JP3063014B2 - Manufacturing method of titanium powder - Google Patents

Manufacturing method of titanium powder

Info

Publication number
JP3063014B2
JP3063014B2 JP3313379A JP31337991A JP3063014B2 JP 3063014 B2 JP3063014 B2 JP 3063014B2 JP 3313379 A JP3313379 A JP 3313379A JP 31337991 A JP31337991 A JP 31337991A JP 3063014 B2 JP3063014 B2 JP 3063014B2
Authority
JP
Japan
Prior art keywords
titanium
powder
dehydrogenation
hydrogenation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3313379A
Other languages
Japanese (ja)
Other versions
JPH05125409A (en
Inventor
英一 深澤
良治 村山
亘 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP3313379A priority Critical patent/JP3063014B2/en
Publication of JPH05125409A publication Critical patent/JPH05125409A/en
Application granted granted Critical
Publication of JP3063014B2 publication Critical patent/JP3063014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素化脱水素法(HD
H法)により酸素や窒素などのガス成分汚染を軽減しな
がら高品位のチタン粉を製造する方法に関する。
The present invention relates to a hydrodehydrogenation process (HD
H method) to produce high-quality titanium powder while reducing contamination of gas components such as oxygen and nitrogen.

【0002】[0002]

【従来の技術】チタンまたはチタン合金は比強度が高
く、耐熱性、耐食性にも優れているため航空機や自動車
部品の材料として有用されているが、加工性の面に難点
があって製品歩留りが低くなるため製造コストが高くな
る問題がある。このため、可及的に最終製品に近似する
形状に成形して加工段階を少なくする部材の製造方法と
して粉末冶金法が注目されている。
2. Description of the Related Art Titanium or a titanium alloy is useful as a material for aircraft and automobile parts because of its high specific strength and excellent heat resistance and corrosion resistance. There is a problem that the production cost increases because of the lowering. For this reason, powder metallurgy has attracted attention as a method of manufacturing a member that can be formed into a shape as close as possible to the final product and that reduces the number of processing steps.

【0003】従来、チタン合金の粉末冶金法には、原料
にチタン粉末とチタン母合金粉末の混合粉を用いる方法
(素粉末法)とチタン合金粉末を用いる方法(合金粉末
法)とがあるが、前者の素粉末法は各原料粉末の混合割
合を変えることで所望の合金組成を形成することができ
るため、技術的、経済的に有利な方法とされている。チ
タン粉の製造技術としては、スポンジチタンなどにより
形成した電極を高速回転させながらプラズマアークによ
って溶解し、遠心力を利用して粉末化するプラズマ回転
電極法が知られている。この方法によれば比較的純度の
高いチタン粉が製造できるが、100 μm 以下の微粉を得
ることが難しく、また電極の成形と溶解工程を含むため
に製造コストが高くなる難点がある。
Conventionally, the powder metallurgy of titanium alloys includes a method of using a mixed powder of titanium powder and a titanium master alloy powder as raw materials (elementary powder method) and a method of using titanium alloy powder (alloy powder method). The former elemental powder method is technically and economically advantageous because a desired alloy composition can be formed by changing the mixing ratio of each raw material powder. As a manufacturing technique of titanium powder, there is known a plasma rotating electrode method in which an electrode formed of titanium sponge or the like is melted by a plasma arc while rotating at a high speed, and powdered by using centrifugal force. According to this method, titanium powder having a relatively high purity can be produced, but it is difficult to obtain fine powder having a size of 100 μm or less, and the production cost is high because of the steps of forming and dissolving the electrodes.

【0004】一方、金属チタンが水素を吸蔵して脆化す
る性質を利用した水素化脱水素法(HDH法)もチタン
粉を製造する手段として良く知られており、この方法に
よる場合には高性能な粉末冶金原料に必要な極低塩素チ
タン粉の製造が可能で、微細なチタン粉を比較的低コス
トで得ることができるため工業的規模において広く利用
されている。しかし、この方法を適用するにあたっては
チタン粉末表面の不純物汚染に注意しなければならな
い。とくにチタンは酸素や窒素等との親和力が強いた
め、水素化および脱水素の段階でこれら不純物成分によ
って極めて汚染され易い。
[0004] On the other hand, a hydrodehydrogenation method (HDH method) utilizing the property that metallic titanium absorbs hydrogen and embrittles it is also well known as a means for producing titanium powder. It is widely used on an industrial scale because it can produce ultra-low chlorine titanium powder required for high performance powder metallurgy raw materials and can obtain fine titanium powder at relatively low cost. However, in applying this method, attention must be paid to impurity contamination on the surface of the titanium powder. In particular, titanium has a strong affinity for oxygen, nitrogen, and the like, and thus is very easily contaminated by these impurity components at the stage of hydrogenation and dehydrogenation.

