JP3041383B2 - Joining method of ceramics and metal - Google Patents

Joining method of ceramics and metal

Info

Publication number
JP3041383B2
JP3041383B2 JP2131526A JP13152690A JP3041383B2 JP 3041383 B2 JP3041383 B2 JP 3041383B2 JP 2131526 A JP2131526 A JP 2131526A JP 13152690 A JP13152690 A JP 13152690A JP 3041383 B2 JP3041383 B2 JP 3041383B2
Authority
JP
Japan
Prior art keywords
metal
plate
nickel
joining
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2131526A
Other languages
Japanese (ja)
Other versions
JPH0426570A (en
Inventor
志朗 内田
敏夫 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2131526A priority Critical patent/JP3041383B2/en
Publication of JPH0426570A publication Critical patent/JPH0426570A/en
Application granted granted Critical
Publication of JP3041383B2 publication Critical patent/JP3041383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックスと金属の接合方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for joining ceramics and metal.

〔従来の技術〕[Conventional technology]

従来、セラミックス等の粉末成形体と金属とを接合す
る方法の1つとして活性金属法がある。
Conventionally, there is an active metal method as one of methods for joining a powder compact such as ceramics and a metal.

この方法は、セラミックスと反応し易い材料、すなわ
ち、酸素等と結合し易いチタンやジルコニュムをろう材
として使用する方法である。この活性金属法に用いられ
るろう材は、チタンやジルコニュムを基本とする合金で
あり、Ti−Cu−Ag系の合金がよく用いられる。
In this method, a material which easily reacts with ceramics, that is, titanium or zirconium which easily bonds with oxygen or the like is used as a brazing material. The brazing material used in the active metal method is an alloy based on titanium or zirconium, and a Ti-Cu-Ag alloy is often used.

特開昭59−232693号公報には、Ti−Cu−Ag系の合金と
したセラミックスと金属の接合に使用するクラッド型の
ろう材が提案されている。
Japanese Patent Application Laid-Open No. 59-232693 proposes a clad brazing filler metal used for joining a ceramic and a metal as a Ti-Cu-Ag alloy.

従来の活性金属法によるセラミックスと金属の接合方
法では、Ti−Cu−Ag系合金によるろう材の接合性は良好
であるが、ろう材に銀を含み、銀の融点が低いため、30
0℃以上となると、接合強度が急激に低下する。
In the conventional method of joining a ceramic and a metal by the active metal method, the joining property of the brazing material by the Ti-Cu-Ag-based alloy is good, but since the brazing material contains silver and the melting point of silver is low, 30
When the temperature is 0 ° C. or higher, the bonding strength sharply decreases.

この点を改善するため、本出願人は、ろう材の銀をニ
ッケルに変更し、高温強度の向上を図った発明につい
て、先に特許出願(特願平1−313222号)している。
In order to improve this point, the present applicant has previously filed a patent application (Japanese Patent Application No. 1-313222) for an invention in which silver in the brazing material is changed to nickel to improve the high-temperature strength.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記のセラミックスと金属の接合方法では、いずれも
熱応力緩和材としてタングステン板を用いており、この
タングステン板が800℃前後の加熱、冷却により、酸化
して劣化することが判明した。
In any of the above-described methods of joining ceramics and metal, it has been found that a tungsten plate is used as a thermal stress relaxation material, and this tungsten plate is oxidized and deteriorated by heating and cooling at about 800 ° C.

したがって、大気中における耐熱性は、400℃程度し
か期待できず、エンジン燃焼室周り等の高温環境で使用
するには問題が生ずる。
Therefore, heat resistance in the atmosphere can be expected to be only about 400 ° C., and there is a problem when used in a high-temperature environment such as around an engine combustion chamber.

本発明は、上記の課題を解決し、セラミックスと金属
との接合強度を向上させると共に、800℃前後の加熱、
冷却によっても接合強度の低下が起きず、安定した接合
強度を保持することができるセラミックスと金属の接合
方法を提供することを目的とするものである。
The present invention solves the above problems, while improving the bonding strength between ceramics and metal, heating around 800 ℃,
It is an object of the present invention to provide a method for joining ceramics and metal that does not cause a decrease in joining strength even by cooling and can maintain a stable joining strength.

