JP3046288B1 - Components for semiconductor / liquid crystal manufacturing equipment - Google Patents

Components for semiconductor / liquid crystal manufacturing equipment

Info

Publication number
JP3046288B1
JP3046288B1 JP10371726A JP37172698A JP3046288B1 JP 3046288 B1 JP3046288 B1 JP 3046288B1 JP 10371726 A JP10371726 A JP 10371726A JP 37172698 A JP37172698 A JP 37172698A JP 3046288 B1 JP3046288 B1 JP 3046288B1
Authority
JP
Japan
Prior art keywords
alumina
semiconductor
yttria
liquid crystal
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10371726A
Other languages
Japanese (ja)
Other versions
JP2000191369A (en
Inventor
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10371726A priority Critical patent/JP3046288B1/en
Priority to US09/450,162 priority patent/US6383964B1/en
Application granted granted Critical
Publication of JP3046288B1 publication Critical patent/JP3046288B1/en
Publication of JP2000191369A publication Critical patent/JP2000191369A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

【要約】 【課題】耐プラズマ性に優れ、耐熱衝撃性に優れるセラ
ミック部材を提供する。 【解決手段】フッ素系や塩素系等のハロゲン系腐食性ガ
スあるいはそのプラズマに曝される部位に耐食性を具備
させるために、イットリアとアルミナの化合物を主結晶
とし、ジルコニアを500〜50000ppm含むセラ
ミックスで耐食性部材を構成する。
The present invention provides a ceramic member having excellent plasma resistance and thermal shock resistance. A ceramic containing yttria and alumina as a main crystal and containing 500 to 50,000 ppm of zirconia in order to impart corrosion resistance to a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas or a portion exposed to plasma thereof. Construct a corrosion resistant member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体・液晶製造
装置において、内壁材(チャンバー)、マイクロ波導入
窓、シャワーヘッド、フォーカスリング、シールドリン
グ等をはじめとする半導体・液晶製造装置(エッチャー
やCVD等)の中でも特に腐食性ガス又はそのプラズマ
に対して高い耐食性を求められる部材に適用できるもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor / liquid crystal manufacturing apparatus including an inner wall material (chamber), a microwave introduction window, a shower head, a focus ring, a shield ring and the like. Among them, it can be applied to members requiring high corrosion resistance to corrosive gas or its plasma.

【0002】[0002]

【従来の技術】半導体製造におけるドライエッチングプ
ロセスや成膜プロセスなどの各プロセスにおいて、プラ
ズマを利用した技術が盛んに使われている。半導体の製
造時におけるプラズマプロセスでは、特にエッチング、
クリーニング用として、反応性の高いフッ素系、塩素系
等のハロゲン系腐食性ガスが多用されている。これら腐
食性ガス及びプラズマに接触する部材には、高い耐食性
が要求される。従来より、被処理物以外でこれらの腐食
性ガス及びプラズマに接触する部材は、一般に石英ガラ
スやステンレス、アルミニウム等の耐食性金属が利用さ
れていた。さらには、アルミナ焼結体や窒化アルミニウ
ム焼結体、及びこれらセラミックス焼結体に炭化珪素等
のセラミック膜を被覆したものが耐食性が優れるとして
使用されていた(特公平5−53872号、特開平3−
217016号、特開平8−91932号参照)。
2. Description of the Related Art In each process such as a dry etching process and a film forming process in semiconductor manufacturing, a technology utilizing plasma is actively used. In the plasma process during the manufacture of semiconductors, especially etching,
For cleaning, highly reactive fluorine-based, chlorine-based, and other halogen-based corrosive gases are frequently used. The members that come into contact with the corrosive gas and the plasma are required to have high corrosion resistance. Heretofore, members that come into contact with these corrosive gases and plasmas other than the object to be treated have generally been made of corrosion-resistant metals such as quartz glass, stainless steel, and aluminum. Further, alumina sintered bodies, aluminum nitride sintered bodies, and those obtained by coating these ceramics sintered bodies with a ceramic film such as silicon carbide have been used because of their excellent corrosion resistance (Japanese Patent Publication No. 5-53872, Japanese Unexamined Patent Publication No. 3-
21716, and JP-A-8-91932).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来か
ら用いられている石英ガラスやステンレスなどの金属を
使用した部材ではプラズマ中の耐食性が不充分で消耗が
激しく、特にフッ素系や塩素系プラズマに接すると接触
面がエッチングされ、表面性状が変化したり、光透過性
が必要とされる石英部材では、表面が次第に白く曇って
透光性が低下する等の問題を生じていた。
However, members using metals such as quartz glass and stainless steel which have been used in the past have insufficient corrosion resistance in plasma and are intensely depleted. As a result, the contact surface is etched, the surface properties are changed, and in the case of a quartz member requiring light transmittance, the surface gradually becomes cloudy and the light transmittance decreases.