【0005】チタン粉の表面が酸素や窒素などのガス成
分で著しく汚染されていると、粉末冶金工程において粉
末の焼結性や最終製品の特性に重大な悪影響を及ぼす。
このため、水素化脱水素法を適用するにあたっては、不
純物ガス成分による汚染を最小限に抑えるために工程中
で使用する水素ガスや不活性ガスを高純度のものにした
り、装置に高度の真空シール機構を付与して外部からの
リーク汚染を防止する等の対策が講じられている。
[0005] If the surface of titanium powder is significantly contaminated with gas components such as oxygen and nitrogen, the sinterability of the powder and the characteristics of the final product are seriously affected in the powder metallurgy process.
For this reason, when applying the hydrodehydrogenation method, the hydrogen gas or inert gas used in the process must be of high purity to minimize contamination by impurity gas components, or the equipment must have a high degree of vacuum. Measures have been taken to prevent leakage contamination from the outside by providing a sealing mechanism.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、純度の
よい水素ガスや不活性ガスを使用する場合には高価な高
純度ガスを購入するか、付帯設備としてガス精製装置を
設ける必要があり、経済的、設備的に不利となる。ま
た、装置のシール機能を高めるについても、装置構造の
複雑化とコスト面の高騰化を招くことになる。そのう
え、これらの対応策を講じてもガス成分による製品チタ
ン粉の汚染を完全に防止することは困難であり、水素化
および脱水素工程における1000ppm 程度の酸素汚染は避
けられない。
However, when high-purity hydrogen gas or inert gas is used, it is necessary to purchase expensive high-purity gas or to provide a gas purifier as ancillary equipment. Disadvantageous in terms of equipment. In addition, increasing the sealing function of the device also complicates the structure of the device and increases the cost. Furthermore, even if these measures are taken, it is difficult to completely prevent contamination of the product titanium powder by gas components, and oxygen contamination of about 1000 ppm in the hydrogenation and dehydrogenation processes is inevitable.

【0007】本発明はこのような問題点の解消を図るた
めになされたもので、その目的は水素化脱水素法を適用
してチタン粉を製造する場合に水素化工程や脱水素工程
における酸素、窒素等の不純物ガス成分による原料汚染
現象を効果的に抑制しえる簡易かつ安価な方法を提供す
ることにある。
The present invention has been made in order to solve such problems, and an object of the present invention is to provide a method for producing titanium powder by applying a hydrodehydrogenation method. Another object of the present invention is to provide a simple and inexpensive method capable of effectively suppressing a raw material contamination phenomenon due to an impurity gas component such as nitrogen.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるチタン粉の製造方法は、水素化脱水素
法によるチタン粉の製造プロセスにおいて、水素化工程
時の原料チタンを充填した容器の周辺位置であって、
つ、水素化工程時における水素ガスが該容器内へ供給さ
れる際に通過する空間部位にチタン系ゲッター材を層厚
に充填して介在させ、該チタン系ゲッター材を通過した
水素ガスを前記原料チタンに接触させて該原料チタンを
水素化する水素化工程を有することを構成要旨とする。
また、本発明によるチタン粉の製造方法は、水素化脱水
素法によるチタン粉の製造プロセスにおいて、脱水素工
程時の水素化チタンを充填した容器の周辺位置であっ
て、且つ、脱水素工程時における不活性ガスが該容器内
へ供給される際に通過する空間部位にチタン系ゲッター
材を層厚に充填して介在させ、前記水素化チタンを脱水
素処理した後、前記チタン系ゲッター材を通過した不活
性ガスを該脱水素処理されたチタンに接触させる脱水素
工程を有することを構成要旨とする。また、本発明によ
るチタン粉の製造方法は、請求項1記載の水素化工程の
後、請求項2記載の脱水素工程を行うことを構成要旨と
する。なお、近年その用途が増加しているチタン合金粉
末を製造する場合、原料チタン源としてTi−6Al−
4V合金等に代表されるチタン基合金を適宜に選択する
ことにより、本発明方法と同一の手段で所望のチタン合
金粉末が得られる。
Means for Solving the Problems The method of manufacturing titanium powder according to the present invention for achieving the above object, in the manufacturing process of titanium powder by hydrogenation dehydrogenation, filling the raw material titanium emissions during hydrogenation step a peripheral position of the container,
First, hydrogen gas during the hydrogenation step is supplied into the vessel.
The layer thickness of the titanium-based getter material in the space portion through which the
And interposed and passed through the titanium-based getter material.
The hydrogen gas is brought into contact with the titanium material, and the titanium material is
The gist of the present invention is to have a hydrogenation step for hydrogenation .
In addition, the method for producing titanium powder according to the present invention includes the steps of:
In the production process of titanium powder by elementary method,
Around the container filled with titanium hydride
And the inert gas during the dehydrogenation step
Titanium-based getter in the space that passes when it is supplied to
Material is filled in the layer thickness and interposed to dehydrate the titanium hydride
Inactive after passing through the titanium-based getter material
Dehydrogenation by contacting a reactive gas with the dehydrogenated titanium
Having a process is the gist of the configuration. Further, according to the present invention,
The method for producing titanium powder according to claim 1,
Thereafter, performing the dehydrogenation step according to claim 2 is the gist of the configuration.
I do. In the case of manufacturing a titanium alloy powder whose use is increasing in recent years, Ti-6Al-
By appropriately selecting a titanium-based alloy represented by a 4V alloy or the like, a desired titanium alloy powder can be obtained by the same means as in the method of the present invention.