〔課題を解決するための手段及び作用〕[Means and Actions for Solving the Problems]

本発明は、セラミックスと金属との間にタングステン
粒子にニッケル粒子を被覆して焼結した焼結板とそのセ
ラミックス側に厚さ1.0〜1.7mmのニッケル板とした応力
緩和材を介在させ、セラミックスと前記ニッケル板との
間にチタン−銅系のろう材を配設し、所定の真空状態で
加熱するセラミックスと金属の接合方法である。
The present invention provides a sintered plate obtained by coating nickel particles on tungsten particles and sintering between a ceramic and a metal, and a stress relaxation material formed of a nickel plate having a thickness of 1.0 to 1.7 mm on the ceramic side. A method of joining a ceramic and a metal, wherein a titanium-copper brazing material is disposed between the metal and the nickel plate and heated in a predetermined vacuum state.

真空中での加熱により、セラミックスとニッケル板と
の間のろう材が作用してセラミックスと金属が強固に接
合される。応力緩和材のタングステン焼結板は各タング
ステン粒子がニッケル粒子で被覆されているので酸化が
充分防止され、800℃前後の加熱、冷却によっても接合
強度の低下が起きず、安定した接合強度を保持する。
By heating in a vacuum, the brazing material between the ceramic and the nickel plate acts to firmly join the ceramic and the metal. Since the tungsten particles of the stress relaxation material are coated with nickel particles, the tungsten particles are sufficiently protected from oxidation, and the bonding strength does not decrease even when heated or cooled at around 800 ° C, maintaining stable bonding strength. I do.

〔実施例〕〔Example〕

本発明の実施例を図面について説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例の説明図、第2図は接合
時の加熱条件を示す図である。
FIG. 1 is an explanatory view of one embodiment of the present invention, and FIG. 2 is a view showing heating conditions at the time of joining.

第1図に示すように、セラミックスとして窒化珪素
(Si3N4)セラミックス成形体1と、金属としてステン
レス(SUS304)2を接合対象材に選び、両者の間に後記
の方法で製作した厚さ1.0mmのタングステン焼結板3を
はさんでその両側に厚さ1.0mmと1.5mmのニッケル板4,5
を配置し、また、セラミックス成形体1とニッケル板5
との間に、厚さ1.5μmのチタン膜7を施した厚さ20μ
mの銅箔6をチタン膜7がセラミックス成形体1に当接
するように配設する。
As shown in FIG. 1, a silicon nitride (Si 3 N 4 ) ceramic molded body 1 as a ceramic and a stainless steel (SUS304) 2 as a metal were selected as materials to be joined, and a thickness produced between them by a method described later. 1.0mm and 1.5mm nickel plates 4,5 on both sides of a 1.0mm tungsten sintered plate 3
And the ceramic molded body 1 and the nickel plate 5
20 μm thick with a 1.5 μm thick titanium film 7
m of the copper foil 6 is disposed such that the titanium film 7 contacts the ceramic molded body 1.

タングステン焼結板3は次の方法で製作する。平均粒
径1〜10μmのタングステン粒子の表面にバイブリダイ
ゼーションシステム等の表面改質システムを利用して平
均粒径0.1〜1μmのニッケル粒子を被覆する。この粒
子を用い、3×10-6 Torrの真空中で次の条件で加熱焼結
する。第7図に示すように、150℃、400℃、700℃にそ
れぞれ0.9Ks保持した後、1200℃に1.44Ks保持する。
The tungsten sintered plate 3 is manufactured by the following method. The surface of the tungsten particles having an average particle diameter of 1 to 10 μm is coated with nickel particles having an average particle diameter of 0.1 to 1 μm by using a surface modification system such as a hybridization system. The particles are heated and sintered under the following conditions in a vacuum of 3 × 10 −6 Torr . As shown in FIG. 7, after holding 0.9 Ks at 150 ° C., 400 ° C., and 700 ° C., respectively, holding at 1.44 Ks at 1200 ° C.

セラミックスと金属を接合するには、これらを重ね合
せ、5×10-5 Torrの真空中で加熱する。
To join the ceramic and the metal, they are superposed and heated in a vacuum of 5 × 10 −5 Torr .

第2図は横軸に時間、縦軸に加熱温度を示し、昇温速
度t=0.34℃/secで、t1=1200℃に加熱してT1=0.06Ks
保持し、その後に温度をt2=1150℃に下げてT2=0.6Ks
保持し、更に、t3=1100℃に下げてT3=3.6Ks保持す
る。この加熱条件で接合させたところ、4点曲げ強度20
0MPaが得られた。
FIG. 2 shows the time on the horizontal axis and the heating temperature on the vertical axis. At a heating rate t = 0.34 ° C./sec, heating to t 1 = 1200 ° C. and T 1 = 0.06 Ks
Hold, then lower the temperature to t 2 = 1150 ° C and T 2 = 0.6Ks
Then, the temperature is lowered to t 3 = 1100 ° C. and T 3 = 3.6 Ks. When joined under these heating conditions, a four-point bending strength of 20
0MP a was obtained.

上記の接合方法でセラミックス1とステンレス2との
間にタングステン焼結板3及びニッケル板4,5を配設し
てNi−W−Ni層を設けたのは、セラミックスと金属との
線膨張係数の相違により発生する熱応力の緩和を図った
ものであり、ニッケル板5、銅箔6、チタン膜7が「Ni
−Cu−Ti」系のろう材として作用する。
The reason why the Ni-W-Ni layer was provided by disposing the tungsten sintered plate 3 and the nickel plates 4 and 5 between the ceramics 1 and the stainless steel 2 by the above joining method is that the coefficient of linear expansion between the ceramics and the metal was increased. In this case, the nickel plate 5, the copper foil 6, and the titanium film 7 are made of “Ni”.
-Cu-Ti "-based material.

上記の接合条件において加熱温度t3(1100℃)で時間
T3(3.6Ks)保持したのは、ろう材中の銅の拡散を進行
させ、銅濃度を下げて耐熱性の向上を図ったものであ
る。また、銅箔6とタングステン板3間のニッケル板5
の厚さの設定が重要であり、その厚さにより接合強度が
変化する。このニッケル板5の厚さと接合強度との関係
を第3図に示す。同図において、横軸はニッケル板5の
厚さ、縦軸は4点曲げ強度を示す。
Time at heating temperature t 3 (1100 ° C) under the above bonding conditions
The reason why T 3 (3.6 Ks) was maintained was to promote the diffusion of copper in the brazing filler metal and reduce the copper concentration to improve heat resistance. The nickel plate 5 between the copper foil 6 and the tungsten plate 3
The setting of the thickness is important, and the bonding strength changes depending on the thickness. FIG. 3 shows the relationship between the thickness of the nickel plate 5 and the bonding strength. In the figure, the horizontal axis represents the thickness of the nickel plate 5, and the vertical axis represents the four-point bending strength.

図から明らかなように、ニッケル板5の厚さは1.5mm
とするのが最適であり、1.0〜1.7mmの範囲でも4点曲げ
強度200MPaが得られる。
As is clear from the figure, the thickness of the nickel plate 5 is 1.5 mm.
It is most preferable to obtain a four-point bending strength of 200 MPa even in the range of 1.0 to 1.7 mm.

ろう材として銀を用いず、ニッケルを使用した「Ni−
Cu−Ti」系のろう材としたことにより接合部の耐熱性が
向上する。第4図に従来の「Ti−Cu−Ag」系のろう材を
使用した場合と、「Ni−Cu−Ti」系のろう材を使用した
場合の接合強度と温度との関係を示す。
"Ni-" using nickel instead of silver as brazing material
The use of a Cu-Ti-based brazing material improves the heat resistance of the joint. FIG. 4 shows the relationship between the joining strength and the temperature when using the conventional "Ti-Cu-Ag" brazing material and when using the "Ni-Cu-Ti" brazing material.

「Ni−Cu−Ti」系のろう材を使用した場合(実線)
では、室温から600℃まで4点曲げ強度200MPaを維持す
るが、従来の「Ti−Cu−Ag」系のろう材を使用した場合
(破線)には、400℃で4点曲げ強度が200MPa以下と
なり、以下温度の上昇につれて接合強度が急激に低下す
る。
When "Ni-Cu-Ti" brazing material is used (solid line)
Maintains a four-point bending strength of 200 MPa from room temperature to 600 ° C. However, when a conventional “Ti-Cu-Ag” brazing material is used (broken line), the four-point bending strength at 400 ° C is 200 MPa or less. Then, as the temperature rises, the bonding strength sharply decreases.

一方、熱応力緩和材としてタングステン板を使用した
場合には、これが酸化により劣化する。第5図に、窒化
珪素セラミックス成形体とステンレスの接合に、厚さ1.
0mmのタングステン板を熱応力緩和材として使用し、酸
化温度を800℃とした場合の酸化時間と4点曲げ強度と
の関係を示す。タングステン板が酸化して劣化し、4点
曲げ強度が急速に低下している。
On the other hand, when a tungsten plate is used as a thermal stress relieving material, it deteriorates due to oxidation. Fig. 5 shows the thickness of 1.
The relationship between the oxidation time and the four-point bending strength when a 0 mm tungsten plate is used as a thermal stress relaxing material and the oxidation temperature is 800 ° C. is shown. The tungsten plate is oxidized and deteriorated, and the four-point bending strength is rapidly reduced.

第6図は本発明のタングステン焼結板の酸化の影響を
示す図で、酸化温度を同じ800℃とした場合の酸化時間
と4点曲げ強度との関係を示す。図から明らかなよう
に、360Ks経過した後も4点曲げ強度の低下が見られな
い。
FIG. 6 is a graph showing the effect of oxidation of the tungsten sintered plate of the present invention, showing the relationship between the oxidation time and the four-point bending strength when the oxidation temperature is set to 800 ° C. As is apparent from the figure, no decrease in the four-point bending strength is observed even after elapse of 360 Ks.

本発明では、熱応力緩和材のタングステン板をタング
ステン粒子にニッケル粒子を被覆して焼結したタングス
テン焼結板としたことにより、タングステンの酸化が充
分防止される。特に、接合体に追加して加工を施した場
合、個々のタングステン粒子の全てがニッケル粒子で被
覆されているので、酸化による劣化の恐れが生じない。
In the present invention, oxidation of tungsten is sufficiently prevented by forming the tungsten plate of the thermal stress relaxation material as a tungsten sintered plate obtained by coating tungsten particles with nickel particles and sintering them. In particular, when processing is additionally performed on the joined body, since all the individual tungsten particles are covered with nickel particles, there is no fear of deterioration due to oxidation.

したがって、800℃前後の加熱、冷却によっても接合
強度の低下が起きず、安定した接合強度が維持でき、エ
ンジン燃焼室周り等の高温環境で使用することが可能と
なる。
Therefore, even if heating and cooling at about 800 ° C., the joining strength does not decrease, the stable joining strength can be maintained, and it can be used in a high temperature environment such as around an engine combustion chamber.

上記の実施例では、接合対象の金属をステンレスとし
たものを示したが、ステンレス以外の金属とセラミック
スの接合にも適用できる。
In the above embodiment, the metal to be joined is made of stainless steel. However, the present invention can be applied to the joining of ceramics other than stainless steel with ceramics.

〔発明の効果〕〔The invention's effect〕

本発明は、セラミックスと金属との接合強度を向上さ
せると共に、セラミックスと金属の接合部に使用する熱
応力緩和材の酸化による劣化を充分防止して安定した接
合強度が維持でき、800℃前後の加熱、冷却によっても
接合部の強度低下が起きず、セラミックスと金属の接合
体を高温環境で使用することができる効果が有る。
The present invention improves the bonding strength between the ceramic and the metal, and can sufficiently prevent the thermal stress relaxation material used in the bonding portion between the ceramic and the metal from being deteriorated due to oxidation, and can maintain a stable bonding strength. There is an effect that the strength of the joint does not decrease even by heating and cooling, and the joined body of ceramics and metal can be used in a high temperature environment.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の説明図、第2図は接合時
の加熱条件を示す図、第3図はニッケル板の厚さと接合
強度との関係を示す図、第4図は接合強度と温度の関係
を示す図、第5図は従来方法による製品の酸化による曲
げ強度の低下を示す図、第6図は本発明の接合方法によ
る製品の酸化の影響を示す図、第7図はタングステン焼
結板の焼結条件を示す図である。 1:セラミックス成形体、2:ステンレス 3:タングステン焼結板、4,5:ニッケル板 6:銅箔、7:チタン膜
FIG. 1 is an explanatory view of one embodiment of the present invention, FIG. 2 is a view showing heating conditions at the time of joining, FIG. 3 is a view showing a relationship between a thickness of a nickel plate and joining strength, and FIG. FIG. 5 is a diagram showing the relationship between joining strength and temperature, FIG. 5 is a diagram showing a decrease in bending strength due to oxidation of a product by a conventional method, FIG. 6 is a diagram showing the effect of oxidation of a product by the joining method of the present invention, FIG. The figure shows the sintering conditions for a tungsten sintered plate. 1: Ceramic body, 2: Stainless steel 3: Tungsten sintered plate, 4, 5: Nickel plate 6: Copper foil, 7: Titanium film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−119571(JP,A) 特開 平1−205053(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 37/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-119571 (JP, A) JP-A-1-205053 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 37/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックスと金属との間にタングステン
粒子にニッケル粒子を被覆して焼結した焼結板とその両
側にニッケル板とした応力緩和材を介在させ、該応力緩
和材のセラミックス側のニッケル板の厚さを1.0〜1.7mm
とし、該ニッケル板とセラミックスとの間にチタン−銅
系のろう材を配設し、所定の真空状態で加熱することを
特徴とするセラミックスと金属の接合方法。
1. A sintered plate obtained by coating tungsten particles with nickel particles and sintering between a ceramic and a metal, and a stress relaxation material as a nickel plate interposed on both sides of the sintered plate. Nickel plate thickness is 1.0 ~ 1.7mm
Wherein a titanium-copper-based brazing material is disposed between the nickel plate and the ceramic, and heated in a predetermined vacuum state.
JP2131526A 1990-05-21 1990-05-21 Joining method of ceramics and metal Expired - Fee Related JP3041383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131526A JP3041383B2 (en) 1990-05-21 1990-05-21 Joining method of ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131526A JP3041383B2 (en) 1990-05-21 1990-05-21 Joining method of ceramics and metal

Publications (2)

Publication Number Publication Date
JPH0426570A JPH0426570A (en) 1992-01-29
JP3041383B2 true JP3041383B2 (en) 2000-05-15

Family

ID=15060129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131526A Expired - Fee Related JP3041383B2 (en) 1990-05-21 1990-05-21 Joining method of ceramics and metal

Country Status (1)

Country Link
JP (1) JP3041383B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115213561B (en) * 2022-07-29 2023-11-24 苏州大学 Laser sealing method for glass and stainless steel by adding titanium as transition layer

Also Published As

Publication number Publication date
JPH0426570A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
JP2528718B2 (en) How to join ceramics and metal
JP3892965B2 (en) Manufacturing method of joined body and joined body
JPH0367985B2 (en)
JP3040203B2 (en) High temperature stable composite and method for producing the same
US4657825A (en) Electronic component using a silicon carbide substrate and a method of making it
JP3041383B2 (en) Joining method of ceramics and metal
JPH0729859B2 (en) Ceramics-Metal bonding material
JP2760987B2 (en) Joining method of ceramics and metal
JPH0520392B2 (en)
JP3041531B2 (en) Joining method of ceramics and metal
US5380598A (en) Solder joint
JPH02108493A (en) Ceramics joining material
JP2851881B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JPS61215272A (en) Method of bonding ceramic member and metal member
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JPH01308884A (en) Material-bonding process and bonded product
JPH03205389A (en) Method for metallizing ceramics and method for joining ceramics to metal
JPH10194860A (en) Brazing filler metal
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2818210B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH01224280A (en) Ceramic-metal conjugate form
JPH0426568A (en) Metal/ceramics joined body
JPH0142914B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees