱気器10を出た復水・給水は、高圧給水加熱器群1
2に送られる間に一部を高圧ガスクーラ部(高圧ガス給
水加熱器)25に送り、ここでも再加温されてボイラ1
に戻し、こうして復水・給水の予熱源としてガスタービ
ン部18からの排熱が有効に利用されている。
The working gas that has undergone the expansion work is exhausted heat (about 6
(00 ° C.) and is sent out to the waste heat recovery boiler 19 to serve as a preheating source for condensate and feed water. That is, a part of the condensate / water supply sent out from the condenser 7 to the low-pressure feedwater heater group 9 is partially a low-pressure gas cooler (low-pressure gas feedwater heater).
The condensed water / water that is returned to the deaerator 10 after being preheated by 24 and then exits the deaerator 10 is supplied to the high pressure feed heater group 1
2 is sent to a high-pressure gas cooler (high-pressure gas feed water heater) 25 while being sent to the boiler 1 again.
In this way, the exhaust heat from the gas turbine section 18 is effectively used as a preheat source of the condensed water / supply water.

【0013】[0013]

【発明が解決しようとする課題】ところで、最近になっ
て、ガスタービンプラントからの排熱を、今以上に有効
利用しようとする研究が進められており、その1つにボ
イラから生成される蒸気の高温化志向がある。
Recently, researches have been made to make more effective use of waste heat from gas turbine plants, and one of them is steam generated from a boiler. There is a tendency of high temperature.

【0014】この高温化志向は、図6にも見られるよう
に、ボイラ1の蒸発器14の出口点Xから一部の蒸気を
抜き出し、抜き出した蒸気を排熱回収ボイラ19の過熱
部26に送り出され、ここで蒸気タービンは排熱と熱交
換して、温度538℃以上に高められてからボイラ1の
出口点P1 で過熱器15からの蒸気と合流させるととも
に、他方において、ボイラ1の再熱器5の入口点Yから
一部の蒸気を抜き出し、抜き出した蒸気を排熱回収ボイ
ラ19の再熱部27に送り、ここでも蒸気をタービン排
熱と熱交換させ、その後、温度510℃以上に高められ
て再熱器5の出口点P2 で、再熱器5からの蒸気と合流
させ、こうして蒸気タービンの各部に高温蒸気を与え、
発電機出力を今以上にアップさせようとする試みであ
る。
As shown in FIG. 6, the intention to increase the temperature is to extract a part of the steam from the outlet point X of the evaporator 14 of the boiler 1 and to transfer the extracted steam to the superheater 26 of the exhaust heat recovery boiler 19. The steam turbine exchanges heat with the exhaust heat to increase the temperature to 538 ° C. or higher, and then joins the steam from the superheater 15 at the outlet point P 1 of the boiler 1, and on the other hand, recycles the boiler 1. Part of the steam is extracted from the inlet point Y of the heater 5, and the extracted steam is sent to the reheating unit 27 of the exhaust heat recovery boiler 19, where the steam is again exchanged with the turbine exhaust heat, and then the temperature is 510 ° C. or higher. At the exit point P2 of the reheater 5 to merge with the steam from the reheater 5, thus providing hot steam to each part of the steam turbine,
This is an attempt to further increase the generator output.

【0015】この場合、排熱回収ボイラ19の過熱部2
6と再熱部27とをいかなる順位で配置するか、現状の
過熱部、再熱部の全熱交換面積を変えずに過熱部、再熱
部のいずれに軽重をもたせたか等が高温志向上、重要な
因子になっている。過熱部26、再熱部27を、図6に
示す順位配置では、いわゆる所望する蒸気温度を得るこ
とができないと試算されている。
In this case, the superheat section 2 of the exhaust heat recovery boiler 19
The order in which the 6 and the reheating unit 27 are arranged, and whether the superheating unit or the reheating unit is given light weight without changing the total heat exchange area of the current superheating unit and the reheating unit, etc., is improved at high temperature. , Has become an important factor. It is estimated that the so-called desired steam temperature cannot be obtained with the order of the superheater 26 and the reheater 27 shown in FIG.