【0009】一般に水素化脱水素法によるチタン粉の製
造プロセスは、原料チタンを高温下、水素ガス雰囲気中
で水素化する水素化工程、水素化チタン塊を不活性雰囲
気下で粉砕する粉砕工程、粉砕後の水素化チタン粉を高
温の真空中で脱水素処理する脱水素工程、脱水素時の焼
結したチタン塊を破砕する解砕工程、およびチタン粉末
を所定の粒度に分級調整する篩別工程の各段階からなる
が、本発明では水素化工程において容器に充填した原料
チタンと接触するガス流通空間に酸素や窒素を吸収する
チタン系のゲッター材を水素ガスが該容器内へ供給され
る際に通過するように層厚に充填して介在させてこれら
ガス成分による汚染現象を防止する点、および/また
は、脱水素工程において容器に充填した水素化チタンと
接触するガス流通空間に酸素や窒素を吸収するチタン系
のゲッター材を不活性ガスが該容器内へ供給される際に
通過するように層厚に充填して介在させてこれらガス成
分による汚染現象を防止する点にプロセス上の特徴があ
る。
In general, a titanium powder production process by hydrodehydrogenation includes a hydrogenation step of hydrogenating raw titanium in a hydrogen gas atmosphere at a high temperature, a pulverization step of pulverizing a titanium hydride lump in an inert atmosphere, Dehydrogenation step of dehydrogenating the crushed titanium hydride powder in a high-temperature vacuum, crushing step of crushing the sintered titanium block during dehydrogenation, and sieving to classify and adjust the titanium powder to a predetermined particle size consists each stage of the process, the raw material <br/> titanium emission hydrogen gas getter material titanium-based to absorb oxygen and nitrogen in the gas flow space in contact with the container that is filled in a container in the hydrogenation step in the present invention Supplied into
In order to prevent contamination phenomena due to these gas components by filling and interposing the layer thickness so as to pass when passing through , and / or
And titanium hydride filled in the container in the dehydrogenation process
Titanium that absorbs oxygen and nitrogen in the gas flow space that comes in contact
When the inert gas is supplied into the container,
These gas components are filled with a layer thickness so that
There is a feature in the process in preventing contamination phenomena due to the minute .

【0010】本発明に供されるゲッター材としては、酸
素や窒素との親和性がよく、これら成分と接触して効果
的に吸収除去する機能を有するチタン系材料が用いら
れ、例えばスポンジチタン、チタン材の切削屑またはス
クラップ等が好適に使用される。これらのチタン系ゲッ
ター材は、予め適当なサイズに粒度調整しておく必要が
ある。とくにチタン材のスクラップにあっては、余り大
きな塊のままで使用すると比表面積が小さくなってガス
吸収効果が得られなくなることがある。また、ゲッター
材の品位は高い必要はなく、水素化工程中に水分や有機
物(例えば油類)のような原料チタンを汚損する揮発成
分を発生しないものであれば使用が可能である。したが
って、スポンジチタンの場合には安価な格外品を利用す
ることもできる。
As the getter material used in the present invention, a titanium-based material having a good affinity for oxygen and nitrogen and having a function of effectively absorbing and removing by contacting these components is used. Titanium cuttings or scraps are preferably used. These titanium-based getter materials need to be adjusted in particle size to an appropriate size in advance. In particular, in the case of a scrap made of titanium material, if used in an excessively large lump, the specific surface area may be reduced, and the gas absorbing effect may not be obtained. The quality of the getter material does not need to be high, and any material can be used as long as it does not generate volatile components such as water and organic substances (eg, oils) that pollute the raw material titanium during the hydrogenation step. Therefore, in the case of titanium sponge, an inexpensive extra product can be used.