【0004】上記問題を解決するために、アルミナ焼結
体や窒化アルミニウム焼結体、あるいは、カーボンや炭
化珪素焼結体表面に炭化珪素等のセラミック膜を被覆し
たものが考案されている。しかしながら、石英ガラスや
耐食性金属と比較するとハロゲン系腐食性ガスに対する
耐食性は優れるものの、やはりプラズマと接すると腐食
が徐々に進行して、セラミック焼結体の表面や結晶粒界
からハロゲン化物が蒸発し消耗していく。これはプラズ
マで生成されるアルミニウム成分あるいはシリコン成分
とハロゲン系ガスとのハロゲン化物の融点が低いためで
ある。この為、さらに耐食性の高い材料が望まれてい
た。
[0004] In order to solve the above problems, there have been proposed an alumina sintered body, an aluminum nitride sintered body, or a sintered body of carbon or silicon carbide coated with a ceramic film such as silicon carbide. However, although corrosion resistance to halogen-based corrosive gases is superior to quartz glass and corrosion-resistant metals, corrosion also gradually progresses in contact with plasma, causing halide to evaporate from the surface and crystal grain boundaries of the ceramic sintered body. Wears out. This is because the melting point of the halide of the aluminum component or silicon component and the halogen-based gas generated by the plasma is low. For this reason, materials with even higher corrosion resistance have been desired.

【0005】また、ドライエッチングプロセスでは、前
述の耐食性だけでなくパーティクルの発生も問題となっ
ている。これは、発生したパーティクルがメタル配線の
断線や短絡等を発生させ、デバイス特性の劣化を引き起
こすためである。このパーティクルは、チャンバー内を
構成する内壁材やクランプリング等の部材がハロゲン系
腐食性ガスやプラズマにより腐食されることで発生す
る。即ち、腐食により蒸発したハロゲン化物が、チャン
バー内壁等に堆積を繰り返し、これが落下することでパ
ーティクルとなる。この為、この蒸発したハロゲン化物
がチャンバー内壁へ堆積するのを防ぐ目的で、ランプ等
を用いてチャンバー外壁を加熱し、ハロゲン化物を蒸発
・排気させることが行われている。この為、チャンバー
内に使用される部品は、耐食性だけでなく、耐熱衝撃性
も要求されるものがある。
In the dry etching process, not only the above-mentioned corrosion resistance but also the generation of particles are problematic. This is because the generated particles cause disconnection or short circuit of the metal wiring and cause deterioration of device characteristics. These particles are generated when members such as an inner wall material and a clamp ring constituting the inside of the chamber are corroded by a halogen-based corrosive gas or plasma. That is, the halide evaporated by the corrosion repeatedly deposits on the inner wall of the chamber and the like, and drops to become particles. Therefore, in order to prevent the evaporated halide from depositing on the inner wall of the chamber, the outer wall of the chamber is heated by using a lamp or the like to evaporate and exhaust the halide. For this reason, some components used in the chamber require not only corrosion resistance but also thermal shock resistance.

【0006】[0006]

【課題を解決するための手段】本発明者らは、ハロゲン
系腐食性ガス及びそのプラズマに対する耐食性を具備
し、耐熱衝撃性も有するセラミック焼結体の具体的な構
成について検討を重ねた結果、イットリアとアルミナの
化合物を主結晶相とする焼結体が、ハロゲン系腐食性ガ
ス又はそのプラズマと反応してハロゲン化物を生成した
としても融点が高く安定であることから耐食性に優れる
ことを見出し、さらには、ジルコニア及びセリアを添加
することで耐食性を損なわずに耐熱衝撃性が向上するこ
とを見いだした。
Means for Solving the Problems The present inventors have repeatedly studied the specific constitution of a ceramic sintered body having corrosion resistance to a halogen-based corrosive gas and its plasma and also having thermal shock resistance. A sintered body having a compound of yttria and alumina as a main crystal phase, having a high melting point and being stable even if it produces a halide by reacting with a halogen-based corrosive gas or its plasma, has been found to be excellent in corrosion resistance, Furthermore, it has been found that by adding zirconia and ceria, the thermal shock resistance is improved without impairing the corrosion resistance.

【0007】また、セラミック焼結体に、多数の気孔が
あると腐食を受けやすく、耐食性が大きく低下すること
を見出した。
Further, it has been found that if the ceramic sintered body has a large number of pores, it is susceptible to corrosion and the corrosion resistance is greatly reduced.

【0008】即ち、本発明は、フッ素系や塩素系等のハ
ロゲン系腐食性ガスおよびそのプラズマに曝される半導
体・液晶製造装置用部材を、イットリアとアルミナの化
合物で形成し、その主結晶相をYAG、あるいはYAG
とアルミナ、またはYAGとイットリアの混合相とし、
安定化剤としてセリアを含むジルコニアを500〜50
000重量ppm含むことを特徴とする。
That is, according to the present invention, a member for a semiconductor / liquid crystal manufacturing apparatus exposed to a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas and its plasma is formed of a compound of yttria and alumina, and a main crystal phase thereof is formed. To YAG or YAG
And alumina, or a mixed phase of YAG and yttria,
500-50 zirconia containing ceria as a stabilizer
000 ppm by weight.