【0016】本発明は、かかる分析、研究に基づき、全
熱交換面積を変えずに、過熱部、再熱部を分割細化させ
る一方、分割細化した過熱部、再熱部を適正な位置に、
また適正な組合せによって排熱のエネルギを巧みに引き
出し、蒸気の高温化を図ろうとするコンバインドサイク
ル発電プラントを提供することを目的とする。
According to the present invention, based on such analysis and research, the superheated portion and the reheat portion can be divided and thinned without changing the total heat exchange area, and the divided thinned superheated portion and the reheat portion can be properly positioned. To
It is another object of the present invention to provide a combined cycle power plant in which energy of waste heat is skillfully extracted by a proper combination to increase the temperature of steam.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るコンバインドサイクル発電プラント
は、請求項1に記載したように、既設の蒸気タービンプ
ラントと、新設ガスタービンプラントとを組み合せたも
のであって、既設の蒸気タービンプラントのうち、ボイ
ラの蒸発器出口側から引き抜いた一部の蒸気を、排熱回
収ボイラ内に組み込まれた過熱部に送り、熱交換後、そ
の過熱蒸気をボイラの過熱器から出た過熱蒸気と合流さ
せる一方、上記ボイラの再熱器入口側から引き抜いた一
部の蒸気を、排熱回収ボイラ内に組み込まれた再熱部に
送り、熱交換後、その再熱蒸気をボイラの再熱器から出
た再熱蒸気とを合流させるコンバインドサイクル発電プ
ラントにおいて、上記排熱回収ボイラ内の再熱部および
過熱部を分割細化し、ガスタービン部から送られてくる
排熱の流れに沿って再熱高圧部、過熱高圧部、再熱中圧
部、過熱低圧部、再熱低圧部を順次に配設するものであ
る。
In order to solve the above problems, a combined cycle power plant according to the present invention is a combination of an existing steam turbine plant and a new gas turbine plant. Of the existing steam turbine plant, a portion of the steam extracted from the evaporator outlet side of the boiler is sent to a superheated section incorporated in the exhaust heat recovery boiler, and after heat exchange, the superheated steam With the superheated steam coming out of the superheater of the boiler, while sending a part of the steam extracted from the reheater inlet side of the boiler to a reheating unit incorporated in the exhaust heat recovery boiler, and after heat exchange. In a combined cycle power plant that combines the reheated steam with the reheated steam discharged from the reheater of the boiler, the reheat section and the superheated section in the exhaust heat recovery boiler are divided and thinned. Reheat pressure unit along the flow of the exhaust heat transmitted from the gas turbine unit, superheated high pressure section, re-heat stroke pressure portion, superheating the low pressure section is reheated low pressure section in which sequentially disposed.

【0018】また、本発明に係るコンバインドサイクル
発電プラントは、上記課題を解決するために、請求項2
に記載したように、過熱低圧部と過熱高圧部とを直列に
結ぶラインには減温部を介装する一方、再熱低圧部、再
熱中圧部、再熱高圧部を直列に結ぶラインの再熱中圧部
と再熱高圧部の間にも減温部を介装するするものであ
る。
Further, a combined cycle power plant according to the present invention is provided in order to solve the above problems.
As described in, the line connecting the superheated low-pressure section and the superheated high-pressure section in series is provided with a temperature-reducing section, while the line for connecting the reheat low-pressure section, the reheat medium-pressure section, and the reheat high-pressure section in series. A temperature reducing section is also interposed between the reheating medium pressure section and the reheating high pressure section.

【0019】[0019]