【0011】本発明を水素化工程に適用する例を、図1
により説明すると次のようになる。スポンジチタン、純
チタンの切削屑またはスクラップ屑を粉砕した原料チタ
ン1をステンレス製の円筒型容器2に充填する。収容し
た原料チタン2の上にステンレス製の網3を置き、その
上面に網目以上の粒度を有するチタン系ゲッター材4を
一定の層厚に充填する。この状態で、原料チタン1に導
入水素ガスが流通する空間部位にチタン系ゲッター材4
が介在する。
An example in which the present invention is applied to a hydrogenation step is shown in FIG.
This will be described as follows. A raw material titanium 1 obtained by pulverizing sponge titanium or pure titanium cutting waste or scrap waste is filled in a cylindrical container 2 made of stainless steel. A stainless steel net 3 is placed on the stored raw titanium 2, and the top surface thereof is filled with a titanium-based getter material 4 having a grain size larger than the mesh to a certain layer thickness. In this state, the titanium-based getter material 4 is placed in the space where the introduced hydrogen gas flows through the raw material titanium 1.
Intervenes.

【0012】上記の容器を真空加熱炉にセットして真空
引きしながら 600℃以上の温度まで昇温し、真空度が例
えば10-4torr以下の基準値に達したら炉内に水素ガスを
導入する。この際、導入水素ガス中に含まれる酸素や窒
素などの不純物ガス成分はチタン系ゲッター材4の介在
層を通過する過程で吸収除去され、原料チタン1には精
製された水素ガスが接触して水素化を進行させることに
なる。水素化が終了して炉内にアルゴン等の不活性ガス
を導入して冷却する際にも、不活性ガス中の酸素、窒素
などは同様にチタン系ゲッター材で捕捉されるから、原
料チタンの酸化や窒化現象は効果的に低減化される。
The above vessel is set in a vacuum heating furnace and heated to a temperature of 600 ° C. or more while evacuating. When the degree of vacuum reaches a reference value of, for example, 10 −4 torr or less, hydrogen gas is introduced into the furnace. I do. At this time, impurity gas components such as oxygen and nitrogen contained in the introduced hydrogen gas are absorbed and removed in the process of passing through the intervening layer of the titanium-based getter material 4, and the purified hydrogen gas comes into contact with the raw material titanium 1. Hydrogenation will proceed. When hydrogenation is completed and an inert gas such as argon is introduced into the furnace and cooled, oxygen and nitrogen in the inert gas are also captured by the titanium-based getter material. Oxidation and nitriding phenomena are effectively reduced.

【0013】本発明を脱水素工程に適用する例は、図2
によって説明することができる。水素化チタン5の所定
量を複数の皿状容器6(ステンレス製)に充填し、これ
を多段に重ねてステンレス製の円筒型容器2内に設置す
る。2段目以下の皿状容器6には上部にガス抜き孔7が
穿設されており、最上段の皿状容器には網状の蓋8を被
せる。ついで、設置された皿状容器6の周辺にチタン系
ゲッター材4を充填する。このようにして、水素化チタ
ン5の周辺位置であって、ガス流通する空間部位にチタ
ン系ゲッター材4が介在する状態が形成される。脱水素
工程は、前記状態の円筒型容器2を真空加熱炉にセット
し、 600℃以上の温度域で系内を真空雰囲気に保持しな
がらおこなわれるが、工程中にリーク等により侵入した
り脱水素処理後に炉内導入する不活性ガス中に含有する
酸素、窒素等のガス成分はチタン系ゲッター材の介在層
で効果的に吸収除去される。
An example in which the present invention is applied to a dehydrogenation step is shown in FIG.
Can be explained by A predetermined amount of the titanium hydride 5 is filled in a plurality of dish-shaped containers 6 (made of stainless steel), which are stacked in multiple stages and placed in the cylindrical container 2 made of stainless steel. A gas vent hole 7 is formed in the upper part of the second and lower dish-shaped containers 6, and a net-shaped lid 8 is placed on the uppermost dish-shaped container. Next, the periphery of the placed dish-shaped container 6 is filled with the titanium-based getter material 4. In this way, a state is formed in which the titanium-based getter material 4 is interposed in the space around the titanium hydride 5 where the gas flows. The dehydrogenation step is performed by setting the cylindrical container 2 in the above state in a vacuum heating furnace and keeping the inside of the system in a vacuum atmosphere at a temperature range of 600 ° C. or higher. Gas components such as oxygen and nitrogen contained in the inert gas introduced into the furnace after the elementary treatment are effectively absorbed and removed by the intervening layer of the titanium-based getter material.

【0014】上記した本発明による不純物ガス成分の吸
収除去処理は、水素化工程、脱水素工程において各単独
におこなうこともできるが、これら両工程を通じて適用
することが一層効果的である。水素化および脱水素工程
を経て得られたチタン塊は、常法により解砕工程、篩別
工程の処理を施して酸化や窒化汚染のない高品位のチタ
ン粉として回収する。
The above-described treatment for absorbing and removing impurity gas components according to the present invention can be carried out independently in each of the hydrogenation step and the dehydrogenation step, but it is more effective to apply the treatment through both of these steps. The titanium lump obtained through the hydrogenation and dehydrogenation steps is subjected to a crushing step and a sieving step by a conventional method, and is recovered as high-grade titanium powder free from oxidation and nitridation contamination.

【0015】[0015]

【作用】本発明によれば、水素化工程時の原料チタン
周辺位置で、且つ、水素化工程時における水素ガスが該
容器内へ供給される際に通過する空間部位、および/ま
たは、脱水素工程時の水素化チタンの周辺位置で、且
つ、脱水素工程時における不活性ガスが該容器内へ供給
される際に通過する空間部位にチタン系ゲッター材が
厚に充填されて介在しているから、その親和吸収作用に
より水素化や脱水素化の工程段階で導入ガスに同伴して
外部から侵入する酸素、窒素等の不純物ガス成分は極め
て効果的に除去される。また、工程中にリークなどの装
置トラブルが発生した場合でも、炉内に侵入した空気に
よる汚染を低減化することができる。したがって、従来
技術のように高純度の水素ガス、不活性ガス等を使用し
たり、装置を高度な真空シール構造化する必要なしに、
水素化脱水素法により常に高品位のチタン粉を製造する
ことが可能となる。
According to the present invention, the raw material titanium during the hydrogenation step is
Hydrogen gas at the peripheral position and during the hydrogenation step
A spatial area through which it is fed into the container , and / or
Or at a position around the titanium hydride during the dehydrogenation step, and
First, an inert gas during the dehydrogenation process is supplied into the container.
Titanium-based getter material is layered in the space where it passes when
Since it is thickly filled and interposed, its affinity absorption function enables extremely effective removal of oxygen, nitrogen and other impurity gas components that enter from the outside along with the introduced gas during the hydrogenation and dehydrogenation process steps. Is done. Further, even if a device trouble such as a leak occurs during the process, contamination by air entering the furnace can be reduced. Therefore, there is no need to use high-purity hydrogen gas, inert gas, etc. as in the prior art, and to make the device an advanced vacuum seal structure.
By the hydrodehydrogenation method, it is possible to always produce high-grade titanium powder.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0017】実施例1 クロール法により製造したスポンジチタン(粒径0.4 〜
12.7mm) 約200kg を蓋のないステンレス(SUS304)製の円
筒型容器に入れ、上部に目開き約2mmのステンレス網を
介して脱脂した純チタン切削屑(肉厚約1mm、長さ20〜
50mm) 約5kgを平均150mm の厚さに敷きつめた(図1参
照)。この状態で円筒型容器を真空加熱炉にセットし、
炉内を素早く真空引きして真空度が10-4torrに達した時
点で、直ちに600 ℃まで昇温させて約2時間保持した。
ついで、水素ガスの導入を開始した。その直後、水素化
反応により原料温度が上昇したため、炉発熱体の印加電
力を制御しながら炉内温度を 600℃以上に保持し、水素
ガスの吸収がなくなったことを確認したのち、水素ガス
雰囲気のまま炉を冷却した。炉内温度が50℃以下になっ
た際に水素ガスを脱気し、炉内に空気を導入した。
Example 1 Titanium sponge produced by the Kroll method (particle size: 0.4 to
12.7mm) Approximately 200kg is placed in a stainless steel (SUS304) cylindrical container without a lid, and degreased pure titanium cuttings (thickness: approx.
(50mm) About 5kg was spread to an average thickness of 150mm (see Fig. 1). In this state, set the cylindrical container in a vacuum heating furnace,
When the inside of the furnace was quickly evacuated and the degree of vacuum reached 10 -4 torr, the temperature was immediately raised to 600 ° C. and maintained for about 2 hours.
Then, introduction of hydrogen gas was started. Immediately after that, the temperature of the raw material rose due to the hydrogenation reaction, so the furnace temperature was maintained at 600 ° C or higher while controlling the power applied to the furnace heating element, and after confirming that hydrogen gas absorption had ceased, the hydrogen gas atmosphere was The furnace was cooled as it was. When the temperature in the furnace became 50 ° C. or less, hydrogen gas was degassed and air was introduced into the furnace.

【0018】このようにして水素化処理した容器を炉外
に取り出したところ、容器上部のチタン系ゲッター材は
青褐色を呈しており、充填したゲッター層の上部はほと
んど酸化した状態であった。チタン系ゲッター材を網と
共に除去し、容器内の原料スポンジチタンを目視で観察
したが酸化して着色している部分は全く認められなかっ
た。
When the container thus hydrogenated was taken out of the furnace, the titanium-based getter material in the upper portion of the container was blue-brown, and the upper portion of the filled getter layer was almost oxidized. The titanium-based getter material was removed together with the net, and the raw titanium sponge in the container was visually observed, but no oxidized and colored portions were observed.

【0019】比較のために、チタン系ゲッター材を使用
しないほかは上記と同一条件で水素化工程をおこなっ
た。表1に、水素化工程に供する前における原料スポン
ジチタン中の酸素含有量(水素化前)、チタン系ゲッタ
ーを使用しなかった場合における処理水素化チタン中の
酸素含有量(ゲッターなし)、および上記の実施例によ
りチタン系ゲッターを使用した場合における処理水素化
チタン中の酸素含有量をそれぞれ測定し、その結果を対
比して示した。
For comparison, a hydrogenation step was performed under the same conditions as above except that no titanium-based getter material was used. Table 1 shows the oxygen content in the raw titanium sponge before being subjected to the hydrogenation step (before hydrogenation), the oxygen content in the treated titanium hydride when no titanium-based getter was used (without getter), and The oxygen content in the treated titanium hydride when a titanium-based getter was used according to the above-described example was measured, and the results were shown in comparison.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から、本発明を適用した実施例(ゲッ
ターあり)はゲッターなしの例に比べて酸素含有量が大
巾に低下しており、原料スポンジチタンとほぼ同等の値
を示した。したがって、水素化工程中の酸素汚染が効果
的に低減化されていることが認められる。
From Table 1, it can be seen that the examples to which the present invention was applied (with getters) had a much lower oxygen content than the examples without getters, and showed values substantially equal to those of the raw titanium sponge. Therefore, it is recognized that oxygen contamination during the hydrogenation step is effectively reduced.

【0022】実施例2 実施例1の水素化工程で得られた水素化チタンをボール
ミルで粉砕し、粒度 150μm 以下の粉末を調製した。こ
の水素化チタン粉約100kgをステンレス製の皿状容器
(内径350mm 、高さ50mm) に約40mmの層厚に充填したの
ち、図2に示すように上部にガス抜き孔を備える円筒型
容器(内径420mm 、高さ1000mm) 内に多段積み重ねてセ
ットし、最上段の皿状容器の上に網状の蓋を被せた。こ
の状態で、皿状容器の側面および上部の空間部位にチタ
ン系ゲッター材として粒径 0.4〜12.7mmの格外スポンジ
チタンを充填した。
Example 2 The titanium hydride obtained in the hydrogenation step of Example 1 was pulverized with a ball mill to prepare a powder having a particle size of 150 μm or less. About 100 kg of this titanium hydride powder is filled into a stainless steel dish (350 mm in diameter, 50 mm in height) to a layer thickness of about 40 mm, and then, as shown in FIG. (Inner diameter: 420 mm, height: 1000 mm) and set in a multi-tiered manner, and a net-shaped lid was put on the top dish-shaped container. In this state, an extraordinary sponge titanium having a particle size of 0.4 to 12.7 mm was filled as a titanium-based getter material into the side and upper space portions of the dish-shaped container.

【0023】ついで、円筒型容器を真空加熱炉にセット
して真空引きを開始し、炉内の真空度が10-4torrに達し
た時点で 150℃まで昇温し約2時間保持した。炉内の真
空度が10-2torr以下になったことを確認したのち再度昇
温を開始し、炉内を真空脱気しながら約 800℃に加熱し
た。この温度域に約40時間保持し、炉内圧力が10-4torr
以下になった時点で加熱を停止し、炉内にアルゴンガス
を導入して冷却した。炉内が室温まで下がった段階で円
筒型容器を炉外に取り出した。
Then, the cylindrical container was set in a vacuum heating furnace and evacuation was started. When the degree of vacuum in the furnace reached 10 -4 torr, the temperature was raised to 150 ° C. and maintained for about 2 hours. After confirming that the degree of vacuum in the furnace became 10 -2 torr or less, the temperature was started again, and the furnace was heated to about 800 ° C. while degassing the inside of the furnace. Hold for about 40 hours in this temperature range, and furnace pressure is 10 -4 torr
Heating was stopped when the temperature became as follows, and argon gas was introduced into the furnace to cool it. When the inside of the furnace dropped to room temperature, the cylindrical container was taken out of the furnace.

【0024】このようにして脱水素工程を施した後のチ
タン系ゲッター材は、上部が一部青褐色を呈していたが
下部に位置する部分は変色しておらず、焼結もほとんど
なくて容易に取り出すことができた。また、各皿状容器
内の原料は充分に脱水素されており、焼結して餅状とな
っていたが、酸化変色したものは全く認められなかっ
た。
The titanium-based getter material after the dehydrogenation step as described above had a blue-brown upper part, but the lower part was not discolored and hardly sintered. It could be easily taken out. In addition, the raw materials in each dish-shaped container were sufficiently dehydrogenated and sintered to form a rice cake, but no oxidative discoloration was observed.

【0025】処理後の最上段に位置する皿状容器内のチ
タン粉をハンマーで叩いて約20mm角の塊片に解砕し、こ
のものについて酸素含有量を測定したところ、容器の中
心部および端部ともに0.10重量%であった。この値は脱
水素化前における水素化チタンの酸素含有量(0.09 重量
%) に比べてほとんど相違がなく、酸素汚染が極めて軽
微であることを示すものであった。
The titanium powder in the uppermost dish-shaped container after the treatment was beaten with a hammer to break it into pieces of about 20 mm square, and the oxygen content was measured. Both ends were 0.10% by weight. This value was almost the same as the oxygen content (0.09% by weight) of the titanium hydride before dehydrogenation, indicating that oxygen contamination was extremely slight.

【0026】[0026]

【発明の効果】以上のとおり、本発明に従えば水素化脱
水素法によるチタン粉の製造工程のうち、水素化および
脱水素化工程における酸素、窒素等の不純物ガス成分に
よる汚染現象を効果的に抑制することができる。そのう
え、とくに炉内に導入する水素ガスや不活性ガスを精製
したり、装置上高度な真空シール構造を施す必要がない
ため、簡易かつ安価な手段で常に高品位のチタン粉を製
造することが可能となる。したがって、粉末冶金の原料
チタン粉の工業的な製造技術として極めて有用である。
As described above, according to the present invention, in the production process of titanium powder by the hydrodehydrogenation method, the contamination phenomenon caused by impurity gas components such as oxygen and nitrogen in the hydrogenation and dehydrogenation processes is effectively prevented. Can be suppressed. In addition, since it is not necessary to purify hydrogen gas or inert gas introduced into the furnace, or to apply an advanced vacuum sealing structure on the equipment, high-quality titanium powder can always be produced by simple and inexpensive means. It becomes possible. Therefore, it is extremely useful as an industrial production technique of titanium powder as a raw material for powder metallurgy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を水素化工程に適用する際の原料容器状
態を例示した断面図である。
FIG. 1 is a cross-sectional view illustrating the state of a raw material container when the present invention is applied to a hydrogenation step.

【図2】本発明を脱水素工程に適用する際の水素化チタ
ン容器状態を例示した断面図である。
FIG. 2 is a cross-sectional view illustrating a state of a titanium hydride container when the present invention is applied to a dehydrogenation step.

【符号の説明】[Explanation of symbols]

1 原料チタン 2 円筒型容器 3 網 4 チタン系ゲッター材 5 水素化チタン 6 皿状容器 7 ガス抜き孔 8 網状の蓋 DESCRIPTION OF SYMBOLS 1 Raw material titanium 2 Cylindrical container 3 Net 4 Titanium-based getter material 5 Titanium hydride 6 Dish-shaped container 7 Gas vent 8 Net-shaped lid

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 9/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B22F 9/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素化脱水素法によるチタン粉の製造プ
ロセスにおいて、水素化工程時の原料チタンを充填した
容器の周辺位置であって、且つ、水素化工程時における
水素ガスが該容器内へ供給される際に通過する空間部位
にチタン系ゲッター材を層厚に充填して介在させ、該チ
タン系ゲッター材を通過した水素ガスを前記原料チタン
に接触させて該原料チタンを水素化する水素化工程を有
することを特徴とするチタン粉の製造方法。
1. A process of manufacturing titanium powder by hydrogenation dehydrogenation, a peripheral position of the container filled with the raw material titanium down during the hydrogenation step, and, during the hydrogenation step
Hydrogen gas is interposed to fill the titanium-based getter material layer thickness in the space portion through which is supplied to said vessel, 該Chi
The hydrogen gas that has passed through the tan-based getter
A hydrogenation step of hydrogenating the raw material titanium by contacting
A method for producing titanium powder.
【請求項2】 水素化脱水素法によるチタン粉の製造プ
ロセスにおいて、脱水素工程時の水素化チタンを充填し
た容器の周辺位置であって、且つ、脱水素工程時におけ
る不活性ガスが該容器内へ供給される際に通過する空間
部位にチタン系ゲッター材を層厚に充填して介在させ、
前記水素化チタンを脱水素処理した後、前記チタン系ゲ
ッター材を通過した不活性ガスを該脱水素処理されたチ
タンに接触させる脱水素工程を有することを特徴とする
チタン粉の製造方法。
2. In a titanium powder production process by a hydrodehydrogenation method, an inert gas at the periphery of a container filled with titanium hydride in a dehydrogenation step and an inert gas in the dehydrogenation step is supplied to the container. Fill the titanium-based getter material to a layer thickness in the space passing through when it is supplied into the inside,
A method for producing titanium powder, comprising a dehydrogenation step of dehydrogenating the titanium hydride and then bringing the inert gas that has passed through the titanium-based getter material into contact with the dehydrogenated titanium.
【請求項3】 請求項1記載の水素化工程の後、請求項
2記載の脱水素工程を行うことを特徴とするチタン粉の
製造方法。
3. A method for producing titanium powder, comprising the step of performing the dehydrogenation step of claim 2 after the hydrogenation step of claim 1.
【請求項4】 前記チタン系ゲッター材が、スポンジチ
タン、チタン材の切削屑またはスクラップであることを
特徴とする請求項1〜3のいずれか1項記載のチタン粉
の製造方法。
Wherein said titanium-based getter material, sponge titanium, the production method of the titanium powder according to any one of claims 1-3, characterized in that the cutting chips or scrap titanium material.
JP3313379A 1991-10-31 1991-10-31 Manufacturing method of titanium powder Expired - Lifetime JP3063014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3313379A JP3063014B2 (en) 1991-10-31 1991-10-31 Manufacturing method of titanium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3313379A JP3063014B2 (en) 1991-10-31 1991-10-31 Manufacturing method of titanium powder

Publications (2)

Publication Number Publication Date
JPH05125409A JPH05125409A (en) 1993-05-21
JP3063014B2 true JP3063014B2 (en) 2000-07-12

Family

ID=18040561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3313379A Expired - Lifetime JP3063014B2 (en) 1991-10-31 1991-10-31 Manufacturing method of titanium powder

Country Status (1)

Country Link
JP (1) JP3063014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761494C1 (en) * 2020-08-10 2021-12-08 Акционерное Общество "ЗЕЛЕНОДОЛЬСКИЙ ЗАВОД ИМЕНИ А.М. ГОРЬКОГО" Method for obtaining an electrode for the production of powder materials from titanium alloys for additive and granular technologies

Also Published As

Publication number Publication date
JPH05125409A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
JP2011500962A (en) Production method of tantalum powder using recycled scrap as raw material
TWI611025B (en) High-purity glutinous powder and preparation method thereof
JPS5925003B2 (en) Manufacturing method of sinterable alloy powder mainly composed of titanium
JP2012237056A (en) METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL
JP2560565B2 (en) Method for producing hydrogen storage alloy
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JP3063014B2 (en) Manufacturing method of titanium powder
JP2003226964A (en) Method of producing tungsten target for sputtering
JPH0237402B2 (en)
KR102649433B1 (en) High purity titanium powder, method for manufacturing of the same, and manufacturing device of the same
JPH04116161A (en) Titanium target material and production thereof
JPH03107453A (en) Ti-w target and production thereof
CN111097915B (en) Method for preparing low-oxygen high-quality hydrogenated and dehydrogenated titanium powder
JPH07278601A (en) Titanium-base powder and production thereof
JP6987884B2 (en) Titanium powder and its manufacturing method
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPS63303017A (en) Production of w-ti alloy target
JPH04362105A (en) Production of fine intermetallic compound powder
JP2560567B2 (en) Method for producing hydrogen storage alloy
CN112030054A (en) TiZrMnFe quaternary getter alloy material and preparation method and application thereof
JPH07331301A (en) Treatment of mechanically alloyed powder and device therefor
JP2003277809A (en) Method for manufacturing titanium powder or titanium- alloy powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12