【0009】さらに、結晶粒径を10μm以下に細かく
し、気孔率を0.2%以下としたことを特徴とする。
Further, the present invention is characterized in that the crystal grain size is reduced to 10 μm or less, and the porosity is set to 0.2% or less.

【0010】本発明の半導体・液晶製造装置用部材は、
ハロゲン系腐食性ガスあるいはそのプラズマに曝される
部材であり、ハロゲン系腐食性ガスとしては、SF6
CF4 、CHF3 、ClF3 、NF3 、C4 8 、HF
等のフッ素系ガス、Cl2 、HCl、BCl3 、CCl
4 等の塩素系ガス、あるいはBr2 、HBr、BBr3
等の臭素系ガスなどがある。そして、これらのハロゲン
系腐食性ガスが使用される雰囲気下でマイクロ波や高周
波が導入されるとこれらのガスがプラズマ化されること
になる。
[0010] The member for a semiconductor / liquid crystal manufacturing apparatus of the present invention comprises:
The member is exposed to a halogen-based corrosive gas or its plasma. Examples of the halogen-based corrosive gas include SF 6 ,
CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , HF
Fluorine gas such as Cl 2 , HCl, BCl 3 , CCl
Chlorine gas such as 4 or Br 2 , HBr, BBr 3
And the like. When microwaves or high frequencies are introduced in an atmosphere in which these halogen-based corrosive gases are used, these gases are turned into plasma.

【0011】また、エッチング効果をより高めるため
に、ハロゲン系腐食性ガスとともに、Arなどの不活性
ガスを導入してプラズマを発生させることもある。
In order to further enhance the etching effect, plasma may be generated by introducing an inert gas such as Ar together with a halogen-based corrosive gas.

【0012】本発明は、これらのハロゲン系腐食性ガス
又はそのプラズマに曝される部材をイットリアとアルミ
ナの化合物で形成したものであり、その主結晶相をYA
G、あるいはYAGとアルミナ、またはYAGとイット
リアからなるセラミック焼結体としたものである。
According to the present invention, the member exposed to the halogen-based corrosive gas or its plasma is formed of a compound of yttria and alumina, and its main crystal phase is YA.
G, or a ceramic sintered body made of YAG and alumina, or YAG and yttria.

【0013】即ち、セラミック焼結体の結晶相を構成す
るイットリアとアルミナの化合物は、フッ素系ガスと反
応すると主にYF3 、AlF3 を生成し、また、塩素系
ガスと反応するとYCl3 、AlCl3 を生成するが、
イットリアのハロゲン化物の融点(YF3 :1152
℃、YCl3 :680℃)は、従来の石英ガラスあるい
はアルミナ焼結体や窒化アルミニウム焼結体との反応に
より生成されるハロゲン化物の融点(SiF4 :−90
℃、SiCl4 :−70℃、AlF3 :1040℃、A
lCl3 :178℃)より高いために、ハロゲン系腐食
性ガスやプラズマに高温で曝されたとしても安定した耐
食性を具備する。
That is, the compound of yttria and alumina constituting the crystal phase of the ceramic sintered body mainly produces YF 3 and AlF 3 when reacted with a fluorine-based gas, and YCl 3 and AlF 3 when reacted with a chlorine-based gas. Produces AlCl 3 ,
Melting point of yttria halide (YF 3 : 1152
° C, YCl 3 : 680 ° C) is the melting point (SiF 4 : -90) of the halide produced by the reaction with the conventional quartz glass or the sintered body of alumina or aluminum nitride.
℃, SiCl 4: -70 ℃, AlF 3: 1040 ℃, A
(1Cl 3 : 178 ° C.), so that it has stable corrosion resistance even when exposed to a halogen-based corrosive gas or plasma at a high temperature.

【0014】しかしながら、イットリア単体では焼結性
が非常に低く、その気孔率は2%以上存在し、緻密体を
得ることはできない。このため、ハロゲン系腐食性ガス
やプラズマに対する耐食性も著しく低下する。また、ア
ルミナの成分についても、イットリアとの化合物とする
ことによりアルミナ成分のハロゲン化物生成が抑えられ
ることを見出した。そこで、本発明者らは、イットリア
とアルミナの化合物を主体とすることにより、ハロゲン
系腐食性ガスやプラズマとの反応により形成されるハロ
ゲン化物の融点を高くし、また結晶粒径を10μm以下
とすることで、緻密化をはかり、気孔率も0.2%以下
にし耐食性を向上させた。ここで、イットリアとアルミ
ナの組成比率は下式に示す組成比においてYAGが形成
される。そして、この比率を下式範囲以外に種々変化さ
せると、YAGとアルミナ、あるいはYAGとイットリ
アの混合相が得られる。
However, sinterability of yttria alone is very low, and its porosity is 2% or more, so that a dense body cannot be obtained. For this reason, the corrosion resistance to halogen-based corrosive gas and plasma is significantly reduced. It has also been found that the formation of a halide in the alumina component can be suppressed by using a compound with yttria for the alumina component. Thus, the present inventors have made the compound of yttria and alumina a main component to increase the melting point of the halide formed by the reaction with the halogen-based corrosive gas or plasma, and to reduce the crystal grain size to 10 μm or less. By doing so, densification was achieved, the porosity was reduced to 0.2% or less, and the corrosion resistance was improved. Here, YAG is formed at a composition ratio of yttria and alumina represented by the following formula. When this ratio is variously changed outside the range of the following formula, a mixed phase of YAG and alumina or YAG and yttria is obtained.

【0015】 A+B=1 0.365 ≦A≦0.385 0.615≦B≦0.635 : 結晶相YAG(モル量) ここで(A)イットリア、(B)アルミナ さらに、本発明者は、イットリアとアルミナの化合物か
らなるセラミック焼結体の耐熱衝撃性を向上させるため
に、正方晶のジルコニアを500〜50000ppm添
加することで、上記セラミックス焼結体の耐食性を損な
うことなく、耐熱衝撃性を高め、半導体・液晶製造装置
等に用いられる部材としての適用範囲をさらに広げたも
のである。
A + B = 1 0.365 ≦ A ≦ 0.385 0.615 ≦ B ≦ 0.635: Crystalline phase YAG (molar amount) (A) Yttria, (B) Alumina Further, the present inventor further provided a ceramic comprising a compound of yttria and alumina. In order to improve the thermal shock resistance of the sintered body, by adding 500 to 50,000 ppm of tetragonal zirconia, the thermal shock resistance of the ceramic sintered body is increased without impairing the corrosion resistance of the ceramic sintered body. The range of application as a member used in the above is further expanded.

【0016】即ち、ジルコニア成分を500重量ppm
以上含有させることにより、耐熱衝撃性が向上すること
を見出した。これは、イットリアとアルミナの化合物か
らなる焼結体中にジルコニアを分散させることにより、
熱衝撃時に発生するクラックの進展をジルコニアが妨げ
るためである。
That is, the zirconia component is added in an amount of 500 ppm by weight.
It has been found that the thermal shock resistance is improved by the above-mentioned content. This is by dispersing zirconia in a sintered body consisting of a compound of yttria and alumina,
This is because zirconia hinders the progress of cracks generated during thermal shock.

【0017】詳細には、焼結体中のジルコニアを正方晶
の結晶形態で存在させ、熱衝撃により発生するクラック
の進展を正方晶のジルコニアが単斜晶へと相変態を起こ
すことでクラックの進展エネルギーを吸収させるのであ
る。上記ジルコニアを正方晶で安定化させるための安定
化剤としては、セリアを用いるのが良い。ジルコニアを
安定化させる助剤としてはイットリアやカルシア等もあ
るが、助剤としての効果を種々検討した結果、イットリ
アは本発明の焼結体においてはアルミナとの合成に使用
されるためジルコニアへの安定化効果がなく、カルシア
は耐食性の点で劣っており、セリアが最も効果的であっ
た。
More specifically, zirconia in the sintered body is present in the form of a tetragonal crystal, and the propagation of cracks generated by thermal shock is reduced by the phase transformation of tetragonal zirconia to monoclinic. It absorbs the energy of progress. Ceria is preferably used as a stabilizer for stabilizing the zirconia with a tetragonal crystal. There are yttria and calcia as auxiliaries for stabilizing zirconia, but as a result of various studies on the effect as auxiliaries, yttria is used for synthesis with alumina in the sintered body of the present invention, so There was no stabilizing effect, calcia was inferior in corrosion resistance, and ceria was most effective.

【0018】このジルコニアの添加量は、50000重
量ppm以下にする必要がある。これ以上となると、ジ
ルコニアの耐食性は劣ることからハロゲン系腐食性ガス
又はそのプラズマによる腐食を受けやすくなるからであ
る。ここで、セリアの添加量はジルコニア100重量%
に対し、1重量%以上添加すれば、ジルコニア成分の安
定化がはかれる。また、セリアの効果としてはランプ加
熱によりかかる100〜200℃の温度に対するジルコ
ニアの熱劣化を防ぐことにもつながる。イットリアとア
ルミナの化合物としては、YAG、あるいはYAGとア
ルミナ、またはYAGとイットリアを主結晶としたセラ
ミック焼結体がある。
The amount of zirconia added must be 50,000 ppm by weight or less. If it is more than this, the corrosion resistance of zirconia is inferior, so that it becomes susceptible to corrosion by halogen-based corrosive gas or its plasma. Here, the amount of ceria added is 100% by weight of zirconia.
On the other hand, if more than 1% by weight is added, the zirconia component is stabilized. In addition, the effect of ceria also leads to preventing thermal deterioration of zirconia at a temperature of 100 to 200 ° C. caused by lamp heating. Examples of the compound of yttria and alumina include YAG, or a ceramic sintered body having YAG and yttria as main crystals.

【0019】また、セラミック焼結体の気孔率を0.2
%以下とするのは気孔が存在すると、気孔のエッジが腐
食を受けやすく、気孔率が0.2%を越えると、腐食の
進行が加速されるためである。緻密化上げ、気孔率を
0.2%以下とするためには、一次原料を1〜2μm程
度にし焼結性を高める必要がある。これにより焼結体の
結晶粒径を10μm以下とし、気孔率を0.2%以下と
することができる。
The porosity of the ceramic sintered body is 0.2
The reason for the lower limit is that if the pores are present, the edges of the pores are susceptible to corrosion, and if the porosity exceeds 0.2%, the progress of corrosion is accelerated. In order to increase the density and reduce the porosity to 0.2% or less, it is necessary to increase the sinterability by using a primary material of about 1 to 2 μm. Thereby, the crystal grain size of the sintered body can be reduced to 10 μm or less, and the porosity can be reduced to 0.2% or less.

【0020】なお、セラミック焼結体の結晶相について
はX線回折で、含有量についてはICP発光分析又は蛍
光X線で、気孔率についてはアルキメデス法によりそれ
ぞれ求めることができる。
The crystal phase of the ceramic sintered body can be determined by X-ray diffraction, the content can be determined by ICP emission analysis or fluorescent X-ray, and the porosity can be determined by Archimedes' method.

【0021】本発明の半導体・液晶製造装置用部材の例
として、図1にエッチング装置内部の略図を示す。部品
番号1はチャンバーを、2はクランプリングを、3は下
部電極を、4はウェハーを、5は高周波コイルを示す。
この中で、部品番号1や2に示すような、ハロゲン系腐
食性ガスやプラズマに曝される部分に、本発明の半導体
・液晶製造装置用部材を適用すれば、優れた耐食性を示
し、また熱衝撃による割れ等も発生しなかった。
FIG. 1 shows a schematic view of the inside of an etching apparatus as an example of a member for a semiconductor / liquid crystal manufacturing apparatus according to the present invention. Part number 1 indicates a chamber, 2 indicates a clamp ring, 3 indicates a lower electrode, 4 indicates a wafer, and 5 indicates a high-frequency coil.
Among them, when the member for semiconductor / liquid crystal manufacturing equipment of the present invention is applied to a portion exposed to a halogen-based corrosive gas or plasma as shown in part numbers 1 and 2, excellent corrosion resistance is exhibited, and No cracks or the like due to thermal shock occurred.

【0022】[0022]

【実施例】実施例1 本発明の半導体・液晶製造装置用部材として、ジルコニ
ア5000重量ppm、セリア50ppmを含んだYA
G、YAGとイットリアの混合相、YAGとアルミナの
混合相からなるセラミック焼結体と、YAGを主結晶相
としてジルコニア、セリアの添加量を変化させたセラミ
ック焼結体と、従来の半導体・液晶製造装置用部材とし
て、石英ガラス、純度99.5wt%のアルミナ焼結
体、及び純度99.9wt%のアルミナ焼結体、ジルコ
ニア、セリアを含まないYAGをそれぞれ用意し、フッ
素系及び塩素系の腐食性ガス下でプラズマに曝した時の
耐食性について実験を行った。
EXAMPLE 1 A YA containing 5000 ppm by weight of zirconia and 50 ppm of ceria was used as a member for a semiconductor / liquid crystal manufacturing apparatus of the present invention.
G, a ceramic sintered body composed of a mixed phase of YAG and yttria, a mixed phase of YAG and alumina, a ceramic sintered body in which YAG is used as a main crystal phase and the added amount of zirconia and ceria is changed, and a conventional semiconductor / liquid crystal Quartz glass, 99.5 wt% pure alumina sintered body, 99.9 wt% pure alumina sintered body, zirconia and ceria-free YAG were prepared as members for the manufacturing apparatus. An experiment was conducted on the corrosion resistance when exposed to plasma under a corrosive gas.

【0023】本実験では、本発明及び従来の半導体製造
装置用部材を、直径30mm×厚み3mmに製作した
後、表面にラップ加工を施して鏡面にしたものを試料と
し、この試料をRIE(Reactive Ion E
tching)装置にセットしてSF6 ガス雰囲気下及
びCl2 ガス雰囲気下でプラズマ中に3時間曝した後、
処理前後の重量の減少値から1分間当たりのエッチング
レートを算出した。エッチングレートの数値は、99.
9wt%のアルミナ焼結体のエッチングレートを1とし
たときの相対比較で示す。
In this experiment, the members of the present invention and the conventional semiconductor manufacturing apparatus were manufactured to have a diameter of 30 mm × thickness of 3 mm, and then lapping was performed on the surface to make a mirror surface, and this sample was subjected to RIE (Reactive). Ion E
After setting in a device and exposing it to plasma under SF 6 gas atmosphere and Cl 2 gas atmosphere for 3 hours,
The etching rate per minute was calculated from the weight reduction value before and after the treatment. The numerical value of the etching rate is 99.
This is shown as a relative comparison when the etching rate of an alumina sintered body of 9 wt% is set to 1.

【0024】各試料の特性及びそれぞれの結果は表1に
示すとおりである。
The properties of each sample and the results are as shown in Table 1.

【0025】この結果、本発明の半導体・液晶製造装置
用部材No.2〜8は、SF6 ガス、Cl2 ガス、いず
れの腐食性ガスに対しても、従来の半導体・液晶製造装
置用部材と比較して優れた耐食性を有していた。傾向と
しては、イットリアの含有量が増えていくほど優れた耐
食性を示すことがわかる。しかし、イットリアのみのN
o.1は緻密体が得られず、気孔率も5%と大きいた
め、耐食性が劣化している。また、No.9〜12も、
SF6 ガス、Cl2 ガス、いずれの腐食性ガスに対して
も、従来の半導体・液晶製造装置用部材と比較して優れ
た耐食性を有していた。ジルコニアの添加量としては5
0000重量ppmを超えると、No.13に見られる
ように、SF6 ガスに対する耐食性が本発明範囲外のN
o.15のアルミナ焼結体と同程度まで劣化してしま
う。
As a result, the member no. Nos. 2 to 8 had excellent corrosion resistance to SF 6 gas, Cl 2 gas, and any corrosive gas as compared with conventional members for semiconductor / liquid crystal manufacturing apparatuses. As a tendency, it can be seen that the higher the yttria content, the more excellent the corrosion resistance. However, N of Yttria only
o. In No. 1, since a dense body was not obtained and the porosity was as large as 5%, the corrosion resistance was deteriorated. In addition, No. 9 to 12
It had excellent corrosion resistance to SF 6 gas, Cl 2 gas, and any corrosive gas as compared with conventional members for semiconductor / liquid crystal manufacturing equipment. The addition amount of zirconia is 5
If the amount exceeds 0000 ppm by weight, no. As can be seen from FIG. 13, the corrosion resistance to SF 6 gas is out of the range of the present invention.
o. It deteriorates to the same degree as the alumina sintered body of No. 15.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例2 次に、本発明の半導体・液晶製造装置用部材の耐熱衝撃
性について実験を行った。本実験では、表1に記載のN
o.9〜14の焼結体を用いて、3×4×40の抗折試
験片を作製し、所定の温度に加熱した後、水中投下し、
焼結体表面に発生するクラックの有無で耐熱衝撃性を評
価した。なお、クラックの有無については、探傷液によ
り判断し、クラックの入らない最高温度差を耐熱衝撃温
度ΔTとした。
Example 2 Next, an experiment was conducted on the thermal shock resistance of the member for a semiconductor / liquid crystal manufacturing apparatus of the present invention. In this experiment, N
o. Using a sintered body of 9 to 14, a 3 × 4 × 40 bending test piece was prepared, heated to a predetermined temperature, and then dropped in water.
The thermal shock resistance was evaluated based on the presence or absence of cracks generated on the surface of the sintered body. The presence or absence of cracks was judged by the flaw detection liquid, and the maximum temperature difference at which cracks did not occur was defined as the thermal shock temperature ΔT.

【0028】各試料の実験結果は表2に示すとおりであ
る。
The experimental results of each sample are as shown in Table 2.

【0029】この結果、ジルコニア及びセリアを添加し
ないNo14との比較において、本発明のNo10〜N
o12は、耐熱衝撃性の向上がみられた。その効果はN
o9、No10にみられるように、ジルコニア500p
pm以上、セリア5ppm以上の添加が必要である。そ
の傾向としては、添加量が増えるほど耐熱衝撃性は向上
していく。しかしながら、No13においては、添加量
増量に伴うマイクロクラック増加により耐熱衝撃性は向
上するものの、表1にみられるように耐食性は逆に著し
く劣化するため、添加量はジルコニア50000ppm
以下、セリア500ppm以下とすることが好ましい。
As a result, in comparison with No. 14 in which zirconia and ceria were not added, No. 10 to No.
For o12, improvement in thermal shock resistance was observed. The effect is N
o9, No10, zirconia 500p
pm or more and ceria of 5 ppm or more are required. The tendency is that the thermal shock resistance improves as the amount of addition increases. However, in No. 13, although the thermal shock resistance is improved due to the increase in the microcrack accompanying the increase in the amount of addition, the corrosion resistance is significantly deteriorated as shown in Table 1, so the amount of addition of zirconia is 50,000 ppm.
Hereinafter, it is preferable that ceria be 500 ppm or less.

【0030】この結果、ジルコニア及びセリアを添加し
ないNo.14との比較において、本発明のNo.10
〜12は、耐熱衝撃性の向上が見られた。その効果はN
o.9、No.10に見られるように、ジルコニア50
0重量ppm以上、セリア5ppm以上の添加が必要で
ある。その傾向としては、添加量が増えるほど耐熱衝撃
性は向上していく。しかしながら、No.13において
は、添加量増量に伴うマイクロクラックの増加により耐
熱衝撃性は向上するものの、表1に見られるように耐食
性は逆に著しく劣化するため、添加量はジルコニア50
000重量ppm以下、セリア500ppm以下とする
ことが好ましい。
[0030] As a result, No. 3 containing no zirconia and ceria was added. 14 in comparison with No. 14 of the present invention. 10
In Nos. To 12, improvement in thermal shock resistance was observed. The effect is N
o. 9, No. As seen in Figure 10, zirconia 50
It is necessary to add 0 ppm by weight or more and 5 ppm or more of ceria. The tendency is that the thermal shock resistance improves as the amount of addition increases. However, no. In No. 13, although the thermal shock resistance was improved due to the increase in the microcrack accompanying the increase in the amount of addition, the corrosion resistance was significantly deteriorated as shown in Table 1, so the amount of addition was zirconia 50.
It is preferable that the content be 000 ppm by weight or less and ceria 500 ppm or less.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例3 さらに、表1に記載の試料No.7におけるセラミック
焼結体を用い、焼成温度を制御して気孔率を異ならせた
時の耐食性について実施例1と同様の条件にて実験を行
った。エッチングレートの数値は、99.9wt%のア
ルミナ焼結体のエッチングレートを1としたときの相対
比較で示す。
Example 3 Further, the sample Nos. An experiment was conducted on the corrosion resistance when the porosity was varied by controlling the firing temperature using the ceramic sintered body of Example 7 under the same conditions as in Example 1. The numerical value of the etching rate is shown as a relative comparison when the etching rate of the 99.9 wt% alumina sintered body is set to 1.