【作用】請求項1に記載のコンバインドサイクル発電プ
ラントでは、ボイラの蒸発器出口側から引き抜いた一部
の蒸気を、排熱回収ボイラの過熱低圧部、過熱高圧部を
経て、ボイラの過熱器から出た過熱蒸気と合流させる一
方、再熱器入口側から引き抜いた一部の蒸気を、排熱回
収ボイラの再熱低圧部、再熱中圧部、再熱高圧部を経
て、ボイラの再熱器から出た再熱蒸気と合流させるの
で、各蒸気の引き抜いた分だけのボイラへの燃料供給量
が節減でき、その節減燃料供給量分を排熱回収ボイラに
与えられる排熱でカバーして排熱の熱エネルギの有効活
用を図ることができる。
In the combined cycle power plant according to the first aspect, a part of the steam extracted from the evaporator outlet side of the boiler passes through the superheated low pressure section and the superheated high pressure section of the waste heat recovery boiler, and is then removed from the superheater of the boiler. While merging with the superheated steam that has come out, part of the steam extracted from the reheater inlet side passes through the reheat low pressure section, reheat medium pressure section, and reheat high pressure section of the exhaust heat recovery boiler, and passes through the boiler reheater. The reheated steam discharged from the boiler, the amount of fuel supply to the boiler can be reduced by the amount of each steam extracted, and the reduced fuel supply amount is covered by the waste heat given to the waste heat recovery boiler and discharged. Effective utilization of heat energy of heat can be achieved.

【0020】また、請求項2に記載のコンバインドサイ
クル発電プラントでは、過熱低圧部と過熱高圧部とを直
列に結ぶラインに減温部を、さらに再熱低圧部、再熱中
圧部、再熱高圧部を直列に結ぶラインの再熱中圧部と再
熱高圧部の間にも減温部を介装しているので、ガスター
ビン部の部分負荷時、排熱の温度が高くなっても、各減
温部から供される冷却水によって加熱蒸気、再熱蒸気の
各流体の温度が異常高にならず、このため分割細化した
各過熱部、各再熱部を破断事故等の危険から安全に保護
することができる。
Further, in the combined cycle power plant according to the second aspect, the temperature reducing section is further provided on a line connecting the superheated low pressure section and the superheated high pressure section in series, and the reheated low pressure section, the reheated medium pressure section, and the reheated high pressure section. Since the temperature reduction section is also interposed between the reheating medium pressure section and the reheating high pressure section of the line connecting the sections in series, even when the exhaust heat temperature increases when the gas turbine section is partially loaded, The temperature of each fluid of the heating steam and the reheating steam does not become abnormally high due to the cooling water supplied from the cooling part, so each divided and superheated part and each reheating part are safe from the danger of breakage accident etc. Can be protected.

【0021】[0021]

【実施例】以下、本発明に係るコンバインドサイクル発
電プラントの一実施例につき図を参照しつつ述べる。な
お、図1中、図6に述べた構成部品と同一構成部品には
同一符号を付してその説明の詳述を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a combined cycle power plant according to the present invention will be described below with reference to the drawings. In FIG. 1, the same components as those shown in FIG. 6 are denoted by the same reference numerals, and a detailed description thereof will be omitted.

【0022】図1は、本発明に係るコンバインドサイク
ル発電プラントの概略系統図であって、既設の蒸気ター
ビンプラントSTBのボイラ1と新設のガスタービンプ
ラントGTHの排熱回収ボイラ19aとは、過熱蒸気ラ
インSHP、再熱蒸気ラインRHPで結ばれている。
FIG. 1 is a schematic system diagram of a combined cycle power plant according to the present invention, in which a boiler 1 of an existing steam turbine plant STB and a waste heat recovery boiler 19a of a new gas turbine plant GTH have superheated steam. The line SHP is connected to the reheat steam line RHP.

【0023】このような蒸気ラインSHP,RHPで結
ばれた排熱回収ボイラ19aには、ガスタービン部18
からのタービン排熱を受けており、タービン排熱の流れ
に沿って順に再熱高圧部23a、過熱高圧部24a、再
熱中圧部25a、過熱低圧部26a、再熱低圧部27a
が配置されている。再熱部を高・中・低の三分割に、ま
た過熱部を高・低の二分割に細化するのは、加熱源であ
るタービン排熱と被加熱流体である再熱蒸気および主蒸
気の各蒸気との熱交換後、その各蒸気終端温度と排熱温
度との温度差を、熱力学的ならびに各熱交換部の構造的
な制約を受けながらも所定値以下にしておかなければな
らないが、このような諸因子を考慮した上で、温度差を
極力小さくするために分割細化したものである。
The exhaust heat recovery boiler 19a connected by such steam lines SHP and RHP has a gas turbine section 18
, The reheat high pressure section 23a, the superheat high pressure section 24a, the reheat medium pressure section 25a, the superheat low pressure section 26a, and the reheat low pressure section 27a in this order along the flow of the turbine heat.
Is arranged. The reheating section is divided into high, middle and low sections and the superheating section is divided into high and low sections.The turbine exhaust heat as the heating source and the reheat steam and main steam as the fluid to be heated are reduced. After the heat exchange with each steam, the temperature difference between the steam end temperature and the exhaust heat temperature must be kept to a predetermined value or less, subject to the thermodynamics and the structural restrictions of each heat exchange part. However, in consideration of such factors, the diameter is divided and thinned in order to minimize the temperature difference.

【0024】上記構成において、ボイラ1の蒸発器14
の出口点Xから引き抜かれた一部の蒸気は、過熱蒸気ラ
インSHPから排熱回収ボイラ19aの過熱低圧部26
a、過熱高圧部24aで、ガスタービン部18からの排
熱の熱エネルギが加えられ、過熱蒸気としてボイラ1の
過熱器15からの過熱蒸気と点P1 で合流し、ここから
タービン高圧部2の膨脹仕事に供される。
In the above configuration, the evaporator 14 of the boiler 1
Of the steam extracted from the outlet point X of the superheated low pressure section 26 of the exhaust heat recovery boiler 19a from the superheated steam line SHP.
a, the heat energy of the exhaust heat from the gas turbine section 18 is added to the superheated high pressure section 24a, and merges with the superheated steam from the superheater 15 of the boiler 1 at a point P1 as superheated steam; Provided for expansion work.

【0025】タービン高圧部2で膨脹仕事をした蒸気
は、ボイラ1の再熱器5に至る間にその入口点Yから一
部が引き抜かれ、再熱低圧部27a、再熱中圧部25
a、再熱高圧部23aを通過する間、リニア的に昇温
し、再熱蒸気としてボイラ1の再熱器5からの再熱蒸気
と点P2 で合流し、ここからタービン中圧部3の膨脹仕
事に供される。
The steam that has been expanded in the turbine high-pressure section 2 is partially withdrawn from its inlet point Y while reaching the reheater 5 of the boiler 1, and is subjected to reheat low-pressure section 27 a and reheat medium-pressure section 25.
a, While passing through the reheat high-pressure section 23a, the temperature rises linearly and merges with the reheat steam from the reheater 5 of the boiler 1 at the point P2 as reheat steam. Provided for expansion work.

【0026】図3および図4は、従来の排熱回収ボイラ
19に組み込まれた各熱交換部の配置例と本発明に係る
排熱回収ボイラ19aに組み込まれた各熱交換部の配置
例とをそれぞれ比較した拡大模式図であって、過熱各部
の入口,出口温度および再熱各部の入口,出口温度を点
Aないし点Nで示す。
FIGS. 3 and 4 show an example of the arrangement of each heat exchange unit incorporated in the conventional exhaust heat recovery boiler 19 and an example of the arrangement of each heat exchange unit incorporated in the exhaust heat recovery boiler 19a according to the present invention. Is an enlarged schematic diagram in which points A to N indicate the inlet and outlet temperatures of the superheated parts and the inlet and outlet temperatures of the reheated parts.

【0027】これら過熱各部の入口,出口端温度および
再熱各部の入口,出口端温度の点Aないし点Nを用い従
来の排熱回収ボイラ19と本発明に係る排熱回収ボイラ
19aとの収熱特性比較を図5によって説明する。
Using the points A to N of the inlet and outlet end temperatures of these superheated parts and the inlet and outlet end temperatures of the reheat parts, the collection of the conventional waste heat recovery boiler 19 and the waste heat recovery boiler 19a according to the present invention is performed. The comparison of the thermal characteristics will be described with reference to FIG.

【0028】図5は、縦軸に過熱各部および再熱各部の
各蒸気温度を、横軸に交換熱量を採り、二点鎖線は従来
の特性を、また実線は本発明に係る特性をそれぞれ比較
したグラフである。従来の排熱回収ボイラ19に組み込
まれた各熱交換部の配置(図3参照)では、再熱部27
の入口から出口の温度上昇が点Aから点Bに昇温し、過
熱部26の入口から出口の温度上昇が点Cから点Dに昇
温していた。
FIG. 5 shows the steam temperature of each portion of the superheat and each portion of the reheat on the vertical axis, and the heat exchange capacity on the horizontal axis. The two-dot chain line compares the conventional characteristics, and the solid line compares the characteristics according to the present invention. It is the graph which did. In the arrangement of the heat exchange units incorporated in the conventional waste heat recovery boiler 19 (see FIG. 3), the reheat unit 27
The temperature rise from the inlet to the outlet of the superheater 26 rises from the point A to the point B, and the temperature rise from the inlet to the outlet of the superheater 26 rises from the point C to the point D.

【0029】これに対し、本発明に係る排熱回収ボイラ
19aに組み込まれた各熱交換部の配置(図4参照)で
は、再熱低圧部27aの入口から出口の温度上昇が点E
から点Fに昇温し、再熱中圧部25aの入口から出口の
温度上昇が点Iから点Jに昇温し、続いて再熱高圧部2
3aの入口から出口の温度上昇が点Mから点Nに昇温し
ている。
On the other hand, in the arrangement of each heat exchange section incorporated in the exhaust heat recovery boiler 19a according to the present invention (see FIG. 4), the temperature rise from the inlet to the outlet of the reheat low-pressure section 27a is a point E.
From the point I to the point J, and then the reheating high pressure section 2
The temperature rise from the inlet to the outlet of 3a rises from point M to point N.

【0030】このように、従来の再熱部27から生成さ
れる再熱蒸気と本発明に係る再熱高圧部23aから生成
される再熱蒸気とは、温度差ΔTだけ高くなっているこ
とが容易に理解される。
As described above, the reheat steam generated from the conventional reheat section 27 and the reheat steam generated from the reheat high-pressure section 23a according to the present invention may be higher by the temperature difference ΔT. It is easily understood.

【0031】一方、本発明に係る過熱部は二分割配置に
し、過熱各部から生成される過熱蒸気は、過熱低圧部2
6aにおいて、点Gから点Hに昇温し、さらに過熱高圧
部24aにおいて、点Kから点Lに昇温し、従来の過熱
部26から生成される過熱蒸気(図5における点Cから
点Dに昇温)と同温になっている。これは上述再熱高圧
部23aで生成される再熱蒸気温度を、従来の再熱部2
7で生成される再熱蒸気温度よりも高くするための必要
欠くべからざる配置構成である。
On the other hand, the superheated section according to the present invention is divided into two parts, and the superheated steam generated from each superheated section is
At 6a, the temperature is increased from point G to point H, and further, at the superheated high-pressure section 24a, the temperature is increased from point K to point L, and the superheated steam generated from the conventional superheater 26 (from point C to point D in FIG. 5). Temperature rise). This is because the temperature of the reheat steam generated in the reheat high-pressure section 23a is reduced by the conventional reheat section 2a.
This is an indispensable arrangement for increasing the temperature of the reheat steam generated in Step 7.

【0032】このように本発明に係る再熱高圧部23a
で生成される再熱蒸気は、従来に比べて一段とアップ
し、高温再熱蒸気がタービン中圧部3に与えられるか
ら、タービンの全体出力は大幅に増加する。
As described above, the reheating high-pressure section 23a according to the present invention
The reheat steam generated in the step (1) is further increased as compared with the conventional case, and the high temperature reheat steam is supplied to the turbine intermediate pressure section 3, so that the overall output of the turbine is greatly increased.

【0033】図2は、本発明に係るコンバインドサイク
ル発電プラントの他の実施例を示す概略系統図である。
FIG. 2 is a schematic system diagram showing another embodiment of the combined cycle power plant according to the present invention.

【0034】本実施例では、排熱回収ボイラ19aに組
み込まれた過熱低圧部26aと過熱高圧部24aとを直
列に結ぶラインに、減温部28aを介装する一方、再熱
低圧部27a、再熱中圧部25a、再熱高圧部23aを
直列に結ぶラインの再熱中圧部25aと再熱高圧部23
aの間にも減温部28bを介装したものであり、過熱蒸
気あるいは再熱蒸気が何らかの事情で異常高温になった
場合、各減温部28a,28bから冷却水を与えて適正
温度に蒸気温度をコントロールするためのものである。
特に、ガスタービン部18は、部分負荷になると、排熱
の温度は高くなる傾向にあるだけに、各熱交換部の破断
事故防止の点からも各減温部28a,28bの設置は必
要不可欠である。
In this embodiment, a temperature reducing section 28a is interposed in a line connecting a superheated low pressure section 26a and a superheated high pressure section 24a incorporated in the exhaust heat recovery boiler 19a in series, while a reheat low pressure section 27a, The reheating medium pressure section 25a and the reheating high pressure section 23 of a line connecting the reheating medium pressure section 25a and the reheating high pressure section 23a in series.
In the case where the superheated steam or the reheated steam becomes abnormally high temperature for some reason, cooling water is given from each of the temperature reducing portions 28a and 28b to reach the appropriate temperature. It is for controlling the steam temperature.
In particular, in the gas turbine section 18, when the partial load is applied, the temperature of the exhaust heat tends to increase, and the installation of the temperature reducing sections 28a and 28b is indispensable from the viewpoint of preventing the breakage of each heat exchange section. It is.

【0035】[0035]

【発明の効果】以上説明したように本発明に係るコンバ
インドサイクル発電プラントは、既設の蒸気タービンプ
ラントに、新設のガスタービンプラントを単に組み合せ
たといえども、ガスタービン部からの排熱があますとこ
ろなく活用できるように排熱ボイラに改良を加え、再熱
蒸気温度を従来のものよりも一段とアップしているの
で、発電プラント構築の際の工期の短縮と相俟って、従
来よりも発電出力を大幅に増加させることができる。
As described above, in the combined cycle power plant according to the present invention, although the existing gas turbine plant is simply combined with the newly installed gas turbine plant, the exhaust heat from the gas turbine section is generated. The reheat steam boiler has been improved so that it can be utilized without any problems, and the reheat steam temperature has been further increased compared to the conventional one. Can be greatly increased.

【0036】また、排熱回収ボイラに組み込まれる再熱
部、過熱部を再熱高圧部、再熱中圧部、再熱低圧部、過
熱高圧部、過熱低圧部に分割細化し、ガスタービン部か
らの排熱を無駄なく有効活用する一方で、再熱各部、過
熱各部のそれぞれの部位で減温部を設けているので、複
雑な制御系統を設けることなく安全にして確実に再熱各
部、過熱各部を保護することができる等優れた効果を奏
する。
The reheat section and superheat section incorporated in the exhaust heat recovery boiler are divided into a reheat high pressure section, a reheat medium pressure section, a reheat low pressure section, a superheat high pressure section and a superheat low pressure section. While the waste heat is effectively used without waste, each part of the reheating part and the overheating part is provided with a temperature reduction part. It has excellent effects such as the ability to protect each part.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るコンバインドサイクル発電プラン
トの一実施例を示す概略系統図。
FIG. 1 is a schematic system diagram showing one embodiment of a combined cycle power plant according to the present invention.

【図2】本発明に係るコンバインドサイクル発電プラン
トの他の実施例を示す概略系統図。
FIG. 2 is a schematic system diagram showing another embodiment of the combined cycle power plant according to the present invention.

【図3】過熱部、再熱部の配置を示す従来の排熱回収ボ
イラの拡大模式図。
FIG. 3 is an enlarged schematic view of a conventional exhaust heat recovery boiler showing the arrangement of a superheater and a reheater.

【図4】過熱高圧部、再熱高圧部、再熱中圧部、過熱低
圧部、再熱低圧部の配置を示す本発明に係る排熱回収ボ
イラの拡大模式図。
FIG. 4 is an enlarged schematic view of an exhaust heat recovery boiler according to the present invention showing the arrangement of a superheated high pressure section, a reheated high pressure section, a reheated medium pressure section, a superheated low pressure section, and a reheated low pressure section.

【図5】各熱交換部の終端蒸気温度を線図化し、従来の
排熱回収ボイラで生成された蒸気温度特性と、本発明に
係る排熱回収ボイラで生成された蒸気温度特性とを比較
したグラフ。
FIG. 5 is a diagram illustrating the terminal steam temperature of each heat exchange section, and compares the steam temperature characteristic generated by the conventional heat recovery steam generator with the steam temperature characteristic generated by the heat recovery steam generator according to the present invention. Graph.

【図6】従来のコンバインドサイクル発電プラントの実
施例を縦断面図概略系統図。
FIG. 6 is a schematic system diagram in a longitudinal sectional view showing an embodiment of a conventional combined cycle power plant.

【符号の説明】[Explanation of symbols]

1 ボイラ 2 タービン高圧部 3 タービン中圧部 4a,4b タービン低圧部 5 再熱器 14 蒸発器 15 過熱器 18 ガスタービン部 19,19a 排熱回収ボイラ 23a 再熱高圧部 24a 過熱高圧部 24a 再熱中圧部 26a 過熱低圧部 27a 再熱低圧部 28a,28b 減温部 DESCRIPTION OF SYMBOLS 1 Boiler 2 Turbine high pressure part 3 Turbine medium pressure part 4a, 4b Turbine low pressure part 5 Reheater 14 Evaporator 15 Superheater 18 Gas turbine part 19, 19a Exhaust heat recovery boiler 23a Reheat high pressure part 24a Superheat high pressure part 24a Reheating Pressure section 26a Overheating low pressure section 27a Reheating low pressure section 28a, 28b Temperature reduction section

フロントページの続き (72)発明者 三巻 利夫 神奈川県横須賀市長坂二丁目6番1号 財団法人電力中央研究所 横須賀研究所 内 (72)発明者 渋谷 幸生 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 田中 泰久 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 井上 雅賀 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 土田 英俊 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 小沢 政弘 東京都江東区豊洲三丁目2番16号 石川 島播磨重工業株式会社 豊洲総合事務所 内 (56)参考文献 特開 平3−210002(JP,A) 特開 昭63−273701(JP,A) 特開 平1−189401(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01K 23/10 F02G 5/02 F22B 1/18 Continuation of the front page (72) Inventor Toshio Minaki 2-6-1 Nagasaka, Yokosuka City, Kanagawa Prefecture Within the Central Research Institute of Electric Power Industry Yokosuka Research Institute (72) Inventor Yukio Shibuya 2 of Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa 4 Toshiba Corporation Keihin Works (72) Inventor Yasuhisa Tanaka 2 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture 4 Toshiba Corporation Keihin Works 2 (72) Inventor Masaga Inoue 2 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa (7) Inventor Hidetoshi Tsuchida 2 in Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Masahiro Ozawa 3-2-2 Toyosu Toyosu, Koto-ku, Tokyo No. 16 Ishikawa Shima Harima Heavy Industries, Ltd. Toyosu General Office (56) References JP-A-3-210002 (JP, A) JP-A-63-273701 (JP, A) JP-A-1-189401 (JP, A (58) Field surveyed (Int. Cl. 7 , DB name) F01K 23/10 F02G 5/02 F22B 1/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 既設の蒸気タービンプラントと、新設ガ
スタービンプラントとを組み合せたものであって、既設
の蒸気タービンプラントのうち、ボイラの蒸発器出口側
から引き抜いた一部の蒸気を、排熱回収ボイラ内に組み
込まれた過熱部に送り、熱交換後、その過熱蒸気をボイ
ラの過熱器から出た過熱蒸気と合流させる一方、上記ボ
イラの再熱器入口側から引き抜いた一部の蒸気を、排熱
回収ボイラ内に組み込まれた再熱部に送り、熱交換後、
その再熱蒸気をボイラの再熱器から出た再熱蒸気とを合
流させるコンバインドサイクル発電プラントにおいて、
上記排熱回収ボイラ内の再熱部および過熱部を分割細化
し、ガスタービン部から送られてくる排熱の流れに沿っ
て再熱高圧部、過熱高圧部、再熱中圧部、過熱低圧部、
再熱低圧部を順次配設することを特徴とするコンバイン
ドサイクル発電プラント。
The present invention relates to a combination of an existing steam turbine plant and a new gas turbine plant, wherein part of the steam extracted from the evaporator outlet side of the boiler is exhausted from the existing steam turbine plant. After being sent to the superheater incorporated in the recovery boiler and exchanging heat, the superheated steam is combined with the superheated steam coming out of the superheater of the boiler, while a part of the steam extracted from the reheater inlet side of the boiler is removed. , Sent to the reheating unit built in the exhaust heat recovery boiler, and after heat exchange,
In a combined cycle power plant that combines the reheat steam with the reheat steam from the boiler reheater,
The reheat section and the superheat section in the exhaust heat recovery boiler are divided and thinned, and the reheat high pressure section, the superheat high pressure section, the reheat medium pressure section, and the superheat low pressure section are formed along the flow of the exhaust heat sent from the gas turbine section. ,
A combined cycle power plant characterized by sequentially disposing reheating low-pressure sections.
【請求項2】 過熱低圧部と過熱高圧部とを直列に結ぶ
ラインには減温部を介装する一方、再熱低圧部、再熱中
圧部、再熱高圧部を直列に結ぶラインの再熱中圧部と再
熱高圧部の間にも減温部を介装することを特徴とする請
求項1記載のコンバインドサイクル発電プラント。
2. A line for connecting a superheated low-pressure section and a superheated high-pressure section in series with a temperature-reducing section, and a line for connecting a reheat low-pressure section, a reheat medium-pressure section and a reheat high-pressure section in series. The combined cycle power plant according to claim 1, wherein a temperature reducing section is interposed also between the heat intermediate pressure section and the reheating high pressure section.
JP4349095A 1992-12-28 1992-12-28 Combined cycle power plant Expired - Lifetime JP3068973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4349095A JP3068973B2 (en) 1992-12-28 1992-12-28 Combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4349095A JP3068973B2 (en) 1992-12-28 1992-12-28 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH06200707A JPH06200707A (en) 1994-07-19
JP3068973B2 true JP3068973B2 (en) 2000-07-24

Family

ID=18401461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4349095A Expired - Lifetime JP3068973B2 (en) 1992-12-28 1992-12-28 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3068973B2 (en)

Also Published As

Publication number Publication date
JPH06200707A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
JP4346149B2 (en) How to increase the efficiency of combined cycle power systems
US5375410A (en) Combined combustion and steam turbine power plant
EP0290220B1 (en) Reheat type waste heat recovery boiler and power generation plant using the same
US5345755A (en) Steam turbine plant
US6347520B1 (en) Method for Kalina combined cycle power plant with district heating capability
EP1752617A2 (en) Combined cycle power plant
US6244033B1 (en) Process for generating electric power
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
EP0593525A1 (en) Method and apparatus for improving the efficiency of a small-size power plant based on the orc process.
RU2153081C1 (en) Combined-cycle-plant and its operating process
CN106152093A (en) The fuel-fired steam power cycle heat power generating system of full backheat and technique thereof
US5079909A (en) Combined gas and steam turbine plant with coal gasification
CN202001068U (en) Dual-reheating turbo generator set system with superheated steam feed water heater
JPH09203304A (en) Compound power generating system using waste as fuel
US6105369A (en) Hybrid dual cycle vapor generation
CN102678194A (en) Secondary reheating steam turbine generator unit system provided with overheating steam feed water heater
JP3611596B2 (en) Hydrogen combustion turbine system
JP3068973B2 (en) Combined cycle power plant
JPS60138214A (en) Gas turbine composite cycle power generating plant
JPH0445641B2 (en)
JP3778690B2 (en) Power generator
JP2908085B2 (en) Waste heat recovery boiler
CN114777103A (en) Waste heat utilization boiler system and steam turbine power generation system with same
JPH04124411A (en) Steam turbine combine generator equipment
WO1996023961A1 (en) Boiler for superheating of combined cycle power plant steam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13