【0033】各試料の特性及びそれぞれの結果は表3に
示すとおりである。
The characteristics of each sample and the results are as shown in Table 3.

【0034】この結果、本発明の焼結体は、結晶粒径が
10μm以下、気孔率0.2%以下の耐食性部材は、C
2 ガス、SF6 ガス、いずれの腐食性ガスに対して
も、従来の耐食性部材と比較して優れた耐食性を有して
いた。
As a result, in the sintered body of the present invention, the corrosion-resistant member having a crystal grain size of 10 μm or less and a porosity of 0.2% or less
It had excellent corrosion resistance to l 2 gas and SF 6 gas, both corrosive gases, as compared with conventional corrosion resistant members.

【0035】今回、主結晶相にYAGを用いて実験を行
ったが、その他のYAGとイットリア、またはアルミナ
の何れかの混合相により構成されるセラミック焼結体に
ついてもメカニズム的に同様の結果(ボイドのエッジか
ら腐食が進行していく)となることは言うまでもない。
In the present experiment, YAG was used as the main crystal phase. Other ceramic sintered bodies composed of a mixed phase of YAG, yttria, or alumina have similar mechanical results ( It goes without saying that corrosion progresses from the edge of the void).

【0036】[0036]

【表3】 [Table 3]

【0037】以上詳述したとおり、本発明によれば、ハ
ロゲン系腐食性ガス又はそのプラズマに曝される半導体
・液晶製造装置用部材を、イットリアとアルミナの化合
物より形成し、その主結晶相をYAG(イットリウム・
アルミニウム・ガーネット)、あるいはYAGとアルミ
ナ、またはYAGとイットリアとする焼結体で形成する
ことで耐食性を向上させ、副成分としてセリアを安定化
剤に含むジルコニアを500〜50000重量ppm含
有させることで、耐熱衝撃性も向上させ、さらには、結
晶粒径を10μm以下とし、気孔率を0.2%以下とす
ることで、プラズマに対する耐食性を向上させることが
できる。
As described above in detail, according to the present invention, a member for a semiconductor / liquid crystal manufacturing apparatus exposed to a halogen-based corrosive gas or its plasma is formed from a compound of yttria and alumina, and its main crystal phase is changed. YAG (Yttrium
Aluminum garnet), or a sintered body of YAG and alumina, or YAG and yttria to improve corrosion resistance and to contain zirconia containing ceria as a stabilizer as a secondary component in an amount of 500 to 50,000 ppm by weight. By improving the thermal shock resistance, and further by setting the crystal grain size to 10 μm or less and the porosity to 0.2% or less, corrosion resistance to plasma can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐食性セラミック部材の応用例である
エッチング装置内部の概略図である。
FIG. 1 is a schematic view of the inside of an etching apparatus which is an application example of the corrosion-resistant ceramic member of the present invention.

【符号の説明】[Explanation of symbols]

1.チャンバー 2.クランプリング 3.下部電極 4.ウェハー 5.高周波コイル 1. Chamber 2. Clamp ring 3. Lower electrode 4. Wafer 5. High frequency coil

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イットリアとアルミナの化合物を主結晶相
とし、副成分としてセリアを安定化剤に含むジルコニア
を500〜50000重量ppm含有することを特徴と
する半導体・液晶製造装置用部材
1. A yttria and a compound of alumina as a main crystal phase, semiconductor and liquid crystal manufacturing equipment member, characterized in that it comprises 500 to 50,000 ppm by weight free zirconia containing the stabilizer ceria as a secondary component.
【請求項2】上記主結晶相が、YAG(イットリウム・
アルミニウム・ガーネット)、YAGとアルミナ、また
はYAGとイットリアからなることを特徴とする請求項
1に記載の半導体・液晶製造装置用部材
2. The method according to claim 1, wherein the main crystal phase is YAG (yttrium
2. The member for a semiconductor / liquid crystal manufacturing apparatus according to claim 1, wherein the member is made of aluminum (garnet), YAG and alumina, or YAG and yttria.
【請求項3】耐熱衝撃性ΔTが100℃以上であること
を特徴とする請求項1に記載又は請求項2に記載の半導
体・液晶製造装置用部材
3. A semiconductor according to according or claim 2 in claim 1, thermal shock resistance ΔT is equal to or is 100 ° C. or higher
Parts for body and liquid crystal manufacturing equipment .
【請求項4】平均結晶粒子径が10μm以下で、気孔率
が0.2%以下であることを特徴とする請求項1乃至請
求項3に記載の半導体・液晶製造装置用部材
4. The member for a semiconductor / liquid crystal manufacturing apparatus according to claim 1, wherein the average crystal particle diameter is 10 μm or less and the porosity is 0.2% or less.
JP10371726A 1998-11-27 1998-12-28 Components for semiconductor / liquid crystal manufacturing equipment Expired - Fee Related JP3046288B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10371726A JP3046288B1 (en) 1998-12-28 1998-12-28 Components for semiconductor / liquid crystal manufacturing equipment
US09/450,162 US6383964B1 (en) 1998-11-27 1999-11-29 Ceramic member resistant to halogen-plasma corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371726A JP3046288B1 (en) 1998-12-28 1998-12-28 Components for semiconductor / liquid crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JP3046288B1 true JP3046288B1 (en) 2000-05-29
JP2000191369A JP2000191369A (en) 2000-07-11

Family

ID=18499199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371726A Expired - Fee Related JP3046288B1 (en) 1998-11-27 1998-12-28 Components for semiconductor / liquid crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3046288B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444703B1 (en) 1995-12-22 2002-09-03 Teikoku Chemical Industries Co., Ltd. Cyclohexane carbocyclic ester derivative and cyclodextrin complex and composition for treatment of helicobacter pylori infections
US6831190B1 (en) 1994-08-30 2004-12-14 Teikoku Chemical Industries Co., Ltd. Guanidinomethyl cyclohexane carboxylic acid ester derivatives
CN106086762A (en) * 2015-04-27 2016-11-09 朗姆研究公司 For etching or long-life hot-spraying coating of settling chamber's application
US20210387919A1 (en) * 2018-10-29 2021-12-16 Kyocera Corporation Ceramic tube

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW503449B (en) 2000-04-18 2002-09-21 Ngk Insulators Ltd Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
US6620520B2 (en) 2000-12-29 2003-09-16 Lam Research Corporation Zirconia toughened ceramic components and coatings in semiconductor processing equipment and method of manufacture thereof
US6613442B2 (en) * 2000-12-29 2003-09-02 Lam Research Corporation Boron nitride/yttria composite components of semiconductor processing equipment and method of manufacturing thereof
JP4663927B2 (en) * 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
US7371467B2 (en) 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
JP5117891B2 (en) * 2008-03-11 2013-01-16 日本碍子株式会社 Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
WO2010024353A1 (en) * 2008-08-28 2010-03-04 Toto株式会社 Corrosion-resistant member and method for manufacture thereof
CN102260855A (en) * 2011-07-26 2011-11-30 中微半导体设备(上海)有限公司 Semiconductor processing apparatus with anti-etching layer and manufacturing method thereof
JP6830030B2 (en) 2017-04-27 2021-02-17 新光電気工業株式会社 Electrostatic chuck and board fixing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831190B1 (en) 1994-08-30 2004-12-14 Teikoku Chemical Industries Co., Ltd. Guanidinomethyl cyclohexane carboxylic acid ester derivatives
US6444703B1 (en) 1995-12-22 2002-09-03 Teikoku Chemical Industries Co., Ltd. Cyclohexane carbocyclic ester derivative and cyclodextrin complex and composition for treatment of helicobacter pylori infections
CN106086762A (en) * 2015-04-27 2016-11-09 朗姆研究公司 For etching or long-life hot-spraying coating of settling chamber's application
US20210387919A1 (en) * 2018-10-29 2021-12-16 Kyocera Corporation Ceramic tube

Also Published As

Publication number Publication date
JP2000191369A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JP3046288B1 (en) Components for semiconductor / liquid crystal manufacturing equipment
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
JP6314110B2 (en) Apparatus and method for reducing the erosion rate of surfaces exposed to halogen-containing plasmas
JP3619330B2 (en) Components for plasma process equipment
JPH104083A (en) Anticorrosive material for semiconductor fabrication
JP2003146751A (en) Plasma-resistant member and method of producing the same
WO2006023894A2 (en) Semiconductor processing components and semiconductor processing utilizing same
JP3164559B2 (en) Processing container material
JPH1045467A (en) Corrosion resistant member
JP4780932B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP3559426B2 (en) Corrosion resistant materials
JPH11214365A (en) Member for semiconductor element manufacturing device
JP4544700B2 (en) Vacuum container and method for manufacturing the same
JPH11157916A (en) Corrosion-resistant member
JP3706488B2 (en) Corrosion-resistant ceramic material
JPH1067554A (en) Anticorrosive ceramic member
JP2004292270A (en) Corrosion resistant member and its manufacturing method
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP4641609B2 (en) Corrosion resistant material
KR20090101245A (en) Ceramic member and corrosion-resistant member
JPH11279761A (en) Corrosion resistant member
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees