JP3036310B2 - Multi-temperature generation circuit by vapor compression refrigeration cycle - Google Patents

Multi-temperature generation circuit by vapor compression refrigeration cycle

Info

Publication number
JP3036310B2
JP3036310B2 JP5190319A JP19031993A JP3036310B2 JP 3036310 B2 JP3036310 B2 JP 3036310B2 JP 5190319 A JP5190319 A JP 5190319A JP 19031993 A JP19031993 A JP 19031993A JP 3036310 B2 JP3036310 B2 JP 3036310B2
Authority
JP
Japan
Prior art keywords
valve
compressor
pipe
heat exchanger
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5190319A
Other languages
Japanese (ja)
Other versions
JPH06257889A (en
Inventor
佳昭 谷村
清 佐久間
等 飯島
哲二 七種
哲治 岡田
▲ひろし▼ 湯山
文雄 松岡
誠司 井上
嘉裕 隅田
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5190319A priority Critical patent/JP3036310B2/en
Publication of JPH06257889A publication Critical patent/JPH06257889A/en
Application granted granted Critical
Publication of JP3036310B2 publication Critical patent/JP3036310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷暖房や給湯、低温
などの多くの飽和温度を同時にしかも効率よく得ること
のできる蒸気圧縮式冷凍サイクルによる多温度生成回路
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-temperature generation circuit using a vapor compression refrigeration cycle which can simultaneously and efficiently obtain many saturation temperatures such as cooling and heating, hot water supply, and low temperature.

【0002】[0002]

【従来の技術】従来、この種の蒸気圧縮式サイクルとし
て、例えば、特開平1−167561号公報に記載され
たものがある。図86は上記公報に記載された従来の蒸
気圧縮式サイクルの冷媒系の構成図である。図におい
て、1は圧縮機、11はアキュムレータ、51a〜51
cは熱交換器である。61は圧縮機1の吐出側に接続さ
れた高圧ガス管、63は圧縮機1の吸入側にアキュムレ
ータ11を介して接続された低圧ガス管、64は液管で
ある。また熱交換器51a〜51cには、高圧ガス管6
1、低圧ガス管63とは開閉弁26a,26b,26c
及び28a,28b,28cを介して分岐接続するとと
もに、液管64とは流量制御弁である電子式膨張弁31
a,31b,31cをそれぞれ介して接続している。上
記のように構成された従来の蒸気圧縮式サイクルは、次
のように動作する。ここでは熱交換器51aを室外熱交
換器、熱交換器51b,51cを室内熱交換器とし、室
内熱交換器51bが暖房、室内熱交換器51cが冷房状
態の動作について図87を用いて説明する。
2. Description of the Related Art Conventionally, as this kind of vapor compression type cycle, for example, there is one described in Japanese Patent Application Laid-Open No. 1-167561. FIG. 86 is a configuration diagram of a refrigerant system of a conventional vapor compression cycle described in the above publication. In the figure, 1 is a compressor, 11 is an accumulator, 51a-51
c is a heat exchanger. 61 is a high-pressure gas pipe connected to the discharge side of the compressor 1, 63 is a low-pressure gas pipe connected to the suction side of the compressor 1 via the accumulator 11, and 64 is a liquid pipe. The heat exchangers 51a to 51c have high-pressure gas pipes 6 respectively.
1. The low pressure gas pipe 63 is an on-off valve 26a, 26b, 26c
And the liquid pipe 64 is connected to the electronic expansion valve 31 which is a flow control valve.
a, 31b, and 31c, respectively. The conventional vapor compression cycle configured as described above operates as follows. Here, the operation when the heat exchanger 51a is an outdoor heat exchanger, the heat exchangers 51b and 51c are indoor heat exchangers, the indoor heat exchanger 51b is heating, and the indoor heat exchanger 51c is cooling will be described with reference to FIG. I do.

【0003】圧縮機1から吐出された高温高圧の冷媒ガ
スは、高圧ガス管61から開閉弁26bを通って暖房室
内熱交換器51bへ流入し、凝縮液化する。この液冷媒
は、流量制御弁31bで減圧され、液管64へ流入す
る。この冷媒は、電子式膨張弁31a及び31cを通っ
て低圧の二相状態となってそれぞれ室外熱交換器51a
と冷房室内熱交換器51cへ流入し、蒸発ガス化して、
低圧ガス管63を通ってアキュムレータ11を経て圧縮
機1に戻る。また、複数の圧縮機を使用した例としては
特開平4−20757号公報の例がある。
The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows from the high-pressure gas pipe 61 into the heating room heat exchanger 51b through the on-off valve 26b, and is condensed and liquefied. This liquid refrigerant is depressurized by the flow control valve 31 b and flows into the liquid pipe 64. This refrigerant passes through the electronic expansion valves 31a and 31c to be in a low-pressure two-phase state, and the outdoor heat exchanger 51a
And flows into the cooling indoor heat exchanger 51c to be vaporized and gasified,
It returns to the compressor 1 via the accumulator 11 through the low-pressure gas pipe 63. Further, as an example using a plurality of compressors, there is an example disclosed in Japanese Patent Application Laid-Open No. Hei 4-20757.

【0004】[0004]

【発明が解決しようとする課題】従来の冷暖房システム
は、以上のように構成されているので、各熱交換器では
凝縮温度と蒸発温度はそれぞれ1つずつしか得られず、
また凝縮温度と蒸発温度の差が大きいときには、圧縮比
が増大するため効率が低下したり、吐出温度が上昇する
などの問題があった。特に冷暖房だけでなく、給湯や氷
蓄熱などを1つのサイクルで行う場合には、高い給湯温
度が得られなかったり、効率が低下する。また、圧縮機
が複数台あり、弁により切り替えられたとしても固定さ
れた2状態のどちらを選択するかの切替えにすぎず、設
置条件に応じて、あるいは変更希望に応じて自由には選
択できないなどの問題があった。
Since the conventional cooling and heating system is configured as described above, each heat exchanger can obtain only one condensing temperature and one evaporating temperature.
Further, when the difference between the condensing temperature and the evaporating temperature is large, there is a problem that the compression ratio increases, so that the efficiency decreases and the discharge temperature increases. In particular, when performing not only cooling and heating but also hot water supply and ice heat storage in one cycle, a high hot water supply temperature cannot be obtained or efficiency is reduced. Further, even if there are a plurality of compressors, even if they are switched by a valve, they are merely switching between the two fixed states, and cannot be freely selected according to the installation conditions or a change request. There was such a problem.

【0005】この発明は上記のような問題点を解決する
ためになされたもので、1つの蒸気圧縮式冷凍サイクル
で、各熱交換器に選択自在に要求される機能に応じて、
各熱交換器に多くの飽和温度が設定可能で多種類のサイ
クルを構成でき、しかも効率が高く運転範囲の広いサイ
クルを提供することを目的とする。
[0005] The present invention has been made to solve the above problems, and in one vapor compression refrigeration cycle, according to the functions required for each heat exchanger in a selectable manner.
An object of the present invention is to provide a cycle in which a large number of saturation temperatures can be set for each heat exchanger and various types of cycles can be configured, and which has high efficiency and a wide operating range.

【0006】[0006]

【課題を解決するための手段】この発明の蒸気圧縮式冷
凍サイクルによる多温度生成回路は、複数の開閉弁ある
いは逆止弁を介して直列又は並列に切り換え可能に設け
られた複数台の圧縮機と、圧縮機の各吐出側もしくは各
吸入側のいずれか一方に開閉弁もしくは逆止弁を介し
て、または直接にそれぞれ接続された複数のガス管と、
圧縮機の各吐出側もしくは各吸入側のいずれか他方に開
閉弁もしくは逆止弁を介して、または直接に接続された
少なくとも1本の他のガス管と、複数のガス管及び他の
ガス管に開閉弁を介してそれぞれ一端が接続されるとと
もに、他端が減圧手段を介して冷媒を流す共通の冷媒管
にそれぞれ接続された複数台の熱交換器と、を備えたも
のである。
A multi-temperature generating circuit according to the present invention using a vapor compression refrigeration cycle is provided with a plurality of compressors which can be switched in series or in parallel via a plurality of on-off valves or check valves. And a plurality of gas pipes respectively connected to either one of each discharge side or each suction side of the compressor via an on-off valve or a check valve, or directly respectively,
At least one other gas pipe, a plurality of gas pipes, and other gas pipes connected to either the discharge side or the suction side of the compressor via an on-off valve or a check valve or directly to the other side. And a plurality of heat exchangers, one end of which is connected to the common refrigerant pipe via an on-off valve, and the other end of which is connected to a common refrigerant pipe through which refrigerant flows through a pressure reducing means.

【0007】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1、第2圧縮機、及び複数台の熱
交換器を備え、一端部が上記第1圧縮機の吐出側もしく
は吸入側のいずれか一方に、他端部が開閉器を介して上
記複数台の熱交換器に接続する第1高圧ガス管、一端部
が第1開閉器を介して上記第2圧縮機の吐出側もしくは
吸入側のいずれか一方に、他端部が開閉器を介して上記
複数台の熱交換器に接続するとともに、途中で分岐して
第2開閉器を介して上記第1圧縮機の吸入側もしくは吐
出側のいずれか他方に接続する第2高圧ガス管、一端部
が上記第2圧縮機の吸入側もしくは吐出側のいずれか他
方に接続するとともに第3開閉器を介して上記第1圧縮
機の吸入側もしくは吐出側のいずれか他方に接続し、他
端部が開閉器を介して上記複数台の熱交換器に接続する
低圧ガス管、複数台の熱交換器に冷媒流量制御器を介し
て接続する液管、及び第4開閉器を介して上記第2圧縮
機の吐出側と上記第1圧縮機の吸入側とを連結し上記第
2圧縮機の吐出ガスを上記第1圧縮機に送給する圧縮機
連通管を設けて構成したものである。
A multi-temperature generating circuit using a vapor compression refrigeration cycle according to the present invention includes first and second compressors and a plurality of heat exchangers, one end of which is on the discharge side or the suction side of the first compressor. One of the first high-pressure gas pipes, the other end of which is connected to the plurality of heat exchangers via a switch, the other end of which is connected to the discharge side of the second compressor via the first switch or The other end of one of the suction sides is connected to the plurality of heat exchangers via a switch, and is branched in the middle of the heat exchanger via a second switch. A second high-pressure gas pipe connected to one of the other of the discharge side, one end of which is connected to the other one of the suction side and the discharge side of the second compressor; Connected to either the suction side or the discharge side, and the other end is connected via a switch. A low-pressure gas pipe connected to the plurality of heat exchangers, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a discharge side of the second compressor via a fourth switch. And a suction line of the first compressor, and a compressor communication pipe for supplying the discharge gas of the second compressor to the first compressor.

【0008】また、第5開閉器を介して第2圧縮機の吐
出側と第1高圧ガス管を連結し第2圧縮機の吐出ガスを
第1高圧ガス管に送給する高圧ガス連通管が設けられ
る。又、第2圧縮機の吐出配管は第2高圧ガス管と高圧
ガス連通管及び圧縮機連通管の共通配管に分岐し、さら
に高圧ガス連通管と圧縮機連通管配管に分岐して、高圧
ガス連通管は第1高圧ガス管に接続し、圧縮機連通管は
第3開閉器を構成する逆止弁と開閉弁間の低圧ガス管と
接続して第1圧縮機に連通している。
Also, a high-pressure gas communication pipe for connecting the discharge side of the second compressor to the first high-pressure gas pipe via a fifth switch and supplying the discharge gas of the second compressor to the first high-pressure gas pipe is provided. Provided. In addition, the discharge pipe of the second compressor branches to a common pipe of a second high-pressure gas pipe, a high-pressure gas communication pipe, and a compressor communication pipe, and further branches to a high-pressure gas communication pipe and a compressor communication pipe. The communication pipe is connected to the first high-pressure gas pipe, and the compressor communication pipe is connected to the low-pressure gas pipe between the check valve and the on-off valve constituting the third switch, and is connected to the first compressor.

【0009】また、第1圧縮機及び第2圧縮機の吸入側
の低圧ガス管に第1アキュムレータを、第1圧縮機の吸
入側の第2高圧ガス管に第2アキュムレータを設ける。
Further, a first accumulator is provided in the low-pressure gas pipe on the suction side of the first compressor and the second compressor, and a second accumulator is provided in the second high-pressure gas pipe on the suction side of the first compressor.

【0010】さらに、液管と第1アキュムレータとを接
続し、管路に第6開閉器と流量制御器を有するバイパス
配管、及び上記流量制御器と第1アキュムレータ間のバ
イパス配管と第1圧縮機の吸入配管との間で熱交換を行
う熱交換部を設ける。
Further, a bypass pipe connecting the liquid pipe to the first accumulator and having a sixth switch and a flow controller in the pipe, a bypass pipe between the flow controller and the first accumulator, and a first compressor. And a heat exchange section for exchanging heat with the suction pipe of the second embodiment.

【0011】そして、第1圧縮機または第2圧縮機は能
力可変型圧縮機とする。
The first compressor or the second compressor is a variable capacity compressor.

【0012】この発明による多温度生成回路は、n個の
飽和温度を同時に得ることが出来る蒸気圧縮式冷凍サイ
クルにおいてn−1個の圧縮機を備え、それぞれの圧縮
機を複数の開閉弁あるいは逆止弁を介して直列または並
列に切り換え可能に接続するとともに、一端部が圧縮機
のそれぞれの吐出あるいは吸入側に他端部が開閉弁を介
して複数台の熱交換器に接続される任意の飽和温度を持
つn個の配管群と複数台の熱交換器に冷媒流量制御弁を
介して接続する1個の液配管とを設け、nが少なくとも
4であって、温度の異なる複数の蒸発温度及び複数の凝
縮温度をそれぞれ独立した熱交換器にて同時に生成す
る。
A multi-temperature generating circuit according to the present invention includes n-1 compressors in a vapor compression refrigeration cycle capable of simultaneously obtaining n saturation temperatures, and each compressor is provided with a plurality of on-off valves or reverse valves. Arbitrary connection that can be switched in series or parallel via a stop valve, one end of which is connected to the respective discharge or suction side of the compressor and the other end of which is connected to a plurality of heat exchangers via an on-off valve A plurality of heat exchangers, and one liquid pipe connected to a plurality of heat exchangers via a refrigerant flow control valve, wherein n is at least 4 and a plurality of evaporation temperatures having different temperatures are provided. And a plurality of condensing temperatures are simultaneously generated in independent heat exchangers.

【0013】この発明による蒸気圧縮式冷凍サイクルに
よる多温度生成回路は、第1圧縮機、第2圧縮機、及び複
数台の熱交換器を備え、一端部が第1の逆止弁を介して
上記第1圧縮機の吐出側に、他端部が開閉器を介して上
記複数台の熱交換器に接続する第1ガス管、一端部が上
記第2圧縮機の吐出側に、他端部が開閉器を介して上記
複数台の熱交換器に接続する第2ガス管、一端部がアキ
ュムレータの吸入側に、他端部が開閉器を介して上記複
数台の熱交換器に接続する第3ガス管、上記複数台の熱
交換器に冷媒流量制御器を介して接続する液管を設ける
とともに、上記アキュムレータの吐出側と第1、第2の圧
縮機の吸入側とをそれぞれ、第2、第3の逆止弁を介して
個々に接続し、上記第1ガス管の第1の逆止弁出口側の配
管と第2ガス管とを第1の開閉弁を介して連通させたもの
である。
A multi-temperature generating circuit using a vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, and a plurality of heat exchangers, one end of which is connected via a first check valve. On the discharge side of the first compressor, a first gas pipe whose other end is connected to the plurality of heat exchangers via a switch, one end is on the discharge side of the second compressor , and the other end is Is a second gas pipe connected to the plurality of heat exchangers via a switch, one end is connected to the suction side of the accumulator, and the other end is connected to the plurality of heat exchangers via the switch. 3 gas pipe, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a discharge side of the accumulator and a suction side of the first and second compressors are respectively connected to a second pipe. Are connected individually via a third check valve, and the pipe on the first check valve outlet side of the first gas pipe and the second gas pipe are opened in the first gas pipe. They are communicated via a valve closing.

【0014】この発明による蒸気圧縮式冷凍サイクルに
よる多温度生成回路は、第1圧縮機、第2圧縮機、及び給
湯熱交換器、風呂の追焚き熱交換器、室内熱交換器、室
外熱交換器の複数台の熱交換器を備え、一端部が第1の
逆止弁を介して上記第1圧縮機の吐出側に、他端部が開
閉弁を介して給湯熱交換器、追焚き熱交換器、室外熱交
換器にそれぞれ接続する第1ガス管、一端部が上記第2圧
縮機の吐出側に、他端部が開閉器を介して室内熱交換
器、室外熱交換器にそれぞれ接続する第2ガス管、一端
部がアキュムレータの吸入側に、他端部が開閉弁を介し
て上記複数台の熱交換器のそれぞれに接続する第3ガス
管、上記複数台の熱交換器のそれぞれに冷媒流量制御器
を介して接続する液管を設けるとともに、上記アキュム
レータの吐出側と第1、第2の圧縮機の吸入側とをそれぞ
れ、第2、第3の逆止弁を介して個々に接続し、上記第1
ガス管の第1の逆止弁出口側の配管と第2ガス管とを第1
の開閉弁を介して連通させたものである。
[0014] The multi-temperature generating circuit by the vapor compression refrigeration cycle according to the present invention comprises a first compressor, a second compressor, a hot water supply heat exchanger, a post-heating heat exchanger for a bath, an indoor heat exchanger, and an outdoor heat exchange. A plurality of heat exchangers, one end of which is connected to the discharge side of the first compressor via a first check valve, and the other end of which is connected to a hot water supply heat exchanger via an on-off valve. A first gas pipe connected to the exchanger and the outdoor heat exchanger, respectively, one end connected to the discharge side of the second compressor , and the other end connected to the indoor heat exchanger and the outdoor heat exchanger via a switch, respectively. A second gas pipe, one end of which is connected to the suction side of the accumulator, and the other end of which is connected to each of the plurality of heat exchangers via an on-off valve, and each of the plurality of heat exchangers In addition to providing a liquid pipe connected through a refrigerant flow controller, the discharge side of the accumulator and the first, 2 of the compressor and a suction side, respectively, and connect the second, individually via a third check valve, the first
The pipe on the outlet side of the first check valve of the gas pipe and the second gas pipe
Are connected through the on-off valve.

【0015】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液管と、前記第1圧縮機の吐出
側と前記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から第7開閉弁を
介して前記液管に至る第1のバイパス路と、前記液管か
ら第8開閉弁を介して前記第1圧縮機の吸入側へ至る第
2バイパス路と、を備えたものである。
[0015] A multi-temperature generating circuit using a vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via a first on-off valve, and the other end via an on-off valve Connected to the plurality of heat exchangers, branched from between the first on-off valve and the on-off valve, through the fifth on-off valve and the second check valve, and
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve, which are connected in this order to the suction of the first compressor; Side, the other end is connected to the plurality of heat exchangers via an on-off valve, a low-pressure gas pipe, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve; a discharge side of the second compressor; the first check valve; A compressor communication pipe connecting between the on-off valves via a fourth on-off valve, a first bypass passage from the medium-pressure gas pipe to the liquid pipe via a seventh on-off valve, and a A second bypass passage extending to the suction side of the first compressor through an eight on-off valve.

【0016】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液管と、前記第1圧縮機の吐出
側と前記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から冷媒流量制御
器を介して前記液管に至る第1のバイパス路と、前記液
管から第8開閉弁を介して前記第1圧縮機の吸入側へ至
る第2バイパス路と、を備えたものである。
The multi-temperature generating circuit by the vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via a first on-off valve, and the other end via an on-off valve Connected to the plurality of heat exchangers, branched from between the first on-off valve and the on-off valve, through the fifth on-off valve and the second check valve, and
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve, which are connected in this order to the suction of the first compressor; Side, the other end is connected to the plurality of heat exchangers via an on-off valve, a low-pressure gas pipe, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve; a discharge side of the second compressor; the first check valve; A compressor communication pipe connecting between the on-off valves via a fourth on-off valve, a first bypass passage from the medium-pressure gas pipe to the liquid pipe via a refrigerant flow controller, and a A second bypass passage extending to the suction side of the first compressor through an eight on-off valve.

【0017】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液レシーバーと、前記第1圧縮
機の吐出側と前記第2圧縮機の吐出側を第3開閉弁を介
して連結する高圧ガス連通管と、前記第2圧縮機の吐出
側と前記第1逆止弁と第2開閉弁の間を第4開閉弁を介
して連結する圧縮機連通管と、前記中圧ガス管から第7
開閉弁を介して前記液レシーバーに至る第1のバイパス
路と、前記液レシーバーから第8開閉弁を介して前記第
1圧縮機の吸入側へ至る第2バイパス路と、を備えたも
のである。
A multi-temperature generating circuit using a vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via a first on-off valve, and the other end via an on-off valve Connected to the plurality of heat exchangers, branched from between the first on-off valve and the on-off valve, through the fifth on-off valve and the second check valve, and
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve, which are connected in this order to the suction of the first compressor; And a low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, a liquid receiver connected to the plurality of heat exchangers via a refrigerant flow controller, and A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve; a discharge side of the second compressor; the first check valve; A compressor communication pipe connecting between the on-off valves via a fourth on-off valve;
A first bypass path from the liquid receiver to the liquid receiver via an on-off valve; and a second bypass path from the liquid receiver to the suction side of the first compressor via an eighth on-off valve. .

【0018】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が第1の開閉弁を有する第1の吐
出管を介して前記第1圧縮機の吐出側に、他端が開閉弁
を介して前記複数台の熱交換器に接続する高圧ガス管
と、一端が第2の開閉弁を有する第2の吐出管を介して
前記第2圧縮機の吐出側に、他端が開閉弁を介して前記
複数台の熱交換器に接続する中圧ガス管と、一端が第4
の開閉弁を有する第2の吸入管を介して前記第2圧縮機
の吸入側に、他端が開閉弁を介して前記複数台の熱交換
器に接続する低圧ガス管と、前記複数台の熱交換器に冷
媒流量制御器を介して接続する液管と、前記中圧ガス管
と前記第1圧縮機の吸入側とを第3の開閉弁を介して接
続する第1の吸入管と、前記第1の吐出管と前記第2の
吐出管を第7の開閉弁及び第8の開閉弁を介して接続す
る吐出側接続管と、前記第1の吸入管と前記第2の吸入
管を第9の開閉弁及び第10の開閉弁を介して接続する
吸入側接続管と、前記中圧ガス管と前記第2の吸入管と
を第5の開閉弁を介して接続する第1のバイパス管と、
前記低圧管と前記第1の吸入管を第6開閉弁を介して接
続する第2のバイパス管と、前記第7の開閉弁、第8の
開閉弁の間と前記第9の開閉弁、第10の開閉弁の間を
第11の開閉弁を介して接続する第3のバイパス管と、
前記第2の吐出管と前記高圧ガス管とを第13の開閉弁
を介して接続する第4のバイパス管と、前記第1の吐出
管と前記中圧ガス管とを第12の開閉弁を介して接続す
る第5のバイパス管と、を備えたものである。
A multi-temperature generating circuit using a vapor compression refrigeration cycle according to the present invention comprises a first compressor, a second compressor, a plurality of heat exchangers, and one end having a first on-off valve at one end. A second high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve on the discharge side of the first compressor via a discharge pipe, and a second on-off valve at one end. A medium-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve via a discharge pipe to the discharge side of the second compressor;
A low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve via a second suction pipe having an on-off valve; A liquid pipe connected to the heat exchanger via a refrigerant flow controller, a first suction pipe connecting the medium-pressure gas pipe and a suction side of the first compressor via a third on-off valve, A discharge-side connecting pipe that connects the first discharge pipe and the second discharge pipe via a seventh on-off valve and an eighth on-off valve, the first suction pipe and the second suction pipe, A suction side connection pipe connected via a ninth on / off valve and a tenth on / off valve, and a first bypass connecting the intermediate pressure gas pipe and the second suction pipe via a fifth on / off valve Tubes and
A second bypass pipe connecting the low-pressure pipe and the first suction pipe via a sixth on-off valve, a section between the seventh on-off valve and the eighth on-off valve, the ninth on-off valve, A third bypass pipe connecting the ten on-off valves via an eleventh on-off valve,
A fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve; and a twelfth on-off valve connecting the first discharge pipe and the medium-pressure gas pipe to each other. And a fifth bypass pipe connected through the first bypass pipe.

【0019】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、四方弁と、一端が第1の開閉弁を有す
る第1の吐出管を介して前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第2の開閉弁を有する第2の吐出管
を介して前記第2圧縮機の吐出側に、他端が開閉弁を介
して前記複数台の熱交換器に接続するとともに、途中か
ら分岐して前記四方弁に接続する中圧ガス管と、一端が
前記四方弁に、他方が開閉弁を介して前記複数台の熱交
換器に接続する低圧ガス管と、前記複数台の熱交換器に
冷媒流量制御器を介して接続する液管と、前記四方弁と
前記第1圧縮機の吸入側とを第3の開閉弁を介して接続
する第1の吸入管と、前記四方弁と前記第2圧縮機の吸
入側とを第4の開閉弁を介して接続する第2の吸入管
と、前記第1の吐出管と前記第2の吐出管を第7の開閉
弁及び第8の開閉弁を介して接続する吐出側接続管と、
前記第1の吸入管と前記第2の吸入管を第9の開閉弁及
び第10の開閉弁を介して接続する吸入側接続管と、前
記第7の開閉弁、第8の開閉弁の間と前記第9の開閉
弁、第10の開閉弁の間を第11の開閉弁を介して接続
する第3のバイパス管と、前記第2の吐出管と前記高圧
ガス管とを第13の開閉弁を介して接続する第4のバイ
パス管と、前記第1の吐出管と前記中圧ガス管とを第1
2の開閉弁を介して接続する第5のバイパス管と、を備
えたものである。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, and a first opening / closing valve at one end. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve and a second on-off valve on the discharge side of the first compressor via a first discharge pipe having The other end is connected to the plurality of heat exchangers via an open / close valve on the discharge side of the second compressor via a second discharge pipe having the same, and is branched from the middle and connected to the four-way valve. A medium-pressure gas pipe, one end of which is connected to the four-way valve, the other end of which is connected to the plurality of heat exchangers via an on-off valve, and a plurality of heat exchangers via a refrigerant flow controller; A liquid pipe to be connected, and a first suction pipe connecting the four-way valve and the suction side of the first compressor via a third on-off valve A second opening / closing pipe connecting the four-way valve and the suction side of the second compressor via a fourth opening / closing valve, and a seventh opening / closing of the first discharge pipe and the second discharge pipe. A discharge-side connecting pipe connected via a valve and an eighth on-off valve;
Between a suction-side connecting pipe connecting the first suction pipe and the second suction pipe via a ninth on-off valve and a tenth on-off valve, and the seventh on-off valve and the eighth on-off valve; A third bypass pipe connecting the ninth on-off valve and the tenth on-off valve via an eleventh on-off valve, and a thirteenth on-off connection between the second discharge pipe and the high-pressure gas pipe. A fourth bypass pipe connected via a valve, the first discharge pipe and the medium-pressure gas pipe being connected to a first bypass pipe;
And a fifth bypass pipe connected via the second on-off valve.

【0020】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、第1の四方弁と、第2の四方弁と、一
端が前記第1の四方弁が接続された第1の吐出管を介し
て前記第1圧縮機の吐出側に、他端が開閉弁を介して前
記複数台の熱交換器に接続する高圧ガス管と、他端が開
閉弁を介して前記複数台の熱交換器に接続する中圧ガス
管と、一端が前記第2圧縮機の吸入側に第2の開閉弁を
介して接続する第2の吸入管に、他端が開閉弁を介して
前記複数台の熱交換器に接続する低圧ガス管と、前記複
数台の熱交換器に冷媒流量制御器を介して接続する液管
と、前記低圧ガス管と前記第1圧縮機とを前記第2の四
方弁を介して接続する第1の吸入管と、前記第2の圧縮
機の吐出側と前記第1の開閉弁の間と前記第1の四方弁
とを接続する第1の接続管と、前記第2の圧縮機の吸入
側と前記第2の開閉弁との間に前記第2の四方弁とを接
続する第2の接続管と、前記第1の四方弁と第2の四方
弁を第3の開閉弁を介して接続する第3の接続管と、前
記第3の開閉弁の両側から分岐し、第4の開閉弁、第5
の開閉弁を介してそれぞれ前記中圧ガス管の一端に接続
する第4の接続管及び第5の接続管と、を備えたもので
ある。
The multi-temperature generating circuit according to the present invention comprises a first compressor, a second compressor, a plurality of heat exchangers, a first four-way valve, and a second four-way valve. And one end is connected to the discharge side of the first compressor via a first discharge pipe to which the first four-way valve is connected, and the other end is connected to the plurality of heat exchangers via an on-off valve. A high-pressure gas pipe, a medium-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, and one end connected to a suction side of the second compressor via a second on-off valve. A second suction pipe, a low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, and a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller. A first suction pipe connecting the low-pressure gas pipe and the first compressor via the second four-way valve; a discharge side of the second compressor; A first connection pipe connecting between the first on-off valve and the first four-way valve; and the second four-way valve between a suction side of the second compressor and the second on-off valve. , A third connection pipe connecting the first four-way valve and the second four-way valve via a third on-off valve, and from both sides of the third on-off valve. Branch, fourth on-off valve, fifth
And a fourth connection pipe and a fifth connection pipe respectively connected to one end of the intermediate-pressure gas pipe via the on-off valve.

【0021】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、給湯
用熱交換器及び複数台の熱交換器と、第1の四方弁と、
第2の四方弁と、第3の四方弁と、一端が前記第1圧縮
機の吐出側に、他端が前記給湯用熱交換器及び前記第1
の四方弁、第3の四方弁を介して前記複数台の熱交換器
に接続する高圧ガス管と、一端が第1開閉弁を介して前
記第2圧縮機の吐出側に、他端が第2の四方弁、第3の
四方弁を介して前記複数台の熱交換器に接続するととも
に、途中で分岐して第5開閉弁を介して第1圧縮機の吸
入側に接続する中圧ガス管と、一端が前記第2圧縮機の
吸入側に接続するとともに第1逆止弁と第2開閉弁をこ
の順に介して前記第1圧縮機の吸入側に接続し、他端が
第1の四方弁、第2の四方弁を介して前記複数台の熱交
換器に接続する低圧ガス管と、前記給湯用熱交換器及び
前記複数台の熱交換器に冷媒流量制御器を介して接続す
る液管と、前記第1圧縮機の吐出側と前記第2圧縮機の
吐出側を第3開閉弁を介して連結する高圧ガス連通管
と、前記第2圧縮機の吐出側と前記第1逆止弁と第2開
閉弁の間を第4開閉弁を介して連結する圧縮機連通管
と、を備えたものである。
The multi-temperature generating circuit according to the present invention comprises a first compressor, a second compressor, a heat exchanger for hot water supply and a plurality of heat exchangers, a first four-way valve, ,
A second four-way valve, a third four-way valve, one end on the discharge side of the first compressor, and the other end on the hot water supply heat exchanger and the first
A high-pressure gas pipe connected to the plurality of heat exchangers via a four-way valve, a third four-way valve, one end on the discharge side of the second compressor via a first on-off valve, and Medium-pressure gas connected to the plurality of heat exchangers via a second four-way valve and a third four-way valve, and branching midway and connected to the suction side of the first compressor via a fifth on-off valve A pipe and one end are connected to the suction side of the second compressor, and a first check valve and a second on-off valve are connected to the suction side of the first compressor via a first check valve and a second on-off valve in this order. A low-pressure gas pipe connected to the plurality of heat exchangers via a four-way valve and a second four-way valve; and a low-pressure gas pipe connected to the hot water supply heat exchanger and the plurality of heat exchangers via a refrigerant flow controller. A liquid pipe, a high-pressure gas communication pipe connecting a discharge side of the first compressor and a discharge side of the second compressor via a third on-off valve, and the second compressor A compressor communicating pipe for connecting the discharge side to the first check valve and the second on-off valve via the fourth on-off valve, in which with a.

【0022】[0022]

【作用】この発明の蒸気圧縮式冷凍サイクルにおける多
温度生成回路は、直並列切り替え可能な圧縮機より多い
ガス管を切り換えて多くの飽和温度を同時に自由に設定
可能とするものである。
The multi-temperature generating circuit in the vapor compression refrigeration cycle according to the present invention is capable of freely setting many saturation temperatures at the same time by switching more gas pipes than the compressor capable of serial / parallel switching.

【0023】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、上記のように構成しているので、所
望の運転モード(冷暖房や給湯、氷蓄熱などの各熱交換
器に要求される機能)に応じて、各熱交換器毎の多数の
飽和温度設定が可能となる。また、凝縮温度と蒸発温度
の差が小さい時や大きい時で、第1、第2圧縮機の運転
を並列もしくは単独運転、または直列運転(二段圧縮運
転)に使い分けることができ、高効率なサイクルが実現
できる。
Since the multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention is configured as described above, the desired operation mode (function required for each heat exchanger such as cooling / heating, hot water supply, ice heat storage, etc.) ), A number of saturation temperatures can be set for each heat exchanger. Further, when the difference between the condensing temperature and the evaporating temperature is small or large, the operation of the first and second compressors can be selectively used in parallel or independent operation, or in series operation (two-stage compression operation), thereby achieving high efficiency. Cycle can be realized.

【0024】また、高圧ガス連通管を設けているので、
第1圧縮機の吐出ガスに第2圧縮機の吐出ガスを足して
凝縮(または蒸発)能力を向上できる。
Further, since the high-pressure gas communication pipe is provided,
By adding the discharge gas of the second compressor to the discharge gas of the first compressor, the condensation (or evaporation) ability can be improved.

【0025】また、圧縮機の吸入側にアキュムレータを
設けているので、起動時や運転モード切り換え時の圧縮
機への液戻りが防止でき、圧縮機が保護できるととも
に、冷媒量の調整が行える。
Further, since the accumulator is provided on the suction side of the compressor, it is possible to prevent the liquid from returning to the compressor at the time of starting or switching the operation mode, thereby protecting the compressor and adjusting the amount of refrigerant.

【0026】さらに、凝縮温度と蒸発温度の差が比較的
大きく、第1、第2の圧縮機が直列運転となる場合に
は、熱交換部でバイパス配管を流れる低温の二相冷媒に
より第1(高段側)圧縮機の吸入冷媒ガスを冷却でき、
その吐出温度上昇が防止でき、運転範囲を拡大すること
ができる。
Further, when the difference between the condensing temperature and the evaporating temperature is relatively large and the first and second compressors are operated in series, the first two-phase refrigerant flows through the bypass pipe in the heat exchange section. (High-stage side) Can cool the refrigerant gas sucked into the compressor,
The discharge temperature rise can be prevented, and the operating range can be expanded.

【0027】そして、第1または第2圧縮機を能力可変
型圧縮機とすることにより、設定飽和温度での冷媒流量
を可変にでき、各熱交換器で必要な能力を発揮すること
ができる。
By using the variable capacity compressor as the first or second compressor, the flow rate of the refrigerant at the set saturation temperature can be varied, and each heat exchanger can exhibit the required capacity.

【0028】この発明による多温度生成回路は、n個の
飽和温度を同時に得ることが出来る蒸気圧縮式冷凍サイ
クルにおいてn−1個の圧縮機を備え、それぞれの圧縮
機を複数の開閉弁あるいは逆止弁を介して直列または並
列に切り換え可能に接続するとともに、一端部が圧縮機
のそれぞれの吐出あるいは吸入側に他端部が開閉弁を介
して複数台の熱交換器に接続される任意の飽和温度を持
つn個の配管群と複数台の熱交換器に冷媒流量制御弁を
介して接続する1個の液配管とを設け、nが少なくとも
4であって、温度の異なる複数の蒸発温度及び複数の凝
縮温度をそれぞれ独立した熱交換器にて同時に生成する
ことにより同時に運転できる多くの飽和温度の設定が可
能となり、しかも高効率で運転範囲の広いサイクルが実
現できる。
A multi-temperature generating circuit according to the present invention includes n-1 compressors in a vapor compression refrigeration cycle capable of simultaneously obtaining n saturation temperatures, and each compressor is provided with a plurality of on-off valves or reverse valves. Arbitrary connection that can be switched in series or parallel via a stop valve, one end of which is connected to the respective discharge or suction side of the compressor and the other end of which is connected to a plurality of heat exchangers via an on-off valve A plurality of heat exchangers, and one liquid pipe connected to a plurality of heat exchangers via a refrigerant flow control valve, wherein n is at least 4 and a plurality of evaporation temperatures having different temperatures are provided. By simultaneously generating a plurality of condensing temperatures in independent heat exchangers, it is possible to set many saturation temperatures that can be operated simultaneously, and to realize a cycle with high efficiency and a wide operating range.

【0029】また、この発明における多温度生成回路
は、所望の運転モード(冷暖房や給湯、氷蓄熱などの各
熱交換器毎に要求される機能)に応じて、各熱交換器毎
に多数の飽和温度の設定が可能となり特に第1の開閉弁
の切り換えにより、各運転モードを効率よく実現でき
る。
Further, the multi-temperature generating circuit according to the present invention has a large number of heat exchangers for each heat exchanger according to a desired operation mode (function required for each heat exchanger such as cooling and heating, hot water supply, ice heat storage, etc.). The saturation temperature can be set, and each operation mode can be efficiently realized, particularly by switching the first on-off valve.

【0030】また、この発明における多温度生成回路
は、第1の開閉弁の切り換えにより第1圧縮機と第2圧
縮機の使い分けが可能となり、また第1〜第3ガス管、
液管と給湯用追焚き用、室内、室外の各熱交換器とを接
続している開閉弁の切り換えにより上記各熱交換器の凝
縮、蒸発の設定が自由に実現できるため、暖房と給湯、
暖房と追焚き等の2凝縮の同時運転が可能となるととも
に、1凝縮1蒸発の運転においても給湯等の熱源利用が
可能となり高効率のサイクルの実現が可能となる。
In the multi-temperature generating circuit according to the present invention, the first compressor and the second compressor can be selectively used by switching the first opening / closing valve.
Since the setting of the condensation and evaporation of each heat exchanger can be freely realized by switching the on-off valve that connects the liquid pipe and the hot water supply for additional heating, indoor and outdoor heat exchangers, heating and hot water supply,
Simultaneous operation of two-condensation such as heating and reheating can be performed, and a heat source such as hot water supply can be used even in operation of one-condensation and one-evaporation, thereby realizing a high-efficiency cycle.

【0031】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的大
きく、圧縮比が比較的大きい高温給湯・暖房同時運転や
氷蓄熱・給湯同時運転の場合、低段側圧縮機の吐出ガス
を開閉弁を介して液管に通して冷却した後、高段側圧縮
機に吸入させる2段圧縮運転を行うことで、吐出温度上
昇を防止し、かつ2つの凝縮温度と1つの蒸発温度を効
率よく得られる。凝縮温度と蒸発温度の差が比較的大き
く、圧縮比が比較的大きい氷蓄冷・冷暖房・給湯同時運
転のような場合には、低段側圧縮機の吐出ガスを液管か
ら開閉弁を介してバイパスさせた液を合流させて冷却し
た後、高段側圧縮機に吸入させる2段圧縮運転を行うこ
とで、吐出温度上昇を防止し、かつ1つの凝縮温度と2
つの蒸発温度が効率よく得られる。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention is capable of simultaneous operation of high-temperature hot water supply / heating and simultaneous operation of ice heat storage / hot water supply in which the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large. In this case, after the discharge gas of the low-stage compressor is cooled by passing through a liquid pipe through an on-off valve, a two-stage compression operation in which the high-stage compressor is sucked prevents the discharge temperature from rising, and Two condensing temperatures and one evaporating temperature can be obtained efficiently. In the case of simultaneous operation of ice storage / cooling / heating / hot water supply where the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is supplied from the liquid pipe through the on-off valve. After the bypassed liquids are combined and cooled, a two-stage compression operation in which the liquid is sucked into the high-stage compressor is performed to prevent the discharge temperature from rising, and to reduce the condensation temperature by one.
Two evaporation temperatures can be obtained efficiently.

【0032】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的大
きく、圧縮比が比較的大きい高温給湯・暖房同時運転の
場合、低段側圧縮機の吐出ガスを膨張弁を介して液管に
通して冷却した後、高段側圧縮機に吸入させる2段圧縮
運転を行うことで、吐出温度上昇を防止すると同時に、
高段側へのバイパス量を最適制御することで、より高い
給湯圧力を得ることが可能で、また暖房能力も同時に確
保し、かつ2つの凝縮温度と1つの蒸発温度を効率よく
得られる。凝縮温度と蒸発温度の差が比較的大きく、圧
縮比が比較的大きい氷蓄冷・冷房・給湯同時運転のよう
な場合には、低段側圧縮機の吐出ガスを液管から膨張弁
を介してバイパスさせた液と合流させて冷却した後、高
段側圧縮機に吸入させる2段圧縮運転を行うことで、吐
出温度上昇を防止すると同時に液バイパス量を最適制御
することで、高段側圧縮機の液圧縮を防止しながら、よ
り高い凝縮温度を得ることが可能で、かつ1つの凝縮温
度と2つの蒸発温度が効率よく得られる。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention provides a low-stage compressor for simultaneous high-temperature hot water supply / heating operation in which the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large. After cooling the discharged gas through a liquid pipe through an expansion valve, and performing a two-stage compression operation in which the discharged gas is sucked into a high-stage compressor, the discharge temperature is prevented from rising,
By optimally controlling the bypass amount to the high-stage side, a higher hot water supply pressure can be obtained, the heating capacity can be secured at the same time, and two condensing temperatures and one evaporating temperature can be obtained efficiently. In cases where the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large, such as simultaneous operation of ice cold storage, cooling, and hot water supply, the discharge gas of the low-stage compressor is supplied from the liquid pipe through the expansion valve. After cooling by combining with the bypassed liquid, the two-stage compression operation in which the liquid is sucked into the high-stage compressor prevents the discharge temperature from rising and at the same time optimizes the liquid bypass amount to control the high-stage compression. A higher condensation temperature can be obtained while preventing liquid compression of the machine, and one condensation temperature and two evaporation temperatures can be obtained efficiently.

【0033】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的大
きく、圧縮比が比較的大きい高温給湯・暖房同時運転や
氷蓄熱・給湯同時運転の場合、低段側圧縮機の吐出ガス
を開閉弁を介して液レシーバーに通して、冷却と気液分
離を同時に行った後、高段側圧縮機に吸入させる2段圧
縮運転を行うことで、吐出温度上昇及び高段側圧縮機の
液圧縮を防止しながら、より高い凝縮温度を得ることが
可能で、かつ2つの凝縮温度と1つの蒸発温度を効率よ
く得られる。凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい氷蓄冷・冷房・給湯同時運転のよ
うな場合には、低段側圧縮機の吐出ガスを液レシーバー
から開閉弁を介してバイパスさせた液と合流させて冷却
した後、高段側圧縮機に吸入させる2段圧縮運転を行う
ことで、吐出温度上昇を防止し、より高い凝縮温度を得
ることが可能で、かつ1つの凝縮温度と2つの蒸発温度
が効率よく得られる。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention is capable of simultaneous operation of high-temperature hot water supply / heating and simultaneous operation of ice heat storage / hot water supply in which the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large. In this case, by performing a two-stage compression operation in which the discharge gas of the low-stage compressor is passed through a liquid receiver through an on-off valve to perform cooling and gas-liquid separation at the same time, and then to suck into the high-stage compressor, A higher condensing temperature can be obtained while preventing a rise in discharge temperature and liquid compression of the high-stage compressor, and two condensing temperatures and one evaporating temperature can be obtained efficiently. The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of ice storage / cooling / hot water supply where the compression ratio is relatively large, after the discharge gas of the low-stage compressor is cooled by being combined with the liquid bypassed from the liquid receiver via the on-off valve, By performing the two-stage compression operation in which the suction is performed by the high-stage compressor, it is possible to prevent the discharge temperature from rising, to obtain a higher condensation temperature, and to efficiently obtain one condensation temperature and two evaporation temperatures. .

【0034】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、凝縮温度と蒸発温度の差が比較的小
さく、圧縮比が比較的小さい通常の冷暖房運転のような
場合などには、第1、第2の圧縮機の並列あるいは単独
運転を行ない、通常の回路と同様に効率よく得られる。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention has the first characteristic in a normal cooling and heating operation in which the difference between the condensing temperature and the evaporating temperature is relatively small and the compression ratio is relatively small. , And the second compressor is operated in parallel or independently, and can be obtained efficiently as in the case of a normal circuit.

【0035】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい高温給湯運転や給湯・氷蓄熱同時
運転時のような場合などには、第1、第2の圧縮機を直
列に運転し、低段側圧縮機の吐出ガスを高段側圧縮機に
吸入させる二段圧縮運転を行うことにより、高圧縮比に
適した高効率な運転で2つの飽和温度が得られる。そし
てさらに運転状態により、第1、第2の圧縮機それぞれ
を低段側、高段側とに切り替えられるため高効率な運転
を行うことができる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of high-temperature hot water supply operation or simultaneous operation of hot water supply and ice heat storage with a relatively large compression ratio, the first and second compressors are operated in series to discharge gas discharged from the low-stage compressor to the high-stage compressor. By performing the two-stage compression operation in which the suction is performed by the side compressor, two saturation temperatures can be obtained with highly efficient operation suitable for a high compression ratio. Further, the first and second compressors can be switched between the low-stage side and the high-stage side depending on the operation state, so that highly efficient operation can be performed.

【0036】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい暖房・給湯同時運転時のような場
合などには、2台の圧縮機の並列運転を行い、それぞれ
の圧縮機の凝縮温度を変えることにより、2つの凝縮温
度と1つの蒸発温度が効率よく得られる。また、圧縮機
が2台となっているため運転負荷により圧縮機の選択が
行え十分な能力を得ることができる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
For example, in the case of simultaneous operation of heating and hot water supply where the compression ratio is relatively small, two compressors are operated in parallel, and the condensing temperature of each compressor is changed, so that two condensing temperatures and one condensing temperature are changed. Evaporation temperature can be obtained efficiently. Further, since there are two compressors, the compressor can be selected according to the operation load, and sufficient performance can be obtained.

【0037】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい暖房・高温給湯運転のような場合
などには、圧縮機を直列に運転し、低段側圧縮機の吐出
ガスの一部を高段側圧縮機に吸入させ、給湯用には二段
圧縮された冷媒ガスを用い、暖房用には低段側圧縮機の
吐出ガスの残りを用いることにより効率の高い運転で運
転を行うことにより、高圧縮機に適した高効率な運転で
2つの凝縮温度と1つの蒸発温度が得られる。そしてさ
らに運転状態により、第1、第2の圧縮機それぞれを低
段側、高段側とに切り替えられるため運転負荷により選
択が行え十分な能力を得ることができる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of heating / hot water supply operation with a relatively high compression ratio, the compressor is operated in series, and a part of the discharge gas from the low-stage compressor is sucked into the high-stage compressor to supply hot water. The two-stage compressed refrigerant gas is used for heating, and the remaining gas discharged from the low-stage compressor is used for heating, so that the operation is performed with high efficiency, thereby achieving high efficiency suitable for high compressor. In operation, two condensation temperatures and one evaporation temperature are obtained. Further, depending on the operation state, the first and second compressors can be switched between the low-stage side and the high-stage side, so that selection can be made according to the operation load and sufficient capacity can be obtained.

【0038】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい冷房・氷蓄熱同時運転のような場
合には、2台の圧縮機の並列運転を行い、それぞれの圧
縮機の蒸発温度を変えることにより、2つの蒸発温度と
1つの凝縮温度が効率よく得られる。また、圧縮機が2
台となっているため運転負荷により圧縮機の選択が行え
十分な能力を得ることができる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous operation of cooling and ice heat storage with a relatively small compression ratio, two compressors are operated in parallel and the evaporation temperature of each compressor is changed to change the two evaporation temperatures and one condensation temperature. Temperature can be obtained efficiently. Also, if the compressor is 2
Since it is a stage, the compressor can be selected according to the operation load, and sufficient capacity can be obtained.

【0039】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい冷房・給湯・氷蓄熱同時運転のよ
うな場合には、2台の圧縮機の同時運転を行い、低段側
圧縮機の吐出ガスを高段側圧縮機に吸入させ、給湯用に
は高段側圧縮機の凝縮温度を用い、冷房用には高段側圧
縮機の蒸発温度を用い、氷蓄熱用には低段側圧縮機の蒸
発温度を用いることにより効率の高い運転で、1つの凝
縮温度と2つの蒸発温度が効率よく得られる。また、冷
房や氷蓄熱と暖房や給湯が同時に運転されるときには、
冷房や氷蓄熱の廃熱が給湯に利用することができ、さら
に効率の高い回路を実現することができる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of cooling / hot water supply / ice heat storage where the compression ratio is relatively large, the two compressors are operated simultaneously, and the discharge gas of the low-stage compressor is sucked into the high-stage compressor. High efficiency is achieved by using the condensation temperature of the high-stage compressor for hot water supply, using the evaporation temperature of the high-stage compressor for cooling, and using the evaporation temperature of the low-stage compressor for ice storage. In operation, one condensing temperature and two evaporating temperatures can be obtained efficiently. Also, when cooling and ice heat storage and heating and hot water are operated at the same time,
Waste heat of cooling or ice storage can be used for hot water supply, and a more efficient circuit can be realized.

【0040】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、上記のように構成しているので、所
望の運転モード(冷暖房や給湯、蓄冷熱などの各熱交換
器に要求される機能)に応じて、各熱交換器毎に3つ以
上の飽和温度設定が可能となる。また、凝縮温度と蒸発
温度の差が小さい時や大きい時で、第1、第2圧縮機の
運転を並列もしくは単独運転、または直列運転(二段圧
縮運転)に使い分けることができ、高効率なサイクルが
実現できる。
Since the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the present invention is configured as described above, the desired operation mode (function required for each heat exchanger such as cooling / heating, hot water supply, cold storage heat, etc.) ), Three or more saturation temperatures can be set for each heat exchanger. Further, when the difference between the condensing temperature and the evaporating temperature is small or large, the operation of the first and second compressors can be selectively used in parallel or independent operation, or in series operation (two-stage compression operation), thereby achieving high efficiency. Cycle can be realized.

【0041】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい通常の冷暖房運転のような場合な
どには、第1、第2、複数台の圧縮機の並列あるいは単
独運転を行い、通常のサイクルと同様に効率よく得られ
る。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of a normal cooling / heating operation having a relatively small compression ratio, for example, the first, second, and plural compressors are operated in parallel or independently, and the compressor can be efficiently obtained as in a normal cycle.

【0042】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい高温給湯運転や給湯、氷蓄熱同時
運転時のような場合などには、第1、第2の圧縮機を直
列に運転し、第2(低段側)圧縮機の吐出ガスを圧縮機
連通管を経て第1(高段側)圧縮機に吸入させる二段圧
縮運転を行うことにより、高圧縮比に適した高効率な運
転で2つの飽和温度が得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of a high-temperature hot water supply operation, a hot water supply operation, and an ice heat storage simultaneous operation having a relatively large compression ratio, the first and second compressors are operated in series to discharge the second (lower stage) compressor. By performing the two-stage compression operation in which the gas is sucked into the first (high-stage side) compressor through the compressor communication pipe, two saturation temperatures can be obtained with high-efficiency operation suitable for a high compression ratio.

【0043】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい暖房・給湯同時運転のような場合
などには、第1、第2例えば2台の圧縮機の並列運転を
行い、それぞれの圧縮機の凝縮温度を変えることによ
り、2つの凝縮温度と1つの蒸発温度が効率よく得られ
る。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In cases such as simultaneous heating and hot water supply operation in which the compression ratio is relatively small, the first and second, for example, two compressors are operated in parallel, and by changing the condensation temperature of each compressor, two compressors are operated. The condensation temperature and one evaporation temperature can be obtained efficiently.

【0044】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい暖房・高温給湯同時運転のような
場合などには、第1、第2例えば2台の圧縮機の同時運
転を行い、第2(低段側)圧縮機の吐出ガスの一部を圧
縮機連通管を経て第1(高段側)圧縮機に吸入させ、給
湯用には二段圧縮された冷媒を用い、暖房用には第2
(低段側)圧縮機の吐出ガスの残りの冷媒を用いること
により、効率の高い運転で、2つの凝縮温度と1つの蒸
発温度が効率よく得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of heating and high-temperature hot water supply with a relatively large compression ratio, the first and second, for example, two compressors are operated simultaneously, and the discharge gas of the second (lower stage) compressor is discharged. A part of the refrigerant is sucked into the first (high-stage side) compressor through a compressor communication pipe, and a two-stage compressed refrigerant is used for hot water supply, and the second refrigerant is used for heating.
(Low-stage side) By using the remaining refrigerant of the discharge gas of the compressor, two condensing temperatures and one evaporating temperature can be obtained efficiently with high efficiency operation.

【0045】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい冷房・氷蓄熱同時運転のような場
合などには、第1、第2例えば2台の圧縮機の並列運転
を行い、それぞれの圧縮機の蒸発温度を変えることによ
り、1つの凝縮温度と2つの蒸発温度が効率よく得られ
る。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous operation of cooling and ice heat storage having a relatively small compression ratio, for example, the first and second compressors are operated in parallel, and the evaporating temperature of each compressor is changed to obtain 1 One condensation temperature and two evaporation temperatures are obtained efficiently.

【0046】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい冷房、給湯、氷蓄熱同時運転のよ
うな場合などには、第1、第2、例えば2台の圧縮機の
同時運転を行い、第2(低段側)圧縮機の吐出ガスを圧
縮機連通管を経て第1(高段側)圧縮機に吸入させ、給
湯用には第1(高段側)圧縮機の凝縮温度を用い、冷房
用には第1(高段側)圧縮機の蒸発温度を用い、氷蓄熱
には第2(低段側)圧縮機の蒸発温度を用いることによ
り、効率の高い運転で、1つの凝縮温度と2つの蒸発温
度が効率よく得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of cooling, hot water supply, and ice heat storage having a relatively large compression ratio, the first and second, for example, two compressors are operated simultaneously, and the second (low-stage) compressor is operated. The discharge gas is sucked into the first (high-stage) compressor through the compressor communication pipe, the condensing temperature of the first (high-stage) compressor is used for hot water supply, and the first (high-stage) compressor is used for cooling. Side) By using the evaporating temperature of the compressor and using the evaporating temperature of the second (low-stage) compressor for ice heat storage, one condensing temperature and two evaporating temperatures can be obtained efficiently with high efficiency operation. Can be

【0047】[0047]

【実施例】【Example】

実施例1.図1はこの発明の一実施例の蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。図において、1は第1圧縮機、2は第2圧縮機、1
1は第1アキュムレータ、12は第2アキュムレータ、
51a,51b,51cは熱交換器である。61は第1
圧縮機1の吐出側に接続された第1高圧ガス管、62は
第2圧縮機2の吐出側に第1開閉器である第1開閉弁2
1を介して接続された第2高圧ガス管、63は第1圧縮
機1吸入側に第1アキュムレータ11を介して接続され
た低圧ガス管、64は液管である。第1圧縮機1と第1
アキュムレータ11の間の低圧ガス管63には第3開閉
器を構成する第2開閉弁22と第1逆止弁41が設けら
れている。23は第2圧縮機2と第1開閉弁21の間の
第2高圧ガス管62と第1高圧ガス管61とを接続する
高圧ガス連通管65に設けられた第5開閉器の第3開閉
弁、24は第2圧縮機2と第3開閉弁23の間の高圧ガ
ス連通管65と第2開閉弁22と第1逆止弁41の間の
低圧ガス管63とを接続する圧縮機連通管66に設けら
れた第4開閉弁で、この場合は第4開閉器は第2開閉
弁、第4開閉弁及び第1逆止弁で構成されている。25
は分岐して第1圧縮機1の吸入側に接続する第2高圧ガ
ス管62の分岐点と第2アキュムレータ12間の第2高
圧ガス管62に設けられた第5開閉弁、42は第1圧縮
機1と第2アキュムレータ12の間の第2高圧ガス管6
2に設けられた第2逆止弁で、第2開閉器は第5開閉弁
25と第2逆止弁42で構成されている。また熱交換器
51a,51b,51cには、第1高圧ガス管61、第
2高圧ガス管62、低圧ガス管63が各々開閉弁26
a,27a,28a,26b,27b,28b及び2
6,27c,28cを介して分岐接続するとともに、液
管64が冷媒流量制御器である電子式膨張弁31a,3
1b,31cをそれぞれ介して接続している。
Embodiment 1 FIG. FIG. 1 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to one embodiment of the present invention. In the figure, 1 is a first compressor, 2 is a second compressor, 1
1 is a first accumulator, 12 is a second accumulator,
51a, 51b, 51c are heat exchangers. 61 is the first
A first high-pressure gas pipe 62 connected to the discharge side of the compressor 1 has a first on-off valve 2 serving as a first switch on the discharge side of the second compressor 2.
The reference numeral 63 denotes a second high-pressure gas pipe connected through the first compressor 1, 63 denotes a low-pressure gas pipe connected to the suction side of the first compressor 1 via the first accumulator 11, and 64 denotes a liquid pipe. The first compressor 1 and the first
The low-pressure gas pipe 63 between the accumulators 11 is provided with a second on-off valve 22 and a first check valve 41 constituting a third switch. Reference numeral 23 denotes a third opening / closing of a fifth switch provided in a high-pressure gas communication pipe 65 connecting the second high-pressure gas pipe 62 and the first high-pressure gas pipe 61 between the second compressor 2 and the first on-off valve 21. The valve 24 is a compressor communication connecting the high-pressure gas communication pipe 65 between the second compressor 2 and the third on-off valve 23 and the low-pressure gas pipe 63 between the second on-off valve 22 and the first check valve 41. This is a fourth on-off valve provided in the pipe 66, and in this case, the fourth on-off switch includes a second on-off valve, a fourth on-off valve, and a first check valve. 25
Is a fifth on-off valve provided in the second high-pressure gas pipe 62 between the branch point of the second high-pressure gas pipe 62 connected to the suction side of the first compressor 1 and the second accumulator 12; The second high-pressure gas pipe 6 between the compressor 1 and the second accumulator 12
The second switch is provided with a fifth switch valve 25 and a second check valve 42. In the heat exchangers 51a, 51b, 51c, a first high-pressure gas pipe 61, a second high-pressure gas pipe 62, and a low-pressure gas pipe 63 are respectively provided with the on-off valve 26.
a, 27a, 28a, 26b, 27b, 28b and 2
6, 27c, 28c, and the liquid pipe 64 is connected to the electronic expansion valves 31a, 31
1b and 31c, respectively.

【0048】この発明の多温度生成回路には、表1に示
すように6つの運転モードがある。以下、この6つの運
転モードを図2〜7を用いて説明する。
The multi-temperature generating circuit of the present invention has six operation modes as shown in Table 1. Hereinafter, these six operation modes will be described with reference to FIGS.

【0049】[0049]

【表1】 [Table 1]

【0050】まず、図2のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と1つの蒸発温度を生成する2温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房あるいは暖
房時などに適用される。
First, referring to FIG. 2 which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, at the time of generating two temperatures for generating one condensing temperature and one evaporating temperature, The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0051】図2では、熱交換器51aが凝縮器、熱交
換器51bが停止、熱交換器51cが蒸発器として動作
する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27cを閉止状態(図中塗り
つぶし)としている。第1圧縮機1、第2圧縮機2は並
列運転される。矢印で冷媒の流れを示す。
FIG. 2 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops operating, and the heat exchanger 51c operates as an evaporator.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c are in a closed state (filled in the figure). The first compressor 1 and the second compressor 2 are operated in parallel. Arrows indicate the flow of the refrigerant.

【0052】第2圧縮機2から吐出された高温高圧冷媒
ガスは高圧ガス連通管65を経て第1高圧ガス管61で
第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 and joins with the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 through the first high-pressure gas pipe 61 to form an on-off valve. It flows into the heat exchanger 51a through 26a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the first accumulator 11 through the low-pressure gas pipe 63 and passes through the first compressor 1 and the second
It is sucked into the compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51c.

【0053】図2では冷暖房時に1凝縮+1蒸発温度と
いうように使用されるが、この場合吐出圧力16〜21
Kg/cm2 abs(凝縮)、吸入圧力4〜6Kg/c
2abs(蒸発)という条件が一般的である。ここ
で、凝縮温度と蒸発温度の差が比較的小さい場合、と
は、圧縮比、すなわち吐出圧力/吸入圧力が6以下と小
さい場合を指す。一般に冷房や暖房では低負荷時ではこ
の圧縮比が2位であり、通常は最大4〜5位で使用して
いる。
In FIG. 2, the cooling pressure is used such as 1 condensation + 1 evaporation temperature.
Kg / cm 2 abs (condensation), suction pressure 4-6Kg / c
The condition of m 2 abs (evaporation) is common. Here, the case where the difference between the condensation temperature and the evaporation temperature is relatively small refers to the case where the compression ratio, that is, the discharge pressure / suction pressure is as small as 6 or less. Generally, in the case of cooling or heating, the compression ratio is 2nd at the time of low load, and is usually used at 4th to 5th at the maximum.

【0054】ここで51aが室内機熱交換器、51cが
室外機熱交換器とすると、図2の流れは暖房運転の場合
を示している。冷房の場合は、開閉弁26cが開き、開
閉弁27c,28cが閉じることになり、51aが蒸発
器として作用し、開閉弁26a,27aが閉じ、開閉弁
28aが開くことになり、51aが蒸発器として作用す
ることになる(図2の逆)。
Here, assuming that 51a is an indoor unit heat exchanger and 51c is an outdoor unit heat exchanger, the flow of FIG. 2 shows a case of a heating operation. In the case of cooling, the on-off valve 26c opens, the on-off valves 27c and 28c close, the 51a acts as an evaporator, the on-off valves 26a and 27a close, the on-off valve 28a opens, and the 51a evaporates. It will act as a vessel (reverse of FIG. 2).

【0055】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい通常の冷暖房運転のような場合な
どには、第1、第2、複数台の圧縮機の並列あるいは単
独運転を行い、通常のサイクルと同様に効率よく得られ
る。しかも、この例の場合では利用側と熱源側の熱交換
器を入れ換えることも可能で、システム構成を自由に選
択できる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of a normal cooling / heating operation having a relatively small compression ratio, for example, the first, second, and plural compressors are operated in parallel or independently, and the compressor can be efficiently obtained as in a normal cycle. In addition, in this case, the heat exchangers on the use side and the heat source side can be exchanged, and the system configuration can be freely selected.

【0056】次に図3のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば高温給湯や給湯+氷蓄熱
時などに適用される。図3では、熱交換器51aが凝縮
器、熱交換器51bが停止、熱交換器51cが蒸発器と
して動作する例を示しており、第1開閉弁21、第3開
閉弁23、第5開閉弁25、開閉弁27a,28a,2
6b,27b,28b,26c,27cを閉止状態(図
中塗りつぶし)としている。第1圧縮機1、第2圧縮機
2は直列運転される。矢印で冷媒の流れを示す。
Next, referring to FIG. 3 which is an explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment, the two temperatures are generated when one condensation temperature and one evaporation temperature are generated. The operation when the temperature difference is relatively large will be described. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. FIG. 3 illustrates an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops operating, and the heat exchanger 51c operates as an evaporator. The first on-off valve 21, the third on-off valve 23, and the fifth on-off valve Valve 25, on-off valves 27a, 28a, 2
6b, 27b, 28b, 26c, 27c are in a closed state (filled in the figure). The first compressor 1 and the second compressor 2 are operated in series. Arrows indicate the flow of the refrigerant.

【0057】第2圧縮機2から吐出された冷媒ガスは、
高圧ガス連通管65とこれから分岐した圧縮機連通管6
6に流入し、第4開閉弁24及び第2開閉弁22を通っ
て第1圧縮機に吸入され、二段圧縮され高温高圧の冷媒
ガスとなって第1高圧ガス管61に流入する。このガス
冷媒は、開閉弁26aを通って熱交換器51aに流入
し、凝縮液化される。この液冷媒は、電気式膨張弁31
aを通って液管64に流入し、電気式膨張弁31cを通
って低圧の二相状態となって熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、低圧ガス管63を
通って第1アキュムレータ11を経て、第2圧縮機2に
吸入される。このように、この運転モードでは、二段圧
縮運転となり、熱交換器51aで凝縮温度が、熱交換器
51cで蒸発温度が得られる。
The refrigerant gas discharged from the second compressor 2 is
High-pressure gas communication pipe 65 and compressor communication pipe 6 branched therefrom
6, is sucked into the first compressor through the fourth opening / closing valve 24 and the second opening / closing valve 22, is compressed in two stages, becomes a high-temperature and high-pressure refrigerant gas, and flows into the first high-pressure gas pipe 61. This gas refrigerant flows into the heat exchanger 51a through the on-off valve 26a and is condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 31.
a into the liquid pipe 64, through the electric expansion valve 31c, into a low-pressure two-phase state, and into the heat exchanger 51c,
It is vaporized and gasified. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the two-stage compression operation is performed, and the condensing temperature is obtained in the heat exchanger 51a and the evaporation temperature is obtained in the heat exchanger 51c.

【0058】図3では高温給湯+氷蓄熱時に1凝縮+1
蒸発温度というように使用され、吐出圧力26〜27K
g/cm2 abs(1凝縮)、吸入圧力3Kg/cm2
abs(1蒸発)という条件の二段圧縮回路という例を
示している。ここで、凝縮温度と蒸発温度の差が比較的
大きい場合とは、圧縮比が0.6以上ある場合を示すも
のを考えている。
In FIG. 3, one condensation +1 when hot water is supplied and ice is stored.
Used as evaporation temperature, discharge pressure 26-27K
g / cm 2 abs (one condensation), suction pressure 3 Kg / cm 2
An example of a two-stage compression circuit under the condition of abs (one evaporation) is shown. Here, the case where the difference between the condensation temperature and the evaporation temperature is relatively large is considered to indicate the case where the compression ratio is 0.6 or more.

【0059】図3では、51aが給湯熱交換器、51c
が蓄熱熱交換器となっており、51aが凝縮器、51c
が蒸発器として作用するため、51aの放熱により水の
温度が上昇し、51cの吸熱により水が氷となる。
In FIG. 3, 51a is a hot water supply heat exchanger, 51c
Is a heat storage heat exchanger, 51a is a condenser, 51c
Acts as an evaporator, the temperature of the water rises due to the heat radiation of 51a, and the water becomes ice by the heat absorption of 51c.

【0060】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい高温給湯運転や給湯・氷蓄熱同時
運転時のような場合などには、第1、第2の圧縮機を直
列に運転し、第2(低段側)圧縮機の吐出ガスを圧縮機
連通管を経て第1(高段側)圧縮機に吸入させる二段圧
縮運転を行うことにより、高圧縮比に適した高効率な運
転で2つの飽和温度が得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In a high-temperature hot water supply operation or a simultaneous hot water supply / ice heat storage operation with a relatively large compression ratio, the first and second compressors are operated in series, and the discharge of the second (lower stage) compressor is performed. By performing the two-stage compression operation in which the gas is sucked into the first (high-stage side) compressor through the compressor communication pipe, two saturation temperatures can be obtained with high-efficiency operation suitable for a high compression ratio.

【0061】次に図4のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、2つの凝縮温度と
1つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合、すなわち、圧縮比が
比較的小さい条件での動作について説明する。この運転
モードは、例えば通常の暖房+比較的低温の給湯運転時
などに適用される。
Next, referring to FIG. 4 which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, when the three temperatures for generating two condensing temperatures and one evaporating temperature are generated, The operation in the case where the temperature difference is relatively small, that is, under the condition where the compression ratio is relatively small will be described. This operation mode is applied, for example, at the time of normal heating + hot water supply operation at a relatively low temperature .

【0062】図4では、熱交換器51aが第1凝縮器、
熱交換器51bが第2凝縮器、熱交換器51cが蒸発器
として動作する例を示しており、第3開閉弁23、第4
開閉弁24、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27cを閉止状態(図中塗り
つぶし)としている。矢印で冷媒の流れを示す。
In FIG. 4, the heat exchanger 51a is a first condenser,
An example in which the heat exchanger 51b operates as a second condenser and the heat exchanger 51c operates as an evaporator is shown.
On-off valve 24, fifth on-off valve 25, on-off valves 27a, 28a,
26b, 28b, 26c, and 27c are in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0063】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and condenses and liquefies. Is done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 via the first on-off valve 21, passes through the on-off valve 27b, and passes through the heat exchanger 51b as a second condenser. And is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The joined liquid refrigerant is supplied to the electric expansion valve 31c.
Through the heat exchanger 51c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant is supplied to the low-pressure gas pipe 6.
3, the air is sucked into the first compressor 1 and the second compressor 2 via the first accumulator 11. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 51a, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51c.

【0064】図4の暖房+給湯(2凝縮+1蒸発)時に
は通常、吐出圧力1(暖房)16〜21Kg/cm2
bs、吐出圧力2(給湯)21Kg/cm2 という2凝
縮と、吸入圧力4〜5Kg/cm2 absという1蒸発
の条件である。
At the time of heating + hot water supply (two condensations + 1 evaporation) in FIG. 4, the discharge pressure 1 (heating) is normally 16 to 21 kg / cm 2 a.
bs, 2 and condensation of the discharge pressure 2 (hot water) 21 Kg / cm 2, a condition of 1 evaporation of suction pressure 4~5Kg / cm 2 abs.

【0065】ここで、51aが給湯用熱交換器、51b
が室内機熱交換器、51cが室外機熱交換器となってお
り、51a,51bが凝縮器として、51aが給湯、5
1bが暖房用として作用する。51cは蒸発器として作
用する。ここで第1圧縮機1は給湯用、第2圧縮機2は
暖房用として、パラレルに運転する。
Here, 51a is a heat exchanger for hot water supply, 51b
Is an indoor unit heat exchanger, 51c is an outdoor unit heat exchanger, 51a and 51b are condensers, and 51a is hot water supply.
1b works for heating. 51c functions as an evaporator. Here, the first compressor 1 is used for hot water supply, and the second compressor 2 is used for heating, and operates in parallel.

【0066】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい暖房・給湯同時運転のような場合
などには、第1、第2、例えば2台の圧縮機の並列運転
を行い、それぞれの圧縮機の凝縮温度を変えることによ
り、2つの凝縮温度と1つの蒸発温度が効率よく得られ
る。しかも2台圧縮機のそれぞれに対応して自由に熱交
換器との組合を選ぶこともできる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In the case of simultaneous heating and hot water supply operation with a relatively small compression ratio, for example, the first, second, for example, two compressors are operated in parallel to change the condensing temperature of each compressor. One condensing temperature and one evaporating temperature can be obtained efficiently. In addition, the combination with the heat exchanger can be freely selected corresponding to each of the two compressors.

【0067】次に図5のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、2つの凝縮温度と
1つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合、すなわち、圧縮比が
比較的大きい条件での動作について説明する。この運転
モードは、例えば通常の暖房+比較的高温の給湯運転時
などに適用される。
Next, referring to FIG. 5, which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, the three temperatures for generating two condensing temperatures and one evaporating temperature are shown. The operation in the case where the temperature difference is relatively large, that is, under the condition where the compression ratio is relatively large will be described. This operation mode is applied, for example, at the time of normal heating + hot water supply operation at a relatively high temperature .

【0068】図5では、熱交換器51aが第1凝縮器、
熱交換器51bが第2凝縮器、熱交換器51cが蒸発器
として動作する例を示しており、第3開閉弁23、第5
開閉弁25、開閉弁27a,28a,26b,28b,
26c,27cを閉止状態(図中塗りつぶし)としてい
る。矢印で冷媒の流れを示す。
In FIG. 5, the heat exchanger 51a is a first condenser,
An example is shown in which the heat exchanger 51b operates as a second condenser and the heat exchanger 51c operates as an evaporator.
On-off valve 25, on-off valves 27a, 28a, 26b, 28b,
26c and 27c are in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0069】第2圧縮機2から吐出された冷媒ガスの一
部は、圧縮機連通管66に流入し、第4開閉弁24及び
第2開閉弁22を通って第1圧縮機に吸入され、二段圧
縮され高温高圧の冷媒ガスとなって第1高圧ガス管61
に流入する。このガス冷媒は、開閉弁26aを通って第
1凝縮器である熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電気式膨張弁31aを通って液管6
4に流入する。一方、第2圧縮機2から吐出された冷媒
ガスの残りは、第1開閉弁21を通って第2高圧ガス管
62に流入し、開閉弁27bを通って第2凝縮器である
熱交換器51bに流入し、凝縮液化される。この液冷媒
は、電気式膨張弁31bを通って液管64に流入し、第
1凝縮器である熱交換器51aからの液冷媒と合流す
る。この合流した液冷媒は、電気式膨張弁31cを通っ
て低圧の二相状態となって熱交換器51cへ流入し、蒸
発ガス化される。このガス冷媒は、低圧ガス管63を通
って第1アキュムレータ11を経て、第2圧縮機2に吸
入される。このように、この運転モードでは、熱交換器
51aで第1の凝縮温度が、熱交換器51bで第2の凝
縮温度が、熱交換器51cで蒸発温度が得られる。
A part of the refrigerant gas discharged from the second compressor 2 flows into the compressor communication pipe 66, is drawn into the first compressor through the fourth on-off valve 24 and the second on-off valve 22, and The refrigerant gas is subjected to two-stage compression to become a high-temperature and high-pressure refrigerant gas, and becomes a first high-pressure gas pipe 61.
Flows into. This gas refrigerant flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant passes through the electric expansion valve 31a and passes through the liquid pipe 6
Flow into 4. On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 through the first on-off valve 21 and passes through the on-off valve 27b to be a heat exchanger serving as a second condenser. It flows into 51b and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The merged liquid refrigerant passes through the electric expansion valve 31c, enters a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 51a, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51c.

【0070】図5の暖房+高温給湯(2凝縮+1蒸発)
時には、吐出圧力1(暖房)16〜21Kg/cm2
bs、吐出圧力2(給湯)26〜27Kg/cm2 ab
sという2凝縮と、吸入圧力4〜5Kg/cm2 abs
(1蒸発)という条件で2段圧縮回路の例を示す。
Heating + hot water supply (2 condensation + 1 evaporation) in FIG.
Sometimes, discharge pressure 1 (heating) 16-21 kg / cm 2 a
bs, discharge pressure 2 (hot water supply) 26 to 27 Kg / cm 2 ab
s and 2 to 5 kg / cm 2 abs
An example of a two-stage compression circuit under the condition of (1 evaporation) will be described.

【0071】51a,51b,51cの熱交換器の作用
は図4と同様であるが、圧縮機がシリーズ運転(2段圧
縮)となり、第2圧縮機2で中圧まで圧縮し(暖房可能
な圧力)、さらに第1圧縮機1で高圧まで圧縮する(高
温給湯可能な圧力)。
The operation of the heat exchangers 51a, 51b and 51c is the same as in FIG. 4, but the compressor is operated in series (two-stage compression), and the compressor is compressed to medium pressure by the second compressor 2 (heatable). Pressure), and further compressed to a high pressure by the first compressor 1 (pressure at which hot water can be supplied).

【0072】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい暖房・高温給湯同時運転のような
場合などには、第1、第2、例えば2台の圧縮機の同時
運転を行い、第2(低段側)圧縮機の吐出ガスの一部を
圧縮機連通管を経て第1(高段側)圧縮機に吸入させ、
給湯用には二段圧縮された冷媒を用い、暖房用には第2
(低段側)圧縮機の吐出ガスの残りの冷媒を用いること
により、効率の高い運転で、2つの凝縮温度と1つの蒸
発温度が効率よく得られる。
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of heating and high-temperature hot water supply having a relatively large compression ratio, the first and second, for example, two compressors are operated simultaneously, and the discharge gas of the second (lower stage) compressor is discharged. Is sucked into the first (high-stage side) compressor through the compressor communication pipe,
Two-stage compressed refrigerant is used for hot water supply, and
(Low-stage side) By using the remaining refrigerant of the discharge gas of the compressor, two condensing temperatures and one evaporating temperature can be obtained efficiently with high efficiency operation.

【0073】次に図6のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
2つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば冷房+氷蓄熱運転時など
に適用される。
Next, referring to FIG. 6 which shows the operating state of the multi-temperature generation circuit of this embodiment, the three temperatures for generating one condensing temperature and two evaporating temperatures are generated. The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during cooling / ice heat storage operation.

【0074】図6では、熱交換器51aが凝縮器、熱交
換器51bが第1蒸発器、熱交換器51cが第2蒸発器
として動作する例を示しており、第1開閉弁21、第2
開閉弁22、第4開閉弁24、開閉弁27a,28a,
26b,28b,26c,27cを閉止状態(図中塗り
つぶし)としている。矢印で冷媒の流れを示す。
FIG. 6 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2
On-off valve 22, fourth on-off valve 24, on-off valves 27a, 28a,
26b, 28b, 26c, and 27c are in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0075】第圧縮機から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第圧縮機の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し、蒸発ガス化される。この
ガス冷媒は、第2高圧ガス管62を通って第5開閉弁2
5、第2アキュムレータ12、第2逆止弁を経て、第1
圧縮機1に吸入される。一方、液管64に流入した残り
の液冷媒は、電気式膨張弁31cを通って低圧の二相状
態となって第2蒸発器である熱交換器51へ流入し、蒸
発ガス化される。このガス冷媒は、低圧ガス管63を通
って第1アキュムレータ11を経て、第2圧縮機2に吸
入される。このように、この運転モードでは、熱交換器
51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 through the third on-off valve 23 and the refrigerant gas discharged from the first compressor 1 and the first high-pressure gas pipe 6.
At 1, they merge, flow into the heat exchanger 51 a through the on-off valve 26 a, and are condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 3
1a, the liquid flows into the liquid pipe 64, a part of which flows into the low-pressure two-phase state through the electric expansion valve 31b, flows into the heat exchanger 51b, which is the first evaporator, and is vaporized. . This gas refrigerant passes through the second high-pressure gas pipe 62 and passes through the fifth on-off valve 2.
5, through the second accumulator 12, the second check valve, the first
It is sucked into the compressor 1. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51 serving as the second evaporator, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, the first evaporation temperature is obtained in the heat exchanger 51b, and the second evaporation temperature is obtained in the heat exchanger 51c.

【0076】図6の冷房+氷蓄熱(1凝縮+2蒸発)時
には通常、吐出圧力18Kg/cm2 absという1凝
縮と、吸入圧力1(冷房)5〜6Kg/cm2 abs、
吸入圧力2(氷蓄熱)3Kg/cm2 absという2蒸
発という例である。
[0076] Cooling of 6 + ice heat storage (1 condensation +2 evaporation) sometimes normal, 1 and condensing that discharge pressure 18 Kg / cm 2 abs, suction pressure 1 (cooling) 5~6Kg / cm 2 abs,
This is an example of two evaporations at a suction pressure of 2 (ice heat storage) of 3 kg / cm 2 abs.

【0077】51aが室外熱交換器、51bが室内熱交
換器、51cが蓄熱熱交換器となっており、51aが凝
縮器として作用し、51b,51cが蒸発器として作用
し、51bが冷房、51cが氷蓄熱を行う。ここで第1
圧縮機1は冷房用、第2圧縮機2は氷蓄熱用として、パ
ラレルに運転する。
51a is an outdoor heat exchanger, 51b is an indoor heat exchanger, 51c is a heat storage heat exchanger, 51a works as a condenser, 51b and 51c work as an evaporator, 51b is a cooling system, 51c performs ice heat storage. Here the first
The compressor 1 is operated in parallel for cooling, and the second compressor 2 is operated in parallel for ice heat storage.

【0078】凝縮温度と蒸発温度の差が比較的小さく、
圧縮比が比較的小さい冷房・氷蓄熱同時運転のような場
合などには、第1、第2、例えば2台の圧縮機の並列運
転を行い、それぞれの圧縮機の蒸発温度を変えることに
より、1つの凝縮温度と2つの蒸発温度が効率よく得ら
れる。
The difference between the condensation temperature and the evaporation temperature is relatively small,
In cases such as simultaneous cooling / ice heat storage operation where the compression ratio is relatively small, the first and second, for example, two compressors are operated in parallel, and by changing the evaporation temperature of each compressor, One condensation temperature and two evaporation temperatures can be obtained efficiently.

【0079】次に図7のこの実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
2つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば冷房+氷蓄熱+高温給湯
運転時などに適用される。
Next, referring to FIG. 7 which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, when the three temperatures for generating one condensing temperature and two evaporating temperatures are generated, The operation when the temperature difference is relatively large will be described. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation.

【0080】図7では、熱交換器51aが凝縮器、熱交
換器51bが第1蒸発器、熱交換器51cが第2蒸発器
として動作する例を示しており、第3開閉弁23、第5
開閉弁25、開閉弁27a,28a,26b,28b,
26c,27cを閉止状態(図中塗りつぶし)としてい
る。矢印で冷媒の流れを示す。
FIG. 7 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 5
On-off valve 25, on-off valves 27a, 28a, 26b, 28b,
26c and 27c are in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0081】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第1高圧ガス管61に流入し、開閉弁26a
を通って熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31aを通って液管64に流
入し、その一部は電気式膨張弁31bを通って低圧の二
相状態となって第1蒸発器である熱交換器51bへ流入
し、蒸発ガス化される。このガス冷媒は、第2高圧ガス
管62を通って第1開閉弁21を経て、第2圧縮機の吐
出ガスと合流し、第4開閉弁24、第2開閉弁22を経
て、第1圧縮機1に吸入される。一方、液管64に流入
した残りの液冷媒は、電気式膨張弁31cを通って低圧
の二相状態となって第2蒸発器である熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、低圧ガス
管63を通って第1アキュムレータ11を経て、第2圧
縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51bで第
1蒸発温度が、熱交換器51cで第2蒸発温度が得られ
る。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, and the open / close valve 26a
Through the heat exchanger 51a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant passes through the electric expansion valve 31b to be in a low-pressure two-phase state. And is vaporized and gasified. This gas refrigerant passes through the second high-pressure gas pipe 62, passes through the first on-off valve 21, merges with the discharge gas of the second compressor, passes through the fourth on-off valve 24, the second on-off valve 22, and passes through the first compression valve. Inhaled by machine 1. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, the first evaporation temperature is obtained in the heat exchanger 51b, and the second evaporation temperature is obtained in the heat exchanger 51c.

【0082】上記のように、この実施例では上記した6
つの運転モード、冷暖房や給湯、氷蓄熱などの各熱交換
器に要求される機能に応じて、各熱交換器毎に3つの飽
和温度設定が可能となる。また、凝縮温度と蒸発温度の
差が小さい時や大きい時で、第1、第2圧縮機の運転を
単独あるいは並列運転、または直列運転(二段圧縮運
転)に使い分けることができ、高効率なサイクルが実現
できる。さらに冷房や氷蓄熱と暖房や給湯が同時に運転
されるときには、冷房や氷蓄熱の排熱が暖房や給湯に利
用することができるので、さらに効率の高いサイクルを
実現することができる。第1、第2の圧縮機の吸入側に
アキュムレータを設けているので、圧縮機が保護でき、
冷媒量の調整が行える。
As described above, in this embodiment, the above 6
Three saturation temperatures can be set for each heat exchanger in accordance with the operation modes required for each heat exchanger, such as cooling, heating, hot water supply, and ice heat storage. Further, when the difference between the condensing temperature and the evaporating temperature is small or large, the operation of the first and second compressors can be used independently, in parallel, or in series (two-stage compression operation), and high efficiency can be achieved. Cycle can be realized. Furthermore, when cooling and ice heat storage and heating and hot water supply are operated at the same time, waste heat of cooling and ice heat storage can be used for heating and hot water supply, so that a more efficient cycle can be realized. Since the accumulator is provided on the suction side of the first and second compressors, the compressor can be protected,
The amount of the refrigerant can be adjusted.

【0083】図7の冷房+氷蓄熱+給湯(1凝縮+2蒸
発)時には、吐出圧力(給湯)21Kg/cm2 abs
という1凝縮と、吸入圧力1(冷房)5〜6Kg/cm
2 abs、吸入圧力2(氷蓄熱)3Kg/cm2 abs
という2蒸発による2段圧縮の例である。
At the time of cooling + ice heat storage + hot water supply (1 condensation + 2 evaporation) in FIG. 7, the discharge pressure (hot water supply) is 21 kg / cm 2 abs.
1 condensation and suction pressure 1 (cooling) 5-6 kg / cm
2 abs, suction pressure 2 (ice heat storage) 3 kg / cm 2 abs
This is an example of two-stage compression by two evaporations.

【0084】51aが給湯熱交換器、51bが室内熱交
換器、51cが蓄熱熱交換器となっており、51aが凝
縮器として作用し、51b,51cが蒸発器として作用
する。ここで、圧縮機はシリーズ運転(2段圧縮)とな
り、第2圧縮機2で中圧まで圧縮し(冷房可能な圧
力)、第1圧縮機1でさらに高圧まで圧縮する(給湯可
能な圧力)。
Reference numeral 51a is a hot water supply heat exchanger, 51b is an indoor heat exchanger, 51c is a heat storage heat exchanger, 51a functions as a condenser, and 51b and 51c function as evaporators. Here, the compressor is operated in series (two-stage compression), in which the second compressor 2 compresses to medium pressure (pressure at which cooling is possible), and the first compressor 1 further compresses to high pressure (pressure at which hot water can be supplied). .

【0085】凝縮温度と蒸発温度の差が比較的大きく、
圧縮比が比較的大きい冷房・給湯・氷蓄熱同時運転のよ
うな場合には、第1、第2、例えば2台の圧縮機の同時
運転を行い、第2(低段側)圧縮機の吐出ガスを圧縮機
連通管を経て第1(高段側)圧縮機に吸入させ、給湯用
には第1(高段側)圧縮機の凝縮温度を用い、冷房用に
は第1(高段側)圧縮機の蒸発温度を用い、氷蓄熱用に
は第2(低段側)圧縮
The difference between the condensation temperature and the evaporation temperature is relatively large,
In the case of simultaneous operation of cooling, hot water supply and ice storage with a relatively large compression ratio, the first, second, for example, two compressors are operated simultaneously, and the discharge of the second (lower stage) compressor is performed. The gas is sucked into the first (high-stage side) compressor through the compressor communication pipe, the condensing temperature of the first (high-stage side) compressor is used for hot water supply, and the first (high-stage side) is used for cooling. ) Using the evaporating temperature of the compressor, the second (low stage) compression for ice heat storage

【0086】実施例2.図8はこの発明の実施例2の蒸
気圧縮式冷凍サイクルによる多温度生成回路の冷媒系の
構成図である。図において、67は液管64と第1アキ
ュムレータ11とを第6開閉弁30d及び流量制御器で
ある毛細管32を介して接続するバイパス配管であり、
このバイパス配管67の毛細管32と第1アキュムレー
タ11との間の配管と第1圧縮機1の吸入配管との間で
熱交換を行う熱交換部71が設けられている。
Embodiment 2 FIG. FIG. 8 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 2 of the present invention. In the figure, reference numeral 67 denotes a bypass pipe that connects the liquid pipe 64 and the first accumulator 11 via the sixth on-off valve 30d and the capillary tube 32 that is a flow controller.
A heat exchange unit 71 for exchanging heat between a pipe between the capillary 32 of the bypass pipe 67 and the first accumulator 11 and a suction pipe of the first compressor 1 is provided.

【0087】2温度生成あるいは3温度生成時で凝縮温
度と蒸発温度の差が比較的大きく、2台の圧縮機が直列
運転となる場合には、第6開閉弁30dを開放し、液管
64内の液冷媒の一部をバイパス配管67へ導き、毛細
管32によって低圧低温の二相冷媒とし、第1圧縮機の
吸入冷媒ガスと熱交換部71で熱交換した後、第1アキ
ュムレータへ導入する。このように、バイパス配管67
を流れる低温の二相冷媒により、高段側圧縮機である第
1圧縮機1の吸入冷媒ガスを冷却できるため、その吐出
温度上昇を防止でき、運転範囲を拡大することができ
る。図8は2段圧縮回路時の吐出温度対策であり、図
3、図5、図7の場合の2段圧縮時における高段側(第
1圧縮機)の吐出温度の上昇を防ぐためで、第1圧縮機
の吸入温度が低くなるように熱交換している。
In the case where the difference between the condensing temperature and the evaporating temperature is relatively large during the two-temperature generation or the three-temperature generation, when the two compressors are operated in series, the sixth on-off valve 30 d is opened and the liquid pipe 64 is opened. A part of the liquid refrigerant inside is guided to the bypass pipe 67, converted into a low-pressure low-temperature two-phase refrigerant by the capillary tube 32, and heat-exchanged with the suction refrigerant gas of the first compressor in the heat exchange unit 71, and then introduced into the first accumulator. . Thus, the bypass pipe 67
The low-temperature two-phase refrigerant flowing through the first compressor 1 can cool the suction refrigerant gas of the first compressor 1, which is the high-stage compressor, so that the discharge temperature thereof can be prevented from increasing and the operating range can be expanded. FIG. 8 shows a countermeasure against the discharge temperature at the time of the two-stage compression circuit, in order to prevent a rise in the discharge temperature on the high-stage side (first compressor) during the two-stage compression in the case of FIGS. 3, 5, and 7. Heat is exchanged so that the suction temperature of the first compressor becomes low.

【0088】なお、この実施例2では、バイパス配管6
7の流量制御器として毛細管32を用いたが、機械式や
電気式膨張弁を用いてそれぞれの運転条件でのバイパス
量を適正に制御し、吐出温度上昇をより正確に防止すれ
ば、運転範囲をさらに拡大することができる。
In the second embodiment, the bypass pipe 6
Although the capillary tube 32 is used as the flow controller of 7, the operating range can be controlled by appropriately controlling the bypass amount under each operating condition by using a mechanical or electric expansion valve to more accurately prevent the discharge temperature rise. Can be further expanded.

【0089】また、上記実施例では3台の熱交換器51
a,51b,51cを用いた場合について説明したが、
4台以上の能力が異なる熱交換器の場合でも良く、しか
も第1圧縮機1及び第2圧縮機2のどちらか一方あるい
は両方を、周波数変換型、極数変換型、アンローダ型な
どの能力可変型圧縮機とすれば、設定飽和温度での冷媒
流量を可変にでき、各熱交換器で必要な能力を発揮する
ことができる。
In the above embodiment, three heat exchangers 51 are used.
a, 51b, and 51c have been described.
Four or more heat exchangers having different capacities may be used. In addition, one or both of the first compressor 1 and the second compressor 2 may have a variable capacity such as a frequency conversion type, a pole number conversion type, or an unloader type. With a type compressor, the flow rate of the refrigerant at the set saturation temperature can be varied, and each heat exchanger can exhibit the required capacity.

【0090】さらに、上記実施例では圧縮機が2台の場
合について説明したが、3台以上用いることにより、4
つ以上の飽和温度が設定でき、これらを並列もしくは単
独運転、または直列運転(二段圧縮運転)可能に接続し
て使い分けることにより、同様に高効率なサイクルが実
現できる。
Further, in the above embodiment, a case where two compressors are used has been described.
One or more saturation temperatures can be set, and these can be connected and used in parallel or independent operation, or in series operation (two-stage compression operation), and a highly efficient cycle can be realized similarly.

【0091】この発明の実施例1,2における蒸気圧縮
式冷凍サイクルによる多温度生成回路は、以上説明した
ように構成されているので、以下に記載されたような効
果を奏する。
Since the multi-temperature generating circuit using the vapor compression refrigeration cycle in the first and second embodiments of the present invention is configured as described above, the following effects can be obtained.

【0092】一端部が第1圧縮機の吐出側に、他端部が
開閉器を介して複数台の熱交換器に接続する第1高圧ガ
ス管、一端部が第1開閉器を介して第2圧縮機の吐出側
に、他端部が開閉器を介して上記複数台の熱交換器に接
続するとともに、途中で分岐して第2開閉器を介して上
記第1圧縮機の吸入側に接続する第2高圧ガス管、一端
部が上記第2圧縮機の吸入側に接続するとともに第3開
閉器を介して上記第1圧縮機の吸入側に接続し、他端部
が開閉器を介して上記複数台の熱交換器に接続する低圧
ガス管、複数台の熱交換器に冷媒流量制御器を介して接
続する液管、及び第4開閉器を介して上記第2圧縮機の
吐出側と上記第1圧縮機の吸入側とを連結し上記第2圧
縮機の吐出ガスを上記第1圧縮機に送給する圧縮機連通
管を設けて構成したので、冷暖房や給湯、氷蓄熱などの
各熱交換器に要求される機能に応じて、各熱交換器毎に
圧縮機台数より多い飽和温度が設定できる。また、凝縮
温度と蒸発温度の差が小さい時や大きい時で、複数台の
圧縮機の運転を使い分けることによって、高効率なサイ
クルが実現できる。また、冷房や氷蓄熱と暖房や給湯が
同時に運転されるときには、冷房や氷蓄熱の排熱が暖房
や給湯に利用することができるので、エネルギーの有効
利用ができる。
A first high-pressure gas pipe having one end connected to the discharge side of the first compressor, the other end connected to a plurality of heat exchangers via switches, and one end connected to the first compressor via a first switch. On the discharge side of the two compressors, the other end is connected to the plurality of heat exchangers via a switch, and branches off in the middle to the suction side of the first compressor via a second switch. A second high-pressure gas pipe to be connected, one end of which is connected to the suction side of the second compressor and connected to the suction side of the first compressor via a third switch, and the other end of which is connected via a switch. A low-pressure gas pipe connected to the plurality of heat exchangers, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a discharge side of the second compressor via a fourth switch. And a compressor communication pipe connecting the suction side of the first compressor and supplying the discharge gas of the second compressor to the first compressor. Because, air conditioning and hot water, depending on the functionality required to each heat exchanger, such as ice storage, can be set greater saturation temperature from the compressor number within each heat exchanger. Also, when the difference between the condensing temperature and the evaporating temperature is small or large, the operation of a plurality of compressors can be properly used to realize a highly efficient cycle. In addition, when cooling and ice heat storage and heating and hot water supply are operated at the same time, the exhaust heat of cooling and ice heat storage can be used for heating and hot water supply, so that energy can be effectively used.

【0093】また、高圧ガス連通管を設けているので、
第2圧縮機の吐出ガスを第1圧縮機の吐出ガスに足せ、
凝縮(または蒸発)能力を向上できる。
Further, since a high-pressure gas communication pipe is provided,
Adding the discharge gas of the second compressor to the discharge gas of the first compressor;
The ability to condense (or evaporate) can be improved.

【0094】また、圧縮機の吸入側にアキュムレータを
設けているので、起動時や運転モード切換え時の圧縮機
への液戻りが防止でき、圧縮機が保護できるとともに、
冷媒量の調整が行える。
Further, since the accumulator is provided on the suction side of the compressor, it is possible to prevent the liquid from returning to the compressor at the time of starting or switching the operation mode, and to protect the compressor.
The amount of the refrigerant can be adjusted.

【0095】さらに、液管と第1アキュムレータとを第
6開閉弁と流量制御器を介してバイパス配管で接続し、
バイパス配管の流量制御器と第1アキュムレータとの間
の配管と第1圧縮機の吸入配管との間で熱交換を行う熱
交換部を設けたことにより、凝縮温度と蒸発温度の差が
比較的大きく、2台の圧縮機が直列運転となる場合に
は、高段側圧縮機の吸入冷媒ガスを冷却して、その吐出
温度上昇を防止し、運転範囲を拡大することができる。
Further, the liquid pipe and the first accumulator are connected by a bypass pipe via a sixth on-off valve and a flow rate controller,
By providing a heat exchange section for performing heat exchange between the pipe between the flow controller of the bypass pipe and the first accumulator and the suction pipe of the first compressor, the difference between the condensation temperature and the evaporation temperature is relatively small. Largely, when two compressors are operated in series, it is possible to cool the suction refrigerant gas of the high-stage compressor, prevent the discharge temperature from rising, and expand the operation range.

【0096】そして、第1または第2圧縮機を能力可変
型圧縮機とすることにより、設定飽和温度での冷媒流量
を可変にでき、各熱交換器で必要な能力を発揮すること
ができる。
[0096] When the first or second compressor is a variable capacity type compressor, the flow rate of the refrigerant at the set saturation temperature can be varied, and each heat exchanger can exhibit the required capacity.

【0097】実施例3.以下、この発明の実施例3を図
9〜図11に基づいて説明する。図9はこの発明の一実
施例を示すn=4として4つの飽和温度を生成するため
の一般的な冷媒回路の構成図である。図において1〜3
はそれぞれ第1、第2、第3圧縮機、20a〜20d,
4a〜4dはそれぞれの圧縮機を接続する吸入側及び吐
出側の開閉弁、5は一端部が第1圧縮機1の吐出配管1
5に、他端部が開閉弁26a〜26dを介して第1〜第
4熱交換器51a〜51dのそれぞれに接続された第1
ガス管、6は一端部が第2圧縮機2の吐出配管14ある
いは第1圧縮機1の吸入配管18に、他端部が開閉弁2
7a〜27dを介して第1〜第4の熱交換器51a〜5
1dのそれぞれに接続された第2ガス管、7は一端部が
第3圧縮機3の吐出配管13あるいは第2圧縮機2の吸
入配管17に、他端部が開閉弁28a〜28dを介して
第1〜第4熱交換器51a〜51dのそれぞれに接続さ
れた第3ガス管、8は一端部が第3圧縮機3の吸入配管
16に、他端部が開閉弁29a〜29dを介して第1〜
第4の熱交換器51a〜51dのそれぞれに接続された
第4ガス管である。64は上記熱交換器51a〜51d
のそれぞれに冷媒流量制御弁31a〜31dを介して接
続された液管である。
Embodiment 3 FIG. Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a configuration diagram of a general refrigerant circuit for generating four saturation temperatures with n = 4 according to an embodiment of the present invention. In the figure, 1-3
Denote first, second and third compressors, 20a to 20d, respectively.
Reference numerals 4a to 4d denote on-off valves on the suction side and discharge side for connecting the respective compressors, and reference numeral 5 denotes one end of the discharge pipe 1 of the first compressor 1.
5, the other end of which is connected to each of the first to fourth heat exchangers 51a to 51d via the on-off valves 26a to 26d.
The gas pipe 6 has one end connected to the discharge pipe 14 of the second compressor 2 or the suction pipe 18 of the first compressor 1 and the other end connected to the on-off valve 2.
7a to 27d through the first to fourth heat exchangers 51a to 51d
One end of the second gas pipe 7 connected to each of 1d is connected to the discharge pipe 13 of the third compressor 3 or the suction pipe 17 of the second compressor 2, and the other end is connected to on-off valves 28a to 28d. One end of the third gas pipe 8 connected to each of the first to fourth heat exchangers 51a to 51d is connected to the suction pipe 16 of the third compressor 3, and the other end is connected to the on-off valves 29a to 29d. First to first
It is a fourth gas pipe connected to each of the fourth heat exchangers 51a to 51d. 64 denotes the heat exchangers 51a to 51d.
Is a liquid pipe connected to each of the above through refrigerant flow control valves 31a to 31d.

【0098】次にこの回路の動作について説明する。4
つの飽和温度を自由に得ることができ、種々の組合せの
回路が可能となるが、ここでは代表例として3凝縮1蒸
発及び2凝縮2蒸発の飽和温度を得ることができる回路
の動作について説明する。図10は3凝縮1蒸発を得る
ことができる回路の運転動作状態を示す説明図である。
ここで、51a〜51cは第1〜第3凝縮器、51dは
蒸発器として作用するものとする。図中、開閉弁が閉止
状態の場合塗りつぶしている。矢印で冷媒の流れを示
す。第1圧縮機1から吐出された高温・高圧冷媒ガスは
第1ガス管5に流入し、開閉弁26aを通って第1凝縮
器である熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は冷媒流量制御弁31aを通って液管64に流
入する。
Next, the operation of this circuit will be described. 4
One saturation temperature can be freely obtained, and various combinations of circuits can be obtained. Here, as an example, the operation of a circuit capable of obtaining the saturation temperatures of three-condensation one evaporation and two-condensation two evaporation will be described. . FIG. 10 is an explanatory diagram showing an operation state of a circuit capable of obtaining three condensations and one evaporation.
Here, 51a to 51c function as first to third condensers, and 51d functions as an evaporator. In the figure, when the on-off valve is in the closed state, it is painted out. Arrows indicate the flow of the refrigerant. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a.

【0099】同様に、第2、第3圧縮機2,3のそれぞ
れから吐出された高温・高圧ガス冷媒は、それぞれ開閉
弁4b,4dを経て第2、第3ガス管6,7に流入し、
それぞれ、開閉弁27b,28cを通って第2、第3凝
縮器である熱交換器51b,51cに流入し、凝縮液化
される。熱交換器51b,51cのそれぞれで凝縮液化
した液冷媒は冷媒流量制御弁31b,31cを通って液
管64に流入し、熱交換器51aからの液冷媒と合流す
る。この3つの熱交換器51a〜51cから合流した液
冷媒は、冷媒流量制御弁31dを通って低圧の二相状態
となって熱交換器51dに流入し、蒸発ガス化される。
このガス冷媒は第4ガス管8を通って第1、第2、第3
圧縮機に吸入される。このように、この運転モードで
は、熱交換器51aで第1の凝縮温度、51bで第2の
凝縮温度、51cで第3の凝縮温度が、51dで蒸発温
度が得られる。図11は、2凝縮・2蒸発を得ることが
できる回路の運転動作状態を示す説明図である。ここ
で、51a,51bは第1、第2凝縮器、51c,51
dは第1、第2の蒸発器作用するものとする。図11も
同様、図中開閉弁が閉状態の場合塗りつぶしている。矢
印で冷媒の流れを示す。
Similarly, the high-temperature and high-pressure gas refrigerant discharged from each of the second and third compressors 2 and 3 flows into the second and third gas pipes 6 and 7 via the on-off valves 4b and 4d, respectively. ,
Each flows into the heat exchangers 51b and 51c, which are the second and third condensers, through the on-off valves 27b and 28c, respectively, and is condensed and liquefied. The liquid refrigerant condensed and liquefied in each of the heat exchangers 51b and 51c flows into the liquid pipe 64 through the refrigerant flow control valves 31b and 31c, and merges with the liquid refrigerant from the heat exchanger 51a. The liquid refrigerant that has joined from the three heat exchangers 51a to 51c enters a low-pressure two-phase state through the refrigerant flow control valve 31d, flows into the heat exchanger 51d, and is vaporized.
This gas refrigerant passes through the fourth gas pipe 8 to the first, second, third
It is sucked into the compressor. Thus, in this operation mode, the first condensing temperature is obtained by the heat exchanger 51a, the second condensing temperature is obtained by 51b, the third condensing temperature is obtained by 51c, and the evaporation temperature is obtained by 51d. FIG. 11 is an explanatory diagram showing an operation state of a circuit capable of obtaining two condensations and two evaporations. Here, 51a and 51b are first and second condensers, 51c and 51, respectively.
d is assumed to act as the first and second evaporators. Similarly, in FIG. 11, when the on-off valve in the figure is in the closed state, the area is filled. Arrows indicate the flow of the refrigerant.

【0100】第1圧縮機1から吐出される高温・高圧ガ
ス冷媒と、第2圧縮機から吐出された高温・高圧ガス冷
媒は合流して第1ガス管5に流入し、開閉弁26aを通
って第1凝縮器である熱交換器51aに流入し、凝縮液
化される。この液冷媒は冷媒流量制御弁31aを通って
液管64に流入する。一方、第3圧縮機3から吐出され
た高温・高圧ガス冷媒は第3ガス管7に流入し、開閉弁
28bを通って第2凝縮器である熱交換器51bに流入
し、凝縮液化される。この液冷媒は冷媒流量制御弁31
bを通って液管64に流入し熱交換器51aからの液冷
媒と合流する。この合流した液冷媒の一部は冷媒流量制
御弁31cを通って低圧の二相状態となり第1蒸発器で
ある熱交換器51cに流入し蒸発ガス化される。このガ
ス冷媒は第2ガス管6を通って、第1圧縮機の吸入配管
18を経て第1、第2圧縮機に吸入される。一方、残り
の液冷媒は冷媒流量制御弁31dを通って低圧二相状態
となり、第2蒸発器である熱交換器51dに流入し、蒸
発ガス化される。このガス冷媒は、第4ガス管8を通っ
て第3圧縮機に吸入される。
The high-temperature and high-pressure gas refrigerant discharged from the first compressor 1 and the high-temperature and high-pressure gas refrigerant discharged from the second compressor merge and flow into the first gas pipe 5, and pass through the on-off valve 26a. Into the heat exchanger 51a, which is the first condenser, to be condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a. On the other hand, the high temperature / high pressure gas refrigerant discharged from the third compressor 3 flows into the third gas pipe 7, flows into the heat exchanger 51b as the second condenser through the on-off valve 28b, and is condensed and liquefied. . This liquid refrigerant is a refrigerant flow control valve 31
b flows into the liquid pipe 64 and joins with the liquid refrigerant from the heat exchanger 51a. A part of the combined liquid refrigerant passes through the refrigerant flow control valve 31c to be in a low-pressure two-phase state, flows into the heat exchanger 51c as the first evaporator, and is vaporized. The gas refrigerant passes through the second gas pipe 6 and is drawn into the first and second compressors via the suction pipe 18 of the first compressor. On the other hand, the remaining liquid refrigerant enters a low-pressure two-phase state through the refrigerant flow control valve 31d, flows into the heat exchanger 51d as the second evaporator, and is vaporized. This gas refrigerant is drawn into the third compressor through the fourth gas pipe 8.

【0101】この様にこの運転モードでは、熱交換器5
1aで第1の凝縮温度、51bで第2の凝縮温度が、5
1cで第1の蒸発温度が、51dで第2の蒸発温度が得
られる。なお吸入側開閉弁20a−20d、吐出側開閉
弁4a−4dの数、位置およびガス管5−7と吸入配管
16−18、吐出配管13−15との接続の有無につい
ては、どういう運転モードを実現したいかによって異な
ってくる。また実現する運転モードにおいて逆止弁への
置き換えも可能である。さらに接続される熱交換器の数
も実施例では4つになっているが、これ以上増やしても
特に問題無い
Thus, in this operation mode, the heat exchanger 5
1a is the first condensation temperature, 51b is the second condensation temperature, 5b
The first evaporation temperature is obtained by 1c, and the second evaporation temperature is obtained by 51d. Regarding the number and position of the suction-side on-off valves 20a-20d and the discharge-side on-off valves 4a-4d, and whether or not the gas pipe 5-7 is connected to the suction pipe 16-18 and the discharge pipe 13-15, It depends on what you want to achieve. In the realized operation mode, it is possible to replace the check valve. Further, the number of heat exchangers to be connected is four in the embodiment .

【0102】実施例4.次に実施例2について図12,
13に基づいて説明する。図12は3つの飽和温度の生
成、特に2凝縮1蒸発温度(無論1凝縮1蒸発も可能)
が複雑な構成とすることなく実現できる冷媒回路構成図
の一実施例である。図において1,2は第1、第2の圧
縮機、5は一端部が第1の逆止弁52を介して上記第1
圧縮機1の吐出側に、他端部が開閉弁26a〜26dを
介して第1〜第3の熱交換器51a〜51cに接続され
た第1ガス管、6は一端部が上記第2圧縮機2の吐出側
に、他端部が開閉弁27a〜27cを介して第1〜第3
の熱交換器51a〜51cに接続された第2ガス管、7
は一端部がアキュムレータ56の吸入側に、他端部が開
閉弁28a〜28cを介して第1〜第3熱交換器51a
〜51cに接続された第3ガス管、64は上記第1〜第
3の熱交換器51a〜51cのそれぞれに冷媒流量制御
弁31a〜31cを介して接続された液管である。ま
た、上記アキュムレータ56の吐出側と第1、第2の圧
縮機1,2の吸入側とをそれぞれ第2、第3の逆止弁5
4,55を介して個々に接続し、さらに、上記第1ガス
管5の第1の逆止弁52の出口側の配管と第2ガス管6
とを第1開閉弁53を介して連通させている。なお、本
実施例ではアキュムレータが1つであり、1蒸発運転が
原則となり、もし2蒸発の場合はそれぞれの圧縮機にア
キュムレータを設ければよい。次に、この回路の動作に
ついて説明する。図13は2凝縮1蒸発温度を得ること
ができる回路の運転動作状態を示す説明図である。ここ
で51a,51bは第1、第2凝縮器、51cは蒸発器
として作用するものとする。図中、開閉弁が閉止状態の
場合塗りつぶしている。矢印で冷媒の流れを示す。
Embodiment 4 FIG. Next, FIG.
13 will be described. FIG. 12 shows the generation of three saturation temperatures, in particular, two condensation and one evaporation temperature (of course, one condensation and one evaporation is also possible).
FIG. 1 is an embodiment of a refrigerant circuit configuration diagram that can be realized without having a complicated configuration. In the drawing, reference numerals 1 and 2 denote a first and a second compressor, and 5 denotes an end portion of the first compressor through a first check valve 52.
On the discharge side of the compressor 1, a first gas pipe having the other end connected to the first to third heat exchangers 51a to 51c via on-off valves 26a to 26d. On the discharge side of the machine 2, the other end is connected to the first to third via the on-off valves 27 a to 27 c.
Second gas pipes connected to the heat exchangers 51a to 51c of the
Has one end on the suction side of the accumulator 56 and the other end connected to the first to third heat exchangers 51a through on-off valves 28a to 28c.
The third gas pipe 64 connected to the first to third heat exchangers 51a to 51c is a liquid pipe connected to each of the first to third heat exchangers 51a to 51c via the refrigerant flow control valves 31a to 31c. Further, the discharge side of the accumulator 56 and the suction sides of the first and second compressors 1 and 2 are connected to the second and third check valves 5 respectively.
4 and 55, and further connected to a pipe on the outlet side of the first check valve 52 of the first gas pipe 5 and a second gas pipe 6.
Are communicated via the first on-off valve 53. In this embodiment, the number of accumulators is one. In principle, one evaporator is used. In the case of two evaporators, an accumulator may be provided for each compressor. Next, the operation of this circuit will be described. FIG. 13 is an explanatory diagram showing the operating state of the circuit capable of obtaining the two-condensation and one-evaporation temperature. Here, 51a and 51b function as first and second condensers, and 51c functions as an evaporator. In the figure, when the on-off valve is in the closed state, it is painted out. Arrows indicate the flow of the refrigerant.

【0103】第1圧縮機1から吐出された高温高圧冷媒
ガスは第1の逆止弁52を経て、第1ガス管5に流入
し、開閉弁26aを通って第1凝縮器である熱交換器5
1aに流入し、凝縮液化される。この液冷媒は冷媒流量
制御弁31aを通って液管64に流入する。一方、第2
圧縮機2から吐出された高温高圧冷媒ガスは第2ガス管
6に流入し、開閉弁27bを通って第2凝縮器である熱
交換器51bに流入し、凝縮液化される。この液冷媒
は、冷媒流量制御弁31bを通って液管64に流入し、
第1凝縮器である熱交換器51aからの液冷媒と合流す
る。この合流した液冷媒は、冷媒流量制御弁31cを通
って低圧の二相状態となって熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、第3ガス管7を通
ってアキュムレータ56を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで第1の凝縮温度が、熱交換器51
bで第2の凝縮温度が、熱交換器51cで蒸発温度が得
られる。ここで、第1の開閉弁53は、2凝縮と1凝縮
との運転の切換えに使用する。(1凝縮の場合、開状
態) また、第1の逆止弁52は1凝縮運転において、負荷が
小さくなり、第1圧縮機1停止時、第2圧縮機2から第
1圧縮機1への冷媒の流入を防ぐためにある。第2、第
3の逆止弁54,55は、第1、第2圧縮機1,2停止
時、それぞれの吐出から吸入への冷媒の洩れを防止する
ためにある。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5 through the first check valve 52, passes through the on-off valve 26a, and serves as a heat exchanger serving as the first condenser. Vessel 5
1a, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a. On the other hand, the second
The high-temperature and high-pressure refrigerant gas discharged from the compressor 2 flows into the second gas pipe 6, flows into the heat exchanger 51b as the second condenser through the on-off valve 27b, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31b,
It merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The merged liquid refrigerant flows into the heat exchanger 51c in a low-pressure two-phase state through the refrigerant flow control valve 31c.
It is vaporized and gasified. This gas refrigerant passes through the third gas pipe 7, passes through the accumulator 56 and passes through the first compressor 1 and the second compressor 1.
It is sucked into the compressor 2. Thus, in this operation mode, the first condensing temperature in the heat exchanger 51a is
At b, the second condensation temperature is obtained, and at the heat exchanger 51c, the evaporation temperature is obtained. Here, the first on-off valve 53 is used for switching operation between two-condensation and one-condensation. (In the case of one condensation, the open state) In the one condensation operation, the load of the first check valve 52 is reduced, and when the first compressor 1 is stopped, the first check valve 52 switches from the second compressor 2 to the first compressor 1. This is to prevent the inflow of refrigerant. The second and third check valves 54 and 55 are provided to prevent the leakage of the refrigerant from the respective discharges to the suction when the first and second compressors 1 and 2 are stopped.

【0104】実施例5.次に実施例5について図14〜
図24に基づいて説明する。図14は2凝縮1蒸発の3
温度生成回路の給湯ヒートポンプへの利用を図った冷媒
回路の構成図の一実施例である。図において基本構成は
実施例4と同じであり、相違点のみ記述する。ガス管5
〜7、液管64に接続される熱交換器は、57が給湯用
熱交換器、58が風呂の湯の追焚き用熱交換器、59が
室内熱交換器、60は室外熱交換器である。
Embodiment 5 FIG. Next, FIG.
A description will be given based on FIG. FIG. 14 shows two condensations and three evaporations.
FIG. 3 is an embodiment of a configuration diagram of a refrigerant circuit for utilizing a temperature generation circuit for a hot water supply heat pump. In the figure, the basic configuration is the same as that of the fourth embodiment, and only different points will be described. Gas pipe 5
7, the heat exchanger connected to the liquid pipe 64 is a heat exchanger 57 for hot water supply, 58 is a heat exchanger for reheating the hot water in the bath, 59 is an indoor heat exchanger, and 60 is an outdoor heat exchanger. is there.

【0105】第1ガス管5は開閉弁26a,26b,2
6dを介して給湯用熱交換器57、追焚き用熱交換器5
8、室外熱交換器60に接続されている。第2ガス管6
は開閉弁27c,27dを介して室内熱交換器59、室
外熱交換器60に接続されている。次に動作について説
明する。図15〜図24は主要な運転動作状態を示す説
明図である。図中、開閉弁が閉止状態の場合、塗りつぶ
している。矢印で冷媒の流れを示す。
The first gas pipe 5 has on-off valves 26a, 26b, 2
6d, a heat exchanger 57 for hot water supply, a heat exchanger 5 for additional heating
8. Connected to the outdoor heat exchanger 60. Second gas pipe 6
Is connected to the indoor heat exchanger 59 and the outdoor heat exchanger 60 via the open / close valves 27c and 27d. Next, the operation will be described. 15 to 24 are explanatory diagrams showing main driving operation states. In the figure, when the on-off valve is in the closed state, it is painted out. Arrows indicate the flow of the refrigerant.

【0106】図15は、冷房運転時の動作状態を示す説
明図である。図において、第1圧縮機1から吐出された
高温高圧冷媒ガスは第1の逆止弁52及び第1の開閉弁
53を経て、第2ガス管6で第2圧縮機2から吐出され
た高温高圧冷媒ガスと合流し、開閉弁27dを通って室
外熱交換器60に流入し、凝縮液化される。この液冷媒
は、冷媒流量制御弁31dを通って液管64に流入し、
冷媒流量制御弁31cを通って低圧の二相状態となって
室内熱交換器59へ流入し、蒸発ガス化される。このガ
ス冷媒は、第3ガス管7を通ってアキュムレータ56を
経て、第1圧縮機1及び第2圧縮機2に吸入される。こ
のように、この運転モードでは、室外熱交換器60で凝
縮温度が、室内熱交換器59で蒸発温度が得られる。次
に、暖房運転時の動作状態について図16に基づいて説
明する。
FIG. 15 is an explanatory diagram showing an operation state during the cooling operation. In the figure, a high-temperature and high-pressure refrigerant gas discharged from a first compressor 1 is supplied to a first check valve 52 and a first on-off valve.
After passing through 53 , the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 is merged in the second gas pipe 6, flows into the outdoor heat exchanger 60 through the on-off valve 27 d, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31d,
The refrigerant enters a low-pressure two-phase state through the refrigerant flow control valve 31c, flows into the indoor heat exchanger 59, and is vaporized. The gas refrigerant passes through the third gas pipe 7, passes through the accumulator 56, and is drawn into the first compressor 1 and the second compressor 2. As described above, in this operation mode, the condensation temperature is obtained in the outdoor heat exchanger 60, and the evaporation temperature is obtained in the indoor heat exchanger 59. Next, an operation state during the heating operation will be described with reference to FIG.

【0107】第1圧縮機1から吐出された高温高圧冷媒
ガスは第1の逆止弁52、第1の開閉弁53を経て、第
2ガス管6で第2圧縮機2から吐出された高温高圧冷媒
ガスと合流し、開閉弁27cを通って室内熱交換器59
に流入し、凝縮液化される。この液冷媒は、冷媒流量制
御弁31cを通って液管64に流入し、冷媒流量制御弁
31dを通って低圧の二相状態となって室外熱交換器6
0へ流入し、蒸発ガス化される。このガス冷媒は、第3
ガス管7を通ってアキュムレータ56を経て、第1圧縮
機1及び第2圧縮機2に吸入される。このように、この
運転モードでは、室内熱交換器59で凝縮温度が、室外
熱交換器60で蒸発温度が得られる。次に、給湯運転時
の動作状態について図17に基づいて説明する。第1圧
縮機1から吐出された高温高圧冷媒ガスは第1の逆止弁
52を経て、第1ガス管5に流入し、開閉弁26aを通
って給湯用熱交換器57に流入し、水を加熱し凝縮液化
される。この液冷媒は、冷媒流量制御弁31aを通って
液管64に流入し、冷媒流量制御弁31dを通って低圧
の二相状態となって室外熱交換器60へ流入し、蒸発ガ
ス化される。このガス冷媒は、第3ガス管7を通ってア
キュムレータ56を経て、第1圧縮機1に吸入される。
このように、この運転モードでは、給湯用熱交換器57
で凝縮温度が、室外熱交換器60で蒸発温度が得られ
る。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through a first check valve 52 and a first on-off valve 53, and passes through a second gas pipe 6 to be discharged from the second compressor 2. Merges with the high-pressure refrigerant gas and passes through the on-off valve 27c to the indoor heat exchanger 59.
And is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31c, passes through the refrigerant flow control valve 31d to be in a low-pressure two-phase state, and
0 and is evaporated and gasified. This gas refrigerant is
The gas is sucked into the first compressor 1 and the second compressor 2 via the accumulator 56 through the gas pipe 7. Thus, in this operation mode, the condensing temperature is obtained in the indoor heat exchanger 59, and the evaporation temperature is obtained in the outdoor heat exchanger 60. Next, an operation state during the hot water supply operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5 through the first check valve 52, flows into the hot-water supply heat exchanger 57 through the on-off valve 26a, and is Is heated and condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a, enters a low-pressure two-phase state through the refrigerant flow control valve 31d, flows into the outdoor heat exchanger 60, and is vaporized. . This gas refrigerant is sucked into the first compressor 1 via the accumulator 56 through the third gas pipe 7.
Thus, in this operation mode, the hot water supply heat exchanger 57
To obtain the condensation temperature and the outdoor heat exchanger 60 to obtain the evaporation temperature.

【0108】次に、冷房給湯運転時の動作状態について
図18に基づいて説明する。第2圧縮機2から吐出され
た高温高圧冷媒ガスは第1の逆止弁52、第1の開閉弁
53を経て、第1ガス管5で第1圧縮機1から吐出され
た高温高圧冷媒ガスと合流し、開閉弁26aを通って給
湯用熱交換器57に流入し、凝縮液化される。この液冷
媒は、冷媒流量制御弁31aを通って液管64に流入
し、冷媒流量制御弁31cを通って低圧の二相状態とな
って室内熱交換器59へ流入し、蒸発ガス化される。こ
のガス冷媒は、第3ガス管7を通ってアキュムレータ5
6を経て、第1圧縮機1及び第2圧縮機2に吸入され
る。このように、この運転モードでは、給湯用熱交換器
57で凝縮温度が、室内熱交換器59で蒸発温度が得ら
れる。また、冷房を行いながらの給湯運転であるため、
夏場は給湯の負荷が小さく、冷房運転時の給湯のみで負
荷がまかなえるかで、給湯としての電気料金は冷房に含
まれるためにほとんど不用となる。次に、暖房・給湯運
転時の動作状態について図19に基づいて説明する。第
1圧縮機1から吐出された高温高圧冷媒ガスは、第1ガ
ス管5に流入し、開閉弁26aを通って給湯用熱交換器
57に流入し、凝縮液化される。この液冷媒は、冷媒流
量制御弁31aを通って液管64に流入する。一方、第
2圧縮機2から吐出された高温高圧冷媒ガスは、第2ガ
ス管6に流入し、開閉弁27cを通って室内熱交換器5
9に流入し、凝縮液化される。この液冷媒は、冷媒流量
制御弁31cを通って液管64に流入し、給湯用熱交換
器57からの液冷媒と合流する。この合流した液冷媒
は、冷媒流量制御弁31dを通って低圧の二相状態とな
って室外熱交換器60へ流入し、蒸発ガス化される。こ
のガス冷媒は、第3ガス管7を通ってアキュムレータ5
6を経て、第1圧縮機1及び第2圧縮機2に吸入され
る。このように、この運転モードでは、給湯用熱交換器
57で第1の凝縮温度が、室内熱交換器59で第2の凝
縮温度が、室外熱交換器60で蒸発温度が得られる。以
上説明したように、2つのコンプレッサーの使い分けに
より、暖房、給湯ともそれに適した凝縮温度を生成でき
るため、暖房能力の低下を招くことなく、給湯運転が実
現できることになる。
Next, an operation state during the cooling hot water supply operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the first check valve 52 and the first on-off valve 53, and is discharged from the first compressor 1 through the first gas pipe 5. And flows into the hot water supply heat exchanger 57 through the on-off valve 26a to be condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a, enters a low-pressure two-phase state through the refrigerant flow control valve 31c, flows into the indoor heat exchanger 59, and is vaporized. . This gas refrigerant passes through the third gas pipe 7 and accumulator 5
After that, the air is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the condensing temperature is obtained in the hot water supply heat exchanger 57 and the evaporation temperature is obtained in the indoor heat exchanger 59. In addition, because it is a hot water supply operation while performing cooling,
In summer, the load of hot water supply is small, and the load can be covered only by the hot water supply during cooling operation. Electricity as hot water supply is included in cooling, and is almost unnecessary. Next, an operation state during the heating / hot water supply operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, flows into the hot water supply heat exchanger 57 through the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second gas pipe 6, passes through the on-off valve 27c, and flows into the indoor heat exchanger 5
9 and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31c, and merges with the liquid refrigerant from the hot water supply heat exchanger 57. The merged liquid refrigerant passes through the refrigerant flow control valve 31d, enters a low-pressure two-phase state, flows into the outdoor heat exchanger 60, and is vaporized. This gas refrigerant passes through the third gas pipe 7 and accumulator 5
After that, the air is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the first condensing temperature is obtained in the hot water supply heat exchanger 57, the second condensing temperature is obtained in the indoor heat exchanger 59, and the evaporation temperature is obtained in the outdoor heat exchanger 60. As described above, by appropriately using the two compressors, a suitable condensing temperature can be generated for both heating and hot water supply, so that hot water supply operation can be realized without lowering the heating capacity.

【0109】次に、追焚き運転時の動作状態について図
20に基づいて説明する。第1圧縮機1から吐出された
高温高圧冷媒ガスは第1の逆止弁52を経て、第1ガス
管5に流入し、開閉弁26bを通って追焚き用熱交換器
58に流入し、凝縮液化される。この液冷媒は、冷媒流
量制御弁31bを通って液管64に流入し、冷媒流量制
御弁31dを通って低圧の二相状態となって室外熱交換
器60へ流入し、蒸発ガス化される。このガス冷媒は、
第3ガス管7を通ってアキュムレータ56を経て、第1
圧縮機1に吸入される。このように、この運転モードで
は、追焚き用熱交換器58で凝縮温度が、室外熱交換器
60で蒸発温度が得られる。以上説明したように、浴槽
内の湯をヒートポンプ運転により、暖めることが可能と
なる。
Next, the operation state during the reheating operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5 through the first check valve 52, flows into the additional heat exchanger 58 through the on-off valve 26b, It is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31b, enters a low-pressure two-phase state through the refrigerant flow control valve 31d, flows into the outdoor heat exchanger 60, and is vaporized. . This gas refrigerant is
Through the third gas pipe 7 and the accumulator 56, the first
It is sucked into the compressor 1. Thus, in this operation mode, the condensation temperature is obtained by the additional heat exchanger 58, and the evaporation temperature is obtained by the outdoor heat exchanger 60. As described above, the hot water in the bathtub can be warmed by the heat pump operation.

【0110】次に、給湯熱利用急速追焚き運転時の動作
状態について図21に基づいて説明する。第1圧縮機1
から吐出された高温高圧冷媒ガスは第1の逆止弁52を
経て、第1ガス管5に流入し、開閉弁26bを通って追
焚き用熱交換器58に流入し、凝縮液化される。この液
冷媒は、冷媒流量制御弁31bを通って液管64に流入
し、冷媒流量制御弁31aを通って低圧の二相状態とな
って給湯用熱交換器57へ流入し、蒸発ガス化される。
このガス冷媒は、第3ガス管7を通ってアキュムレータ
56を経て、第1圧縮機1に吸入される。このように、
この運転モードでは、追焚き用熱交換器58で凝縮温度
が、給湯用熱交換器57で蒸発温度が得られる。以上説
明したように、高温の熱を熱源として利用するので、外
気熱源に比べて大幅に能力が向上し、浴槽内のお湯を急
速に暖めることができる。
Next, the operation state during the rapid reheating operation using hot water supply heat will be described with reference to FIG. First compressor 1
The high-temperature and high-pressure refrigerant gas discharged from the gas flows into the first gas pipe 5 through the first check valve 52, flows into the additional heat exchanger 58 through the on-off valve 26b, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31b, enters a low-pressure two-phase state through the refrigerant flow control valve 31a, flows into the hot water supply heat exchanger 57, and is vaporized and gasified. You.
This gas refrigerant is sucked into the first compressor 1 via the accumulator 56 through the third gas pipe 7. in this way,
In this operation mode, the condensation temperature is obtained by the additional heat exchanger 58, and the evaporation temperature is obtained by the hot water supply heat exchanger 57. As described above, since the high-temperature heat is used as the heat source, the capacity is greatly improved as compared with the outside air heat source, and the hot water in the bathtub can be rapidly heated.

【0111】次に、暖房・追焚き運転時の動作状態につ
いて図22に基づいて説明する。第1圧縮機1から吐出
された高温高圧冷媒ガスは、第1ガス管5に流入し、開
閉弁26bを通って追焚き用熱交換器58に流入し、凝
縮液化される。この液冷媒は、冷媒流量制御弁31bを
通って液管64に流入する。一方、第2圧縮機2から吐
出された高温高圧冷媒ガスは、第2ガス管6に流入し、
開閉弁27cを通って室内熱交換器59に流入し、凝縮
液化される。この液冷媒は、冷媒流量制御弁31cを通
って液管64に流入し、追焚き用熱交換器59からの液
冷媒と合流する。この合流した液冷媒は、冷媒流量制御
弁31dを通って低圧の二相状態となって室外熱交換器
60へ流入し、蒸発ガス化される。このガス冷媒は、第
3ガス管7を通ってアキュムレータ56を経て、第1圧
縮機1及び第2圧縮機2に吸入される。このように、こ
の運転モードでは、追焚き用熱交換器58で第1の凝縮
温度が、室内熱交換器59で第2の凝縮温度が、室外熱
交換器60で蒸発温度が得られる。暖房給湯運転と同
様、暖房能力の低下を招くことなく、追焚き運転が実現
できることになる。
Next, the operation state during the heating / reheating operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, flows into the additional heat exchanger 58 through the on-off valve 26b, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31b. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second gas pipe 6,
It flows into the indoor heat exchanger 59 through the on-off valve 27c and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31c, and merges with the liquid refrigerant from the additional heat exchanger 59. The merged liquid refrigerant passes through the refrigerant flow control valve 31d, enters a low-pressure two-phase state, flows into the outdoor heat exchanger 60, and is vaporized. The gas refrigerant passes through the third gas pipe 7, passes through the accumulator 56, and is drawn into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the first condensing temperature is obtained by the additional heat exchanger 58, the second condensing temperature is obtained by the indoor heat exchanger 59, and the evaporation temperature is obtained by the outdoor heat exchanger 60. Similar to the heating hot water supply operation, the additional heating operation can be realized without lowering the heating capacity.

【0112】次に、浴槽内の残湯の熱回収利用給湯運転
時の動作状態について図23に基づいて説明する。第1
圧縮機1から吐出された高温高圧冷媒ガスは第1の逆止
弁52を経て、第1ガス管5に流入し、開閉弁26aを
通って給湯用熱交換器57に流入し、凝縮液化される。
この液冷媒は、冷媒流量制御弁31aを通って液管64
に流入し、冷媒流量制御弁31bを通って低圧の二相状
態となって追焚き用熱交換器58へ流入し、蒸発ガス化
される。このガス冷媒は、第3ガス管7を通ってアキュ
ムレータ56を経て、第1圧縮機1に吸入される。この
ように、この運転モードでは、給湯用熱交換器57で凝
縮温度が、追焚き用熱交換器58で蒸発温度が得られ
る。以上説明したように、無駄に捨てられる残湯の熱を
有効に給湯に利用できるので、外気熱源による給湯より
も省エネが実現できる。
Next, an operation state during a hot water supply operation utilizing heat recovery and remaining hot water in the bathtub will be described with reference to FIG. First
The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows into the first gas pipe 5 through the first check valve 52, flows into the hot water supply heat exchanger 57 through the on-off valve 26a, and is condensed and liquefied. You.
The liquid refrigerant passes through the refrigerant flow control valve 31a and passes through the liquid pipe 64.
Into the low-pressure two-phase state through the refrigerant flow control valve 31b, flow into the additional heat exchanger 58, and evaporate. This gas refrigerant is sucked into the first compressor 1 via the accumulator 56 through the third gas pipe 7. Thus, in this operation mode, the condensing temperature is obtained by the hot water supply heat exchanger 57, and the evaporation temperature is obtained by the additional heating heat exchanger 58. As described above, since the heat of the remaining hot water wasted can be effectively used for hot water supply, energy saving can be realized as compared with the hot water supply by the outside air heat source.

【0113】最後に、給湯利用のデフロスト暖房運転時
の動作状態について図24に基づいて説明する。第1圧
縮機1から吐出された高温高圧冷媒ガスは、第1ガス管
5に流入し、開閉弁26dを通って室外熱交換器60に
流入し、凝縮液化し、その熱により霜を溶かす。この液
冷媒は、冷媒流量制御弁26dを通って液管64に流入
する。一方、第2圧縮機2から吐出された高温高圧冷媒
ガスは、第2ガス管6に流入し、開閉弁27cを通って
室内熱交換器59に流入し、凝縮液化される。この液冷
媒は、冷媒流量制御弁31cを通って液管64に流入
し、室外熱交換器60からの液冷媒と合流する。この合
流した液冷媒は、冷媒流量制御弁31aを通って低圧の
二相状態となって熱交換器57へ流入し、蒸発ガス化さ
れる。このガス冷媒は、第3ガス管7を通ってアキュム
レータ56を経て、第1圧縮機1及び第2圧縮機2に吸
入される。このように、この運転モードでは、室外熱交
換器60で第1の凝縮温度が、室内熱交換器59で第2
の凝縮温度が、給湯用熱交換器57で蒸発温度が得られ
る。以上説明したように、給湯の熱を熱源として利用で
きるため、暖房しながらのデフロスト運転が可能とな
り、しかも暖房・デフロストともそれぞれに最適な凝縮
温度が生成できるため暖房能力の低下も招くことはな
い。
Finally, an operation state during the defrost heating operation using hot water supply will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first gas pipe 5, flows into the outdoor heat exchanger 60 through the on-off valve 26d, is condensed and liquefied, and melts frost by its heat. This liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 26d. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second gas pipe 6, flows into the indoor heat exchanger 59 through the on-off valve 27c, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the refrigerant flow control valve 31c, and merges with the liquid refrigerant from the outdoor heat exchanger 60. The combined liquid refrigerant passes through the refrigerant flow control valve 31a, enters a low-pressure two-phase state, flows into the heat exchanger 57, and is vaporized. The gas refrigerant passes through the third gas pipe 7, passes through the accumulator 56, and is drawn into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the first condensation temperature in the outdoor heat exchanger 60 and the second condensation temperature in the outdoor heat exchanger 59
And the evaporation temperature is obtained by the hot water supply heat exchanger 57. As described above, since the heat of hot water can be used as a heat source, a defrost operation can be performed while heating, and furthermore, optimal condensing temperatures can be generated for both heating and defrost, so that a decrease in heating capacity does not occur. .

【0114】この発明の実施例3〜5における蒸気圧縮
式冷凍サイクルによる多温度生成回路は、以上のように
構成されているので、所望の運転モードに応じて各熱交
換器毎にn個の飽和温度の設定が可能となり、しかも高
効率で運転範囲の広いサイクルが実現できる効果があ
る。
Since the multi-temperature generating circuit using the vapor compression refrigeration cycle in the third to fifth embodiments of the present invention is configured as described above, n heat exchangers are provided for each heat exchanger according to a desired operation mode. It is possible to set the saturation temperature, and there is an effect that a cycle with high efficiency and a wide operating range can be realized.

【0115】また、多温度生成回路は、以上のように構
成されているので2凝縮・1蒸発の運転モードを高効率
で実現できる効果がある。また、多温度生成回路は、以
上のように構成されているので、暖房能力の低下を招く
ことなく給湯や追焚き運転が同時に実現できるととも
に、給湯熱利用による浴槽内のお湯の急速追焚き運転、
ノンストップ暖房運転(デフロスト中にも暖房運転可
能)及び冷房排熱や風呂の残湯の熱回収による高効率給
湯運転が可能となるため、経済的(省エネ)で快適な住
生活を提供できる効果がある。
Further, since the multi-temperature generating circuit is configured as described above, there is an effect that the operation mode of two condensation and one evaporation can be realized with high efficiency. In addition, since the multi-temperature generation circuit is configured as described above, hot water supply and additional heating operation can be simultaneously performed without lowering the heating capacity, and rapid additional heating operation of hot water in the bathtub using hot water supply heat is performed. ,
Non-stop heating operation (heating operation is possible even during defrosting) and high-efficiency hot water supply operation by cooling exhaust heat and heat recovery of remaining hot water in the bath are possible, so that an economic (energy saving) and comfortable living can be provided. There is.

【0116】実施例6.図25はこの発明の実施例6の
蒸気圧縮式冷凍サイクルの冷媒系の構成図である。図に
おいて、1は第1圧縮機、2は第2圧縮機、11は第1
アキュムレータ、12は第2アキュムレータ、51a,
51b,51cは熱交換器である。61は第1圧縮機1
の吐出側に接続された第1高圧ガス管、62は第2圧縮
機2の吐出側に第1開閉弁21を介して接続された中圧
ガス管、63は第1圧縮機1吸入側に第1アキュムレー
タ11を介して接続された低圧ガス管、64は液管であ
る。第1圧縮機1と第1アキュムレータ11の間の配管
には第2開閉弁22と第1逆止弁41が設けられてい
る。23は第2圧縮機2と第1開閉弁21の間の配管と
高圧ガス管61とを接続する配管に設けられた第3開閉
弁、24は第2圧縮機2と第3開閉弁23の間の配管と
第2開閉弁22と第1逆止弁41の間の配管とを接続す
る配管に設けられた第4開閉弁、25は中圧ガス管62
と第2アキュムレータ12の間の配管に設けられた第5
開閉弁、42は第1圧縮機1と第2アキュムレータ12
の間の配管に設けられた第2逆止弁である。また熱交換
器51a,51b,51cには、高圧ガス管61、中圧
ガス管62、低圧ガス管63とは各々開閉弁26a,2
7a,28a及び26b,27b,28b及び26,2
7c,28cを介して分岐接続するとともに、液管64
が冷媒流量制御器である電子式膨張弁31a,31b,
31cをそれぞれ介して接続している。また、中圧ガス
管62から開閉弁30aを介して液管64へ至る第1の
バイパス路68と液管64から開閉弁30bを介して第
1圧縮機1の吸入側へ至る第2のバイパス路67を有し
ている。
Embodiment 6 FIG. FIG. 25 is a configuration diagram of a refrigerant system of a vapor compression refrigeration cycle according to Embodiment 6 of the present invention. In the figure, 1 is a first compressor, 2 is a second compressor, and 11 is a first compressor.
The accumulator, 12 is a second accumulator, 51a,
51b and 51c are heat exchangers. 61 is the first compressor 1
A first high-pressure gas pipe connected to the discharge side of the first compressor, 62 is a medium-pressure gas pipe connected to the discharge side of the second compressor 2 via the first on-off valve 21, and 63 is a first compressor 1 suction side. A low-pressure gas pipe 64 connected via the first accumulator 11 is a liquid pipe. A second on-off valve 22 and a first check valve 41 are provided in a pipe between the first compressor 1 and the first accumulator 11. Reference numeral 23 denotes a third on-off valve provided on a pipe connecting the high pressure gas pipe 61 to a pipe between the second compressor 2 and the first on-off valve 21, and 24 denotes a third on-off valve of the second compressor 2 and the third on-off valve 23. A fourth on-off valve provided on a pipe connecting the pipe between the second on-off valve 22 and the pipe between the first check valve 41 and 25 is a medium-pressure gas pipe 62.
Fifth provided in a pipe between the second accumulator 12 and
An on-off valve 42 is provided between the first compressor 1 and the second accumulator 12.
The second check valve is provided in the pipe between them. In the heat exchangers 51a, 51b, 51c, the high-pressure gas pipe 61, the medium-pressure gas pipe 62, and the low-pressure gas pipe 63 are connected to the on-off valves 26a, 26, respectively.
7a, 28a and 26b, 27b, 28b and 26,2
7c and 28c, and the liquid pipe 64
Are the electronic expansion valves 31a, 31b,
31c. Further, a first bypass passage 68 extending from the medium-pressure gas pipe 62 to the liquid pipe 64 via the on-off valve 30a and a second bypass extending from the liquid pipe 64 to the suction side of the first compressor 1 via the on-off valve 30b. There is a road 67.

【0117】この発明の多温度生成回路には、表1に示
すような6つの運転モードがあり、図26〜31を用い
て説明する。
The multi-temperature generating circuit of the present invention has six operation modes as shown in Table 1, which will be described with reference to FIGS.

【0118】まず、図26の実施例の多温度生成回路の
運転動作状態を示す説明図を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房あるいは暖房
時などに適用される。
First, referring to the explanatory diagram showing the operating state of the multi-temperature generating circuit of the embodiment of FIG. 26, when two temperatures are generated for generating one condensing temperature and one evaporating temperature, The operation when the difference is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0119】図26では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30a,30bを閉
止状態(図中塗りつぶし)としている。第1圧縮機1、
第2圧縮機2は並列運転される。矢印で冷媒の流れを示
す。
FIG. 26 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c, 30a, 30b are in a closed state (filled in the figure). First compressor 1,
The second compressor 2 is operated in parallel. Arrows indicate the flow of the refrigerant.

【0120】第2圧縮機2から吐出された高温高圧冷媒
ガスは、高圧ガス連通管65を経て第1高圧ガス管61
で第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 to the first high-pressure gas pipe 61.
At the same time, merges with the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the first accumulator 11 through the low-pressure gas pipe 63 and passes through the first compressor 1 and the second
It is sucked into the compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51c.

【0121】次に、図27を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、この凝縮温
度と蒸発温度の差が比較的大きい場合の動作について説
明する。この運転モードは、例えば高温給湯や給湯+氷
蓄熱時などに適用される。図27では、熱交換器51a
が凝縮器、熱交換器51bが停止、熱交換器51cが蒸
発器として動作する例を示しており、第2開閉弁22、
第3開閉弁23、第4開閉弁24、第5開閉弁25、開
閉弁27a,28a,26b,27b,28b,26
c,27c開閉弁を閉止状態としている。
Next, referring to FIG. 27, description will be given of an operation in the case of generating two temperatures in which one condensing temperature and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively large. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. In FIG. 27, the heat exchanger 51a
Represents an example in which the condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c operates as an evaporator.
Third on-off valve 23, fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28a, 26b, 27b, 28b, 26
The c and 27c on-off valves are closed.

【0122】第2圧縮機2から吐出された冷媒ガスは、
第1開閉弁、中圧ガス管62、第1のバイパス路68、
第7開閉弁30aを通って液管64に入り、液管64内
の液と混合することによって冷却され、第2のバイパス
路67、第8の開閉弁30bを通って第1圧縮機1に吸
入される。第1の圧縮機1によってさらに圧縮された高
温高圧のガスは高圧ガス管61、開閉弁26aを通って
熱交換器51aに流入し、凝縮液化される。この液冷媒
は、電気式膨張弁31aを通って高圧二相冷媒となり、
液管64に流入する。液管内の液冷媒は電子式膨張弁3
1cを通って低圧の二相状態となって熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、開閉弁2
8cを介して、低圧ガス管63を通り、第1アキュムレ
ータ11を経て、第2圧縮機2に吸入される。このよう
に、この運転モードでは、二段圧縮運転となり、低段側
圧縮機である第2圧縮機2の吐出ガスを冷却して高段側
圧縮運転となり、低段側圧縮機である第2圧縮機2の吐
出ガスを冷却して高段側圧縮機である第1圧縮機1に吸
入させるため、その吐出温度上昇が防止でき、広い運転
範囲において、熱交換器51aでの凝縮温度が、熱交換
器51cで蒸発温度が得られる。
The refrigerant gas discharged from the second compressor 2 is
A first on-off valve, a medium pressure gas pipe 62, a first bypass passage 68,
The liquid enters the liquid pipe 64 through the seventh on-off valve 30a, is cooled by mixing with the liquid in the liquid pipe 64, and passes through the second bypass path 67 and the eighth on-off valve 30b to the first compressor 1. Inhaled. The high-temperature and high-pressure gas further compressed by the first compressor 1 flows into the heat exchanger 51a through the high-pressure gas pipe 61 and the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant becomes a high-pressure two-phase refrigerant through the electric expansion valve 31a,
The liquid flows into the liquid pipe 64. The liquid refrigerant in the liquid pipe is an electronic expansion valve 3
It passes through 1c to a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant is supplied to the on-off valve 2
The gas is sucked into the second compressor 2 via the first accumulator 11 through the low-pressure gas pipe 63 via 8c. As described above, in this operation mode, the two-stage compression operation is performed, the discharge gas of the second compressor 2 that is the low-stage compressor is cooled, the high-stage compression operation is performed, and the second stage compression that is the low-stage compressor is performed. Since the gas discharged from the compressor 2 is cooled and sucked into the first compressor 1, which is a high-stage compressor, the discharge temperature of the compressor 2 can be prevented from rising, and the condensing temperature in the heat exchanger 51a can be reduced over a wide operating range. The evaporation temperature is obtained by the heat exchanger 51c.

【0123】次に図28のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、2つの凝縮温度
と1つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的
温の給湯運転時などに適用される。
Next, referring to FIG. 28, which shows the operating state of the multi-temperature generating circuit of this embodiment, when three temperatures are generated to generate two condensing temperatures and one evaporating temperature, The operation when the temperature difference is relatively small will be described. This operation mode is, for example, normal heating + relatively low
It applied, such as during hot water supply operation of the temperature.

【0124】図28では、熱交換器51aが第1凝縮
器、熱交換器51bが第2凝縮器、熱交換器51cが蒸
発器として動作する例を示しており、第3開閉弁23、
第4開閉弁24、第5開閉弁25、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 28 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator.
Fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0125】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and condenses and liquefies. Is done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 via the first on-off valve 21, passes through the on-off valve 27b, and passes through the heat exchanger 51b as a second condenser. And is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The joined liquid refrigerant is supplied to the electric expansion valve 31c.
Through the heat exchanger 51c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant is supplied to the low-pressure gas pipe 6.
3, the air is sucked into the first compressor 1 and the second compressor 2 via the first accumulator 11. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 51a, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51c.

【0126】次に、図29を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的
温の給湯運転時などに適用される。図29では、熱交換
器51aが第1凝縮器、熱交換器51bが第2凝縮器、
熱交換器51cが蒸発器として動作する例を示してお
り、第2開閉弁22、第3開閉弁23、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
28b,26c,27c開閉弁を閉止状態としている。
Next, referring to FIG. 29, two condensation temperatures and 1
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is, for example, normal heating + relatively high
It applied, such as during hot water supply operation of the temperature. In FIG. 29, the heat exchanger 51a is a first condenser, the heat exchanger 51b is a second condenser,
An example in which the heat exchanger 51c operates as an evaporator is shown, and the second on-off valve 22, the third on-off valve 23, the fourth on-off valve 2
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
The on-off valves 28b, 26c, 27c are closed.

【0127】第2圧縮機2から吐出された冷媒ガスの一
部は、第1開閉弁21、中圧ガス管62、第1のバイパ
ス路68、第7開閉弁30aを通って液管64に入り、
液管64内の液と混合することによって冷却され、第2
のバイパス路67、第8の開閉弁30bを通って第1圧
縮機1に吸入される。第1の圧縮機1によってさらに圧
縮された高温高圧のガスは高圧ガス管61、開閉弁26
aを通って熱交換器51aに流入し、凝縮液化される。
この液冷媒は、電子式膨張弁31aを通って二相冷媒と
なり液管64に流入する。一方、第2圧縮機2から吐出
された冷媒ガスの残りは第1開閉弁21、中圧ガス管6
2、開閉弁27bを通って、第2凝縮器である熱交換器
51bに流入し、凝縮液化される。この液冷媒は、電子
式膨張弁31bを通って液管64に流入し、第1凝縮器
である熱交換器51aからの二相冷媒と合流する。この
合流した冷媒のうち、ガス冷媒は第1圧縮機1の吸入側
へ流れ、液冷媒は電子式膨張弁31cを通って低圧の二
相状態となって熱交換器51cへ流入し、蒸発ガス化さ
れる。このガス冷媒は、開閉弁28cを介して、低圧ガ
ス管63を通り、第1アキュムレータ11を経て、第2
圧縮機2に吸入される。このように、この運転モードで
は、低段側圧縮機である第2圧縮機2の吐出ガスを冷却
して高段側圧縮機である第1圧縮機1に吸入させるた
め、その吐出温度上昇が防止でき、広い運転範囲におい
て、熱交換器51aで第1の凝縮温度が、熱交換器51
bで第2の凝縮温度が、熱交換器51cで蒸発温度が得
られる。
A part of the refrigerant gas discharged from the second compressor 2 passes through the first on-off valve 21, the medium pressure gas pipe 62, the first bypass passage 68, and the seventh on-off valve 30a to the liquid pipe 64. enter,
It is cooled by mixing with the liquid in the liquid pipe 64,
, And is sucked into the first compressor 1 through the eighth opening / closing valve 30b. The high-temperature and high-pressure gas further compressed by the first compressor 1 is supplied to the high-pressure gas pipe 61 and the on-off valve 26.
a and flows into the heat exchanger 51a and is condensed and liquefied.
This liquid refrigerant becomes a two-phase refrigerant through the electronic expansion valve 31 a and flows into the liquid pipe 64. On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 is supplied to the first on-off valve 21 and the medium-pressure gas pipe 6.
2. It flows into the heat exchanger 51b as the second condenser through the on-off valve 27b and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31b, and merges with the two-phase refrigerant from the heat exchanger 51a, which is the first condenser. Among the joined refrigerants, the gas refrigerant flows to the suction side of the first compressor 1, and the liquid refrigerant flows into the low-pressure two-phase state through the electronic expansion valve 31c, flows into the heat exchanger 51c, and evaporates. Be transformed into The gas refrigerant passes through the low-pressure gas pipe 63 via the on-off valve 28c, passes through the first accumulator 11, and passes through the second accumulator 11.
It is sucked into the compressor 2. As described above, in this operation mode, the discharge gas of the second compressor 2 as the low-stage compressor is cooled and sucked into the first compressor 1 as the high-stage compressor. In the wide operating range, the first condensing temperature can be reduced in the heat exchanger 51a.
At b, the second condensation temperature is obtained, and at the heat exchanger 51c, the evaporation temperature is obtained.

【0128】次に図30のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と2つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱運転時な
どに適用される。
Next, referring to FIG. 30, which is an explanatory diagram showing the operating state of the multi-temperature generation circuit of this embodiment, when the three temperatures for generating one condensing temperature and two evaporating temperatures are generated, The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during cooling / ice heat storage operation.

【0129】図30では、熱交換器51aが凝縮器、熱
交換器51bが第1蒸発器、熱交換器51cが第2蒸発
器として動作する例を示しており、第1開閉弁21、第
2開閉弁22、第4開閉弁24、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 30 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2 on / off valve 22, fourth on / off valve 24, on / off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0130】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し、蒸発ガス化される。この
ガス冷媒は、第2高圧ガス管62を通って第5開閉弁2
5、第2アキュムレータ12、第2逆止弁を経て、第1
圧縮機1に吸入される。一方、液管64に流入した残り
の液冷媒は、電気式膨張弁31cを通って低圧の二相状
態となって第2蒸発器である熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、低圧ガス管63を
通って第1アキュムレータ11を経て、第2圧縮機2に
吸入される。このように、この運転モードでは、熱交換
器51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through the high-pressure gas communication pipe 65 via the third on-off valve 23 and the refrigerant gas discharged from the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, flow into the heat exchanger 51 a through the on-off valve 26 a, and are condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 3
1a, the liquid flows into the liquid pipe 64, a part of which flows into the low-pressure two-phase state through the electric expansion valve 31b, flows into the heat exchanger 51b, which is the first evaporator, and is vaporized. . This gas refrigerant passes through the second high-pressure gas pipe 62 and passes through the fifth on-off valve 2.
5, through the second accumulator 12, the second check valve, the first
It is sucked into the compressor 1. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c and flows into the heat exchanger 51c as the second evaporator.
It is vaporized and gasified. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, the first evaporation temperature is obtained in the heat exchanger 51b, and the second evaporation temperature is obtained in the heat exchanger 51c.

【0131】次に、図31を用いて1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱+高温給
湯運転時などに適用される。図31では、熱交換器51
aが凝縮器、熱交換器51bが第1蒸発器、熱交換器5
1cが第2蒸発器として動作する例を示しており、第3
開閉弁23、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27c、開閉弁30bを閉止
状態としている。
Next, referring to FIG. 31, one condensation temperature and 2
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 31, the heat exchanger 51
a is a condenser, heat exchanger 51b is a first evaporator, heat exchanger 5
1c shows an example of operating as a second evaporator, and
On-off valve 23, fifth on-off valve 25, on-off valves 27a, 28a,
26b, 28b, 26c, 27c and the on-off valve 30b are closed.

【0132】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って液管64に流入
し、その一部は電子式膨張弁31bを通って低圧の二相
状態となって第1蒸発器である熱交換器51bへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁27b
を通り、第7開閉弁30a、第1のバイパス路68を介
してバイパスされた液冷媒と合流した後、中圧ガス管6
2を通り、第1開閉弁21を経て、第2圧縮機の吐出ガ
スと合流し、第4開閉弁24、第2開閉弁22を経て、
第1圧縮機1に吸入される。一方、液管64に流入した
残りの液冷媒は、電子式膨張弁31cを通って低圧の二
相状態となって第2蒸発器である熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁28c
を経て、低圧ガス管63を通り、第1アキュムレータ1
1を経て、第2圧縮機2に吸入される。このように、こ
の運転モードでは、低段側圧縮機である第2圧縮機2の
吐出ガスを液管64からバイパスさせた液冷媒と混合し
て冷却するため、高段側圧縮機である第1圧縮機1の吐
出温度上昇を防止し、広い運転範囲において、熱交換器
51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant passes through the electronic expansion valve 31b to be in a low-pressure two-phase state. And is vaporized and gasified. This gas refrigerant is supplied to the on-off valve 27b.
Through the seventh on-off valve 30a and the liquid refrigerant bypassed via the first bypass passage 68,
2, through the first on-off valve 21, merges with the discharge gas of the second compressor, passes through the fourth on-off valve 24 and the second on-off valve 22,
It is sucked into the first compressor 1. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electronic expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant is supplied to the on-off valve 28c.
Through the low-pressure gas pipe 63 and the first accumulator 1
After passing through 1, it is sucked into the second compressor 2. As described above, in this operation mode, the discharge gas of the second compressor 2 that is the low-stage compressor is mixed with the liquid refrigerant that has been bypassed from the liquid pipe 64 to be cooled, so that the second compressor 2 that is the high-stage compressor is cooled. The discharge temperature of the compressor 1 is prevented from rising, and the condensing temperature is obtained in the heat exchanger 51a, the first evaporating temperature is obtained in the heat exchanger 51b, and the second evaporating temperature is obtained in the heat exchanger 51c in a wide operating range.

【0133】実施例7.次に、図32はこの発明の実施
例7の蒸気圧縮式サイクルの冷媒系の構成図である。図
において、33は電子式膨張弁である。
Embodiment 7 FIG. Next, FIG. 32 is a configuration diagram of a refrigerant system of a vapor compression cycle according to Embodiment 7 of the present invention. In the figure, reference numeral 33 denotes an electronic expansion valve.

【0134】この実施例7の多温度生成回路について
も、実施例6と同様、表1に示すような6つの運転モー
ドがあり、図33〜38を用いて説明する。
The multi-temperature generation circuit of the seventh embodiment also has six operation modes as shown in Table 1, as in the sixth embodiment, and will be described with reference to FIGS.

【0135】まず、図33のこの実施例7の多温度生成
回路の運転動作状態を示す説明図を用いて、1つの凝縮
温度と1つの蒸発温度を生成する2温度生成時で、凝縮
温度と蒸発温度の差が比較的小さい場合の動作について
説明する。この運転モードは、例えば通常の冷房あるい
は暖房時などに適用される。
First, referring to FIG. 33, which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of the seventh embodiment, when two temperatures for generating one condensing temperature and one evaporating temperature are generated, the condensing temperature and The operation when the difference between the evaporation temperatures is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0136】図33では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30bを閉止状態
(図中塗りつぶし)冷媒流量制御器33を全閉としてい
る。第1圧縮機1、第2圧縮機2は並列運転される。矢
印で冷媒の流れを示す。
FIG. 33 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator.
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c, and 30b are in a closed state (filled in the drawing), and the refrigerant flow controller 33 is fully closed. The first compressor 1 and the second compressor 2 are operated in parallel. Arrows indicate the flow of the refrigerant.

【0137】第2圧縮機2から吐出された高温高圧冷媒
ガスは、高圧ガス連通管65を経て第1高圧ガス管61
で第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 to the first high-pressure gas pipe 61.
At the same time, merges with the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the first accumulator 11 through the low-pressure gas pipe 63 and passes through the first compressor 1 and the second
It is sucked into the compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51c.

【0138】次に、図34のこの実施例の多温度生成回
路の運転動作状態を示す説明図を用いて、1つの凝縮温
度と1つの蒸発温度を生成する2温度生成時で、この凝
縮温度と蒸発温度の差が比較的大きい場合の動作につい
て説明する。この運転モードは、例えば高温給湯や給湯
+氷蓄熱時などに適用される。
Next, referring to FIG. 34, which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, when two temperatures are generated to generate one condensing temperature and one evaporating temperature, The operation when the difference between the temperature and the evaporation temperature is relatively large will be described. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage.

【0139】図34では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第3開閉弁2
3、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30bを閉止状態
(図中塗りつぶし)冷媒流量制御器33を全閉としてい
る。第1圧縮機1、第2圧縮機2は直列運転される。矢
印で冷媒の流れを示す。
FIG. 34 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator.
3, the fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c, and 30b are in a closed state (filled in the drawing), and the refrigerant flow controller 33 is fully closed. The first compressor 1 and the second compressor 2 are operated in series. Arrows indicate the flow of the refrigerant.

【0140】第2圧縮機2から吐出された冷媒ガスは、
高圧ガス連通管65とこれから分岐した圧縮機連通管6
5に流入し、第4開閉弁24及び第2開閉弁22を通っ
て第1圧縮機1に吸入され、二段圧縮され高温高圧の冷
媒ガスとなって第1高圧ガス管61に流入する。この液
冷媒は、電気式膨張弁31aを通って液管64に流入
し、電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。このガ
ス冷媒は、低圧ガス管63を通って第1アキュムレータ
11を経て、第2圧縮機2に吸入される。このように、
この運転モードでは、二段圧縮運転となり、熱交換器5
1aで凝縮温度が、熱交換器51cで蒸発温度が得られ
る。
The refrigerant gas discharged from the second compressor 2 is
High-pressure gas communication pipe 65 and compressor communication pipe 6 branched therefrom
5 through the fourth on-off valve 24 and the second on-off valve 22, is sucked into the first compressor 1, is two-stage compressed, becomes a high-temperature and high-pressure refrigerant gas, and flows into the first high-pressure gas pipe 61. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. in this way,
In this operation mode, two-stage compression operation is performed, and the heat exchanger 5
The condensation temperature is obtained by 1a, and the evaporation temperature is obtained by the heat exchanger 51c.

【0141】次に、図35のこの実施例の多温度生成回
路の運転動作状態を示す説明図を用いて、2つの凝縮温
度と1つの蒸発温度を生成する3温度生成時で、凝縮温
度と蒸発温度の差が比較的小さい場合の動作について説
明する。この運転モードは、例えば通常の暖房+比較的
低い給湯運転時などに適用される。
Next, referring to FIG. 35, which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, at the time of generating three temperatures for generating two condensing temperatures and one evaporating temperature, the condensing temperature and The operation when the difference between the evaporation temperatures is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation.

【0142】図35では、熱交換器51aが第1凝縮
器、熱交換器51bが第2凝縮器、熱交換器51cが蒸
発器として動作する例を示しており、第3開閉弁23、
第4開閉弁24、第5開閉弁25、開閉弁27a,28
a,26b,28b,26c,27c,30bを閉止状
態(図中塗りつぶし)冷媒流量制御器33を全閉として
いる。矢印で冷媒の流れを示す。
FIG. 35 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator.
Fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30b are in a closed state (filled in the drawing), and the refrigerant flow controller 33 is fully closed. Arrows indicate the flow of the refrigerant.

【0143】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and condenses and liquefies. Is done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 via the first on-off valve 21, passes through the on-off valve 27b, and passes through the heat exchanger 51b as a second condenser. And is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The joined liquid refrigerant is supplied to the electric expansion valve 31c.
Through the heat exchanger 51c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant is supplied to the low-pressure gas pipe 6.
3, the air is sucked into the first compressor 1 and the second compressor 2 via the first accumulator 11. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 51a, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51c.

【0144】まず、図36を用いて、2つの凝縮温度と
1つの蒸発温度を生成する3温度生成時で、この凝縮温
度と蒸発温度の差が比較的大きい場合の動作について説
明する。この運転モードは、例えば通常の暖房+比較的
高い給湯運転時などに適用される。図36では、熱交換
器51aが第1凝縮器、熱交換器51bが第2凝縮器、
熱交換器51cが蒸発器として動作する例を示してお
り、第2開閉弁22、第3開閉弁23、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
28b,26c,27cを閉止状態としている。
First, with reference to FIG. 36, the operation in the case of generating three temperatures in which two condensing temperatures and one evaporating temperature are generated and where the difference between the condensing temperature and the evaporating temperature is relatively large will be described. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. In FIG. 36, the heat exchanger 51a is a first condenser, the heat exchanger 51b is a second condenser,
An example in which the heat exchanger 51c operates as an evaporator is shown, and the second on-off valve 22, the third on-off valve 23, the fourth on-off valve 2
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
28b, 26c, 27c are closed.

【0145】第2圧縮機2から吐出された冷媒ガスの一
部は、第1開閉弁21、中圧ガス管62、冷媒流量制御
器33を通って液管64に入り、液管64内の液と混合
することによって冷却され、第8開閉弁30bを通って
第1圧縮機1に吸入される。第1の圧縮機1によってさ
らに圧縮された高温高圧のガスは高圧ガス管61、開閉
弁26aを通って熱交換器51aに流入し、凝縮液化さ
れる。この液冷媒は、電子式膨張弁31aによって二相
冷媒となり、液管64に流入する。一方、第2圧縮機2
から吐出された冷媒ガスの残りは第1開閉弁21、中圧
ガス管62、開閉弁27bを通って、第2凝縮器である
熱交換器51bに流入し、凝縮液化される。この液冷媒
は、電子式膨張弁31bを通って液管64に流入し、第
1凝縮器である熱交換器51aからの二相冷媒と合流す
る。この合流した冷媒のうち、ガス冷媒は第1圧縮機1
の吸入側へ流れ、液冷媒は、電子式膨張弁31cを通っ
て低圧の二相状態となって熱交換器51cへ流入し、蒸
発ガス化される。このガス冷媒は、開閉弁28cを介し
て、低圧ガス管63を通り、第1アキュムレータ11を
経て、第2圧縮機2に吸入される。このように、この運
転モードでは、低段側圧縮機である第2圧縮機より高段
側圧縮機吸入側へバイパスする冷媒量を、冷媒流量制御
器33によって制御するため、熱交換器51a,51b
の両方の能力を確保すると同時に、吐出温度上昇を防止
し、熱交換器51aで第1の凝縮温度が、熱交換器51
bで第2の凝縮温度が、熱交換器51cで蒸発温度が得
られる。
A part of the refrigerant gas discharged from the second compressor 2 passes through the first on-off valve 21, the medium pressure gas pipe 62 and the refrigerant flow controller 33, enters the liquid pipe 64, The liquid is cooled by mixing with the liquid, and is sucked into the first compressor 1 through the eighth on-off valve 30b. The high-temperature and high-pressure gas further compressed by the first compressor 1 flows into the heat exchanger 51a through the high-pressure gas pipe 61 and the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant becomes a two-phase refrigerant by the electronic expansion valve 31 a and flows into the liquid pipe 64. On the other hand, the second compressor 2
The remainder of the refrigerant gas discharged from is passed through the first on-off valve 21, the medium pressure gas pipe 62, and the on-off valve 27b, flows into the heat exchanger 51b as the second condenser, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31b, and merges with the two-phase refrigerant from the heat exchanger 51a, which is the first condenser. Of the combined refrigerants, the gas refrigerant is the first compressor 1
The liquid refrigerant flows through the electronic expansion valve 31c, enters a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. The gas refrigerant passes through the low-pressure gas pipe 63 via the on-off valve 28c, and is sucked into the second compressor 2 via the first accumulator 11. As described above, in this operation mode, the amount of refrigerant bypassed from the second compressor, which is the low-stage compressor, to the high-stage compressor suction side is controlled by the refrigerant flow controller 33. 51b
At the same time, prevents the discharge temperature from rising, and the first condensing temperature in the heat exchanger 51a is reduced by the heat exchanger 51a.
At b, the second condensation temperature is obtained, and at the heat exchanger 51c, the evaporation temperature is obtained.

【0146】次に図37のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と2つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。
Next, referring to FIG. 37, which shows the operating state of the multi-temperature generating circuit of this embodiment, the three temperatures for generating one condensing temperature and two evaporating temperatures are generated. The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation.

【0147】図37では、熱交換器51aが凝縮器、熱
交換器51bが第1蒸発器、熱交換器51cが第2蒸発
器として動作する例を示しており、第1開閉弁21、第
2開閉弁22、第4開閉弁24、開閉弁27a,28
a,26b,28b,26c,27c,30bを閉止状
態(図中塗りつぶし)冷媒流量制御器33を全閉として
いる。矢印で冷媒の流れを示す。
FIG. 37 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2 on / off valve 22, fourth on / off valve 24, on / off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30b are in a closed state (filled in the drawing), and the refrigerant flow controller 33 is fully closed. Arrows indicate the flow of the refrigerant.

【0148】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し、蒸発ガス化される。この
ガス冷媒は、第2高圧ガス管62を通って第5開閉弁2
5、第2アキュムレータ12、第2逆止弁を経て、第1
圧縮機1に吸入される。一方、液管64に流入した残り
の液冷媒は、電気式膨張弁31cを通って低圧の二相状
態となって第2蒸発器である熱交換器51cへ流入し、
蒸発ガス化される。このガス冷媒は、低圧ガス管63を
通って第1アキュムレータ11を経て、第2圧縮機2に
吸入される。このように、この運転モードでは、熱交換
器51aで凝縮温度が、熱交換器51bで第1蒸発温度
が、熱交換器51cで第2蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through the high-pressure gas communication pipe 65 through the third on-off valve 23 and the refrigerant gas discharged from the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, flow into the heat exchanger 51 a through the on-off valve 26 a, and are condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 3
1a, the liquid flows into the liquid pipe 64, a part of which flows into the low-pressure two-phase state through the electric expansion valve 31b, flows into the heat exchanger 51b, which is the first evaporator, and is vaporized. . This gas refrigerant passes through the second high-pressure gas pipe 62 and passes through the fifth on-off valve 2.
5, through the second accumulator 12, the second check valve, the first
It is sucked into the compressor 1. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c and flows into the heat exchanger 51c as the second evaporator.
It is vaporized and gasified. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, the first evaporation temperature is obtained in the heat exchanger 51b, and the second evaporation temperature is obtained in the heat exchanger 51c.

【0149】次に、図38を用いて1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱+高温給
湯運転時などに適用される。図38では、熱交換器51
aが凝縮器、熱交換器51bが第1蒸発器、熱交換器5
1cが第2蒸発器として動作する例を示しており、第3
開閉弁23、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27c、開閉弁30bを閉止
状態としている。
Next, referring to FIG. 38, one condensation temperature and 2
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 38, the heat exchanger 51
a is a condenser, heat exchanger 51b is a first evaporator, heat exchanger 5
1c shows an example of operating as a second evaporator, and
On-off valve 23, fifth on-off valve 25, on-off valves 27a, 28a,
26b, 28b, 26c, 27c and the on-off valve 30b are closed.

【0150】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って液管64に流入
し、その一部は電子式膨張弁31bを通って低圧の二相
状態となって第1蒸発器である熱交換器51bへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁27b
を通り、冷媒流量制御器33を介してバイパスされた液
冷媒と合流した後、中圧ガス管62を通り、第1開閉弁
21を経て、第2圧縮機の吐出ガスと合流し、第4開閉
弁24、第2開閉弁22を経て、第1圧縮機1に吸入さ
れる。一方、液管64に流入した残りの液冷媒は、電子
式膨張弁31cを通って低圧の二相状態となって第2蒸
発器である熱交換器51cへ流入し、蒸発ガス化され
る。このガス冷媒は、開閉弁28cを経て、低圧ガス管
63を通り、第1アキュムレータ11を経て、第2圧縮
機2に吸入される。このように、この運転モードでは、
低段側圧縮機である第2圧縮機2の吐出ガスに冷媒流量
制御器33によって制御された液冷媒を適量混合させ、
高段側圧縮機である第1圧縮機1の吸入を飽和ガスとす
ることで、液圧縮させることなく吐出温度上昇を防止し
しながら効率よく2段圧縮運転を行い、熱交換器51a
で凝縮温度が、熱交換器51bで第1蒸発温度が、熱交
換器51cで第2蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant passes through the electronic expansion valve 31b to be in a low-pressure two-phase state. And is vaporized and gasified. This gas refrigerant is supplied to the on-off valve 27b.
After passing through the refrigerant flow controller 33 and joining the liquid refrigerant bypassed through the refrigerant flow controller 33, the liquid refrigerant passes through the medium pressure gas pipe 62, passes through the first opening / closing valve 21, and joins the discharge gas of the second compressor. It is sucked into the first compressor 1 via the on-off valve 24 and the second on-off valve 22. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electronic expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. The gas refrigerant passes through the open / close valve 28c, passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode,
A suitable amount of liquid refrigerant controlled by the refrigerant flow controller 33 is mixed with the discharge gas of the second compressor 2 which is a low-stage compressor,
By setting the intake of the first compressor 1, which is the high-stage compressor, to a saturated gas, the two-stage compression operation is efficiently performed while preventing discharge temperature rise without performing liquid compression, and the heat exchanger 51a
To obtain the first evaporation temperature in the heat exchanger 51b and the second evaporation temperature in the heat exchanger 51c.

【0151】実施例8.図39はこの発明の実施例8の
蒸気圧縮式サイクルの冷媒系の構成図である。図におい
て、69は液レシーバーである。この実施例8の多温度
生成回路においても、表1に示すような6つの運転モー
ドがあり、図40〜45を用いて説明する。
Embodiment 8 FIG. FIG. 39 is a configuration diagram of a refrigerant system of a vapor compression cycle according to Embodiment 8 of the present invention. In the figure, 69 is a liquid receiver. The multi-temperature generation circuit of the eighth embodiment also has six operation modes as shown in Table 1, which will be described with reference to FIGS.

【0152】まず、図40のこの実施例8の多温度生成
回路の運転動作状態を示す説明図を用いて、1つの凝縮
温度と1つの蒸発温度を生成する2温度生成時で、凝縮
温度と蒸発温度の差が比較的小さい場合の動作について
説明する。この運転モードは、例えば通常の冷房あるい
は暖房時などに適用される。
First, referring to FIG. 40, which shows the operating state of the multi-temperature generating circuit of the eighth embodiment, the two temperatures for generating one condensing temperature and one evaporating temperature are generated. The operation when the difference between the evaporation temperatures is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating.

【0153】図40では、熱交換器51aが凝縮器、熱
交換器51bが停止、熱交換器51cが蒸発器として動
作する例を示しており、第1開閉弁21、第4開閉弁2
4、第5開閉弁25、開閉弁27a,28a,26b,
27b,28b,26c,27c,30a,30bを閉
止状態(図中塗りつぶし)としている。第1圧縮機1、
第2圧縮機2は並列運転される。矢印で冷媒の流れを示
す。
FIG. 40 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator. The first on-off valve 21, the fourth on-off valve 2
4, fifth on-off valve 25, on-off valves 27a, 28a, 26b,
27b, 28b, 26c, 27c, 30a, 30b are in a closed state (filled in the figure). First compressor 1,
The second compressor 2 is operated in parallel. Arrows indicate the flow of the refrigerant.

【0154】第2圧縮機2から吐出された高温高圧冷媒
ガスは、高圧ガス連通管65を経て第1高圧ガス管61
で第1圧縮機1から吐出された高温高圧冷媒ガスと合流
し、開閉弁26aを通って熱交換器51aに流入し、凝
縮液化される。この液冷媒は、電気式膨張弁31aを通
って液管64に流入し、電気式膨張弁31cを通って低
圧の二相状態となって熱交換器51cへ流入し、蒸発ガ
ス化される。このガス冷媒は、低圧ガス管63を通って
第1アキュムレータ11を経て、第1圧縮機1及び第2
圧縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the high-pressure gas communication pipe 65 to the first high-pressure gas pipe 61.
At the same time, merges with the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the first accumulator 11 through the low-pressure gas pipe 63 and passes through the first compressor 1 and the second
It is sucked into the compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51c.

【0155】次に、図41を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、この凝縮温
度と蒸発温度の差が比較的大きい場合の動作について説
明する。この運転モードは、例えば高温給湯や給湯+氷
蓄熱時などに適用される。図41では、熱交換器51a
が凝縮器、熱交換器51bが停止、熱交換器51cが蒸
発器として動作する例を示しており、第2開閉弁22、
第3開閉弁23、第4開閉弁24、第5開閉弁25、開
閉弁27a,28a,26b,27b,28b,26
c,27cを閉止状態としている。
Next, referring to FIG. 41, an operation in the case of generating two temperatures in which one condensing temperature and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively large will be described. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. In FIG. 41, the heat exchanger 51a
Represents an example in which the condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c operates as an evaporator.
Third on-off valve 23, fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28a, 26b, 27b, 28b, 26
c and 27c are in a closed state.

【0156】第2圧縮機2から吐出された冷媒ガスは、
第1開閉弁21、中圧ガス管62、バイパス路66、第
7開閉弁30aを通って液レシーバー68に入り、液レ
シーバー68内の液と混合することによって冷却され、
バイパス路67、第8開閉弁30bを通って第1圧縮機
1に吸入される。第1圧縮機1によってさらに圧縮され
た高温高圧のガスは高圧ガス管61、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って高圧二相冷媒とな
り、液レシーバー68に流入する。液レシーバー69内
の液冷媒は第7開閉弁30aを通って低圧の二相状態と
なって熱交換器51cへ流入し、蒸発ガス化される。ガ
ス冷媒は、開閉弁28cを介して、低圧ガス管63を通
り、第1アキュムレータ11を経て、第2圧縮機2に吸
入される。このように、この運転モードでは、2段圧縮
運転となり、液レシーバー69により、熱交換器51a
側より流入する二相冷媒を気液分離する性能が向上し、
完全な飽和ガスとして高段側圧縮機である第1圧縮機1
に吸入させることができると同時に、吐出温度上昇を防
止しながら、効率よく熱交換器51aで凝縮温度が、熱
交換器51cで蒸発温度が得られる。また、いろいろな
運転モードによる余剰冷媒量をためることが可能とな
る。
The refrigerant gas discharged from the second compressor 2 is
The liquid enters the liquid receiver 68 through the first on-off valve 21, the medium pressure gas pipe 62, the bypass path 66, and the seventh on-off valve 30a, and is cooled by mixing with the liquid in the liquid receiver 68,
The air is sucked into the first compressor 1 through the bypass 67 and the eighth on-off valve 30b. The high-temperature and high-pressure gas further compressed by the first compressor 1 flows into the heat exchanger 51a through the high-pressure gas pipe 61 and the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant becomes a high-pressure two-phase refrigerant through the electronic expansion valve 31a, and flows into the liquid receiver 68. The liquid refrigerant in the liquid receiver 69 enters the low-pressure two-phase state through the seventh on-off valve 30a, flows into the heat exchanger 51c, and is vaporized. The gas refrigerant passes through the low-pressure gas pipe 63 via the on-off valve 28c, and is sucked into the second compressor 2 via the first accumulator 11. Thus, in this operation mode, two-stage compression operation is performed, and the liquid receiver 69 causes the heat exchanger 51a.
The performance of gas-liquid separation of the two-phase refrigerant flowing from the side is improved,
The first compressor 1 which is a high-stage compressor as a completely saturated gas
At the same time, the condensing temperature can be efficiently obtained in the heat exchanger 51a and the evaporating temperature can be obtained in the heat exchanger 51c, while preventing the discharge temperature from rising. In addition, it is possible to accumulate the surplus refrigerant amount in various operation modes.

【0157】次に図42のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、2つの凝縮温度
と1つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。
Next, referring to FIG. 42, which is an explanatory diagram showing the operating state of the multi-temperature generating circuit of this embodiment, when three temperatures are generated for generating two condensing temperatures and one evaporating temperature, The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation.

【0158】図42では、熱交換器51aが第1凝縮
器、熱交換器51bが第2凝縮器、熱交換器51cが蒸
発器として動作する例を示しており、第3開閉弁23、
第4開閉弁24、第5開閉弁25、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 42 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator.
Fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0159】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1高圧ガス管61に流入し、開閉弁26aを
通って第1凝縮器である熱交換器51aに流入し、凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入する。一方、第2圧縮機2から吐出さ
れた高温高圧冷媒ガスは、第1開閉弁21を経て第2高
圧ガス管62に流入し、開閉弁27bを通って第2凝縮
器である熱交換器51bに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31bを通って液管64に流
入し、第1凝縮器である熱交換器51aからの液冷媒と
合流する。この合流した液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、低圧ガス管6
3を通って第1アキュムレータ11を経て、第1圧縮機
1及び第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器51aで第1の凝縮温度が、熱
交換器51bで第2の凝縮温度が、熱交換器51cで蒸
発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the first high-pressure gas pipe 61, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and condenses and liquefies. Is done. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the second high-pressure gas pipe 62 via the first on-off valve 21, passes through the on-off valve 27b, and passes through the heat exchanger 51b as a second condenser. And is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The joined liquid refrigerant is supplied to the electric expansion valve 31c.
Through the heat exchanger 51c into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized and gasified. This gas refrigerant is supplied to the low-pressure gas pipe 6.
3, the air is sucked into the first compressor 1 and the second compressor 2 via the first accumulator 11. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 51a, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51c.

【0160】次に、図43を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図43では、熱交換器
51aが第1凝縮器、熱交換器51bが第2凝縮器、熱
交換器51cが蒸発器として動作する例を示しており、
第2開閉弁22、第3開閉弁23、第4開閉弁24、第
5開閉弁25、開閉弁27a,28a,26b,28
b,26c,27c開閉弁を閉止状態としている。
Next, referring to FIG. 43, two condensation temperatures and 1
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 43 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator.
Second on-off valve 22, third on-off valve 23, fourth on-off valve 24, fifth on-off valve 25, on-off valves 27a, 28a, 26b, 28
b, 26c, 27c On-off valves are closed.

【0161】第2圧縮機2から吐出された冷媒ガスの一
部は、第1開閉弁21、中圧ガス管62、バイパス路6
8、第7開閉弁30aを通って液レシーバー69に入
り、液レシーバー69内の液と混合することによって冷
却され、バイパス路67、第8開閉弁30bを通って第
1圧縮機1に吸入される。第1圧縮機1によってさらに
圧縮された高温高圧のガスは高圧ガス管61、開閉弁2
6aを通って熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電子式膨張弁31aによって二相冷
媒となり、液管64に流入する。一方、第2圧縮機2か
ら吐出された冷媒ガスの残りは第1開閉弁21、中圧ガ
ス管62、開閉弁27bを通って、第2凝縮器である熱
交換器51bに流入し、凝縮液化される。この液冷媒
は、電子式膨張弁31bを通って液レシーバー68に流
入し、第1凝縮器である熱交換器51aからの二相冷媒
と合流する。この合流した冷媒のうち、ガス冷媒は第1
圧縮機1の吸入側へ流れ、液冷媒は電子式膨張弁31を
通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。このガス冷媒は、開閉弁28c
を介して、低圧ガス管63を通り、第1アキュムレータ
11を経て、第2圧縮機2に吸入される。このように、
この運転モードでは、2段圧縮運転となり、液レシーバ
ー69により熱交換器51a側より流入する二相冷媒を
気液分離する性能が向上し、完全な飽和ガスとして高段
側圧縮機である第1圧縮機1に吸入させることができる
と同時に、吐出温度上昇を防止しながら、効率よく、熱
交換器51aで第1の凝縮温度が、熱交換器51bで第
2の凝縮温度が、熱交換器51cで蒸発温度が得られ
る。
A part of the refrigerant gas discharged from the second compressor 2 is supplied to the first on-off valve 21, the medium pressure gas pipe 62,
8, the liquid enters the liquid receiver 69 through the seventh on-off valve 30a, is cooled by mixing with the liquid in the liquid receiver 69, and is sucked into the first compressor 1 through the bypass 67 and the eighth on-off valve 30b. You. The high-temperature and high-pressure gas further compressed by the first compressor 1 is supplied to the high-pressure gas pipe 61 and the on-off valve 2.
It flows into the heat exchanger 51a through 6a and is condensed and liquefied. The liquid refrigerant becomes a two-phase refrigerant by the electronic expansion valve 31 a and flows into the liquid pipe 64. On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 passes through the first on-off valve 21, the medium pressure gas pipe 62, and the on-off valve 27b, flows into the heat exchanger 51b as the second condenser, and is condensed. Liquefied. This liquid refrigerant flows into the liquid receiver 68 through the electronic expansion valve 31b, and merges with the two-phase refrigerant from the heat exchanger 51a, which is the first condenser. Among the joined refrigerants, the gas refrigerant is the first refrigerant.
The liquid refrigerant flows to the suction side of the compressor 1, passes through the electronic expansion valve 31, enters a low-pressure two-phase state, flows into the heat exchanger 51 c, and is vaporized. This gas refrigerant is supplied to the on-off valve 28c.
Through the low pressure gas pipe 63, through the first accumulator 11, and into the second compressor 2. in this way,
In this operation mode, the two-stage compression operation is performed, and the performance of separating the two-phase refrigerant flowing from the heat exchanger 51a side into gas and liquid by the liquid receiver 69 is improved. At the same time, the first condensing temperature in the heat exchanger 51a and the second condensing temperature in the heat exchanger 51b can be efficiently reduced while preventing the discharge temperature from rising. At 51c the evaporation temperature is obtained.

【0162】次に図44のこの実施例の多温度生成回路
の運転動作状態を示す説明図を用いて、1つの凝縮温度
と2つの蒸発温度を生成する3温度生成時で、凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱運転時な
どに適用される。
Next, referring to FIG. 44, which shows the operating state of the multi-temperature generating circuit of this embodiment, the three temperatures for generating one condensing temperature and two evaporating temperatures are used. The operation when the temperature difference is relatively small will be described. This operation mode is applied, for example, during cooling / ice heat storage operation.

【0163】図44では、熱交換器51aが凝縮器、熱
交換器51bが第1蒸発器、熱交換器51cが第2蒸発
器として動作する例を示しており、第1開閉弁21、第
2開閉弁22、第4開閉弁24、開閉弁27a,28
a,26b,28b,26c,27c,30a,30b
を閉止状態(図中塗りつぶし)としている。矢印で冷媒
の流れを示す。
FIG. 44 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator. 2 on / off valve 22, fourth on / off valve 24, on / off valves 27a, 28
a, 26b, 28b, 26c, 27c, 30a, 30b
Is in a closed state (filled in the figure). Arrows indicate the flow of the refrigerant.

【0164】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管65を
通って第2圧縮機2の吐出冷媒ガスと第1高圧ガス管6
1で合流し、開閉弁26aを通って熱交換器51aに流
入し、凝縮液化される。この液冷媒は、電気式膨張弁3
1aを通って液レシーバー69に流入し、その一部は電
気式膨張弁31bを通って低圧の二相状態となって第1
蒸発器である熱交換器51bへ流入し、蒸発ガス化され
る。このガス冷媒は、第2高圧ガス管62を通って第5
開閉弁25、第2アキュムレータ12、第2逆止弁を経
て、第1圧縮機1に吸入される。一方、液管64に流入
した残りの液冷媒は、電気式膨張弁31cを通って低圧
の二相状態となって第2蒸発器である熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、低圧ガス
管63を通って第1アキュムレータ11を経て、第2圧
縮機2に吸入される。このように、この運転モードで
は、熱交換器51aで凝縮温度が、熱交換器51bで第
1蒸発温度が、熱交換器51cで第2蒸発温度が得られ
る。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through the high-pressure gas communication pipe 65 through the third on-off valve 23 and the refrigerant gas discharged from the second compressor 2 and the first high-pressure gas pipe 6.
At 1, they merge, flow into the heat exchanger 51 a through the on-off valve 26 a, and are condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 3
1a, flows into the liquid receiver 69, a part of which flows through the electric expansion valve 31b to a low-pressure two-phase state,
It flows into the heat exchanger 51b, which is an evaporator, and is vaporized and gasified. This gas refrigerant passes through the second high-pressure gas pipe 62 and
The gas is sucked into the first compressor 1 via the on-off valve 25, the second accumulator 12, and the second check valve. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, the first evaporation temperature is obtained in the heat exchanger 51b, and the second evaporation temperature is obtained in the heat exchanger 51c.

【0165】次に、図45を用いて1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば冷房+氷蓄熱+高温給
湯運転時などに適用される。図45では、熱交換器51
aが凝縮器、熱交換器51bが第1蒸発器、熱交換器5
1cが第2蒸発器として動作する例を示しており、第3
開閉弁23、第5開閉弁25、開閉弁27a,28a,
26b,28b,26c,27c、開閉弁30bを閉止
状態としている。
Next, referring to FIG. 45, one condensation temperature and 2
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 45, the heat exchanger 51
a is a condenser, heat exchanger 51b is a first evaporator, heat exchanger 5
1c shows an example of operating as a second evaporator, and
On-off valve 23, fifth on-off valve 25, on-off valves 27a, 28a,
26b, 28b, 26c, 27c and the on-off valve 30b are closed.

【0166】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電子式膨張弁31aを通って液レシーバー69
に流入し、その一部は電子式膨張弁31bを通って低圧
の二相状態となって第1蒸発器である熱交換器51bへ
流入し、蒸発ガス化される。このガス冷媒は、開閉弁2
7bを通り、第7開閉弁30a、バイパス路68を介し
てバイパスされた液冷媒と合流した後、中圧ガス管62
を通り、第1開閉弁21を経て、第2圧縮機の吐出ガス
と合流し、第4開閉弁24、第2開閉弁22を経て、第
1圧縮機1に吸入される。一方、液レシーバー68に流
入した残りの液冷媒は、電子式膨張弁31cを通って低
圧二相状態となって第2蒸発器である熱交換器51cへ
流入し、蒸発ガス化される。このガス冷媒は、開閉弁2
8cを経て、低圧ガス管63を通り、第1アキュムレー
タ11を経て、第2圧縮機2に吸入される。このよう
に、この運転モードでは、低段側圧縮機である第2圧縮
機2の吐出ガスに液冷媒を混合させ、高段側圧縮機であ
る第1圧縮機1に吸入するガスとすることで、吐出温度
上昇を防止しながら効率よく2段圧縮運転を行い、熱交
換器51aで凝縮温度が、熱交換器51bで第1蒸発温
度が、熱交換器51cで第2蒸発温度が得られる。な
お、この構成では液レシーバーの気液分離効果により液
バックの防止を図った上、直接的に冷却するという冷却
効果の向上が図れる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant passes through the electronic expansion valve 31a and passes through the liquid receiver 69.
And a part of it flows into the low-pressure two-phase state through the electronic expansion valve 31b, flows into the heat exchanger 51b as the first evaporator, and is vaporized. This gas refrigerant is supplied to the on-off valve 2
7b, and after joining with the liquid refrigerant bypassed through the seventh on-off valve 30a and the bypass passage 68, the medium-pressure gas pipe 62
Passes through the first on-off valve 21 and merges with the discharge gas of the second compressor, and is sucked into the first compressor 1 via the fourth on-off valve 24 and the second on-off valve 22. On the other hand, the remaining liquid refrigerant flowing into the liquid receiver 68 enters the low-pressure two-phase state through the electronic expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant is supplied to the on-off valve 2
After passing through the low pressure gas pipe 63 through 8c, it is sucked into the second compressor 2 via the first accumulator 11. As described above, in this operation mode, the liquid refrigerant is mixed with the discharge gas of the second compressor 2 which is the low-stage compressor, and the mixed gas is taken into the first compressor 1 which is the high-stage compressor. Thus, the two-stage compression operation is efficiently performed while preventing the discharge temperature from rising, and the condensing temperature is obtained by the heat exchanger 51a, the first evaporating temperature is obtained by the heat exchanger 51b, and the second evaporating temperature is obtained by the heat exchanger 51c. . In this configuration, the liquid back is prevented by the gas-liquid separation effect of the liquid receiver, and the cooling effect of directly cooling is improved.

【0167】実施例9.図46は実施例9の蒸気圧縮式
サイクルの冷媒回路の構成図である。図46において、
1は第1圧縮機、2は第2圧縮機、61は高圧ガス管、
63は低圧ガス管、62は中圧ガス管、64は液管、6
5a,65b,65cは熱交換器で、熱交換器は高圧ガ
ス管61、低圧ガス管63、中圧ガス管62に各々開閉
弁26a,27a,28a及び26b,27b,28b
及び26c,27c,28cを介して分岐接続するとと
もに、液管64とは流量制御弁である電子膨張弁31
a,31b,31cをそれぞれ介して接続している。7
2は第1圧縮機1の吐出側と高圧ガス管61とを第1開
閉弁121を介して接続する第1の吐出管、74は第2
圧縮機の吐出側と中圧ガス管62とを第2開閉弁123
を介して接続する第2の吐出管、76は第1圧縮機1の
吸入側と第3の開閉弁125を介して中圧ガス管62に
接続する第1の吸入管、78は第2圧縮機2の吸入側と
第4の開閉弁127を介して低圧ガス管63に接続する
第2の吸入管、80は中圧ガス管62と第2の吸入管7
8とを第5の開閉弁129を介して接続する第1のバイ
パス管、82は低圧ガス管63と第1の吸入管76とを
第6の開閉弁131を介して接続する第2のバイパス
管、83は第1の吐出管72と第2の吐出管74とを第
7、第8の開閉弁134,135を介して接続する吐出
側接続管、86は第1の吸入管76と第2の吸入管78
とを第9、第10の開閉弁137,138を介して接続
する吸入側接続管、89は吸入側接続管86の第7と第
8の開閉弁137,138との間と吐出側接続管83の
第9と第10の開閉弁134,135との間を第11の
開閉弁140を介して接続する第3のバイパス管、91
は第1の吐出管72と中圧ガス管62とを第12の開閉
弁142を介して接続する第4のバイパス管、93は第
2の吐出管74と高圧ガス管61とを第13の開閉弁1
44を介して接続する第5のバイパス管である。この実
施例9の多温度生成回路には、表1に示すように6つの
運転モードがある。以下、この6つの運転モードを図4
7〜図52を用いて説明する。
Embodiment 9 FIG. FIG. 46 is a configuration diagram of a refrigerant circuit of a vapor compression cycle according to a ninth embodiment. In FIG. 46,
1 is a first compressor, 2 is a second compressor, 61 is a high-pressure gas pipe,
63 is a low pressure gas pipe, 62 is a medium pressure gas pipe, 64 is a liquid pipe, 6
Reference numerals 5a, 65b, and 65c denote heat exchangers. The heat exchangers are connected to the high-pressure gas pipe 61, the low-pressure gas pipe 63, and the medium-pressure gas pipe 62, respectively.
And the liquid pipe 64 is connected to the electronic expansion valve 31 which is a flow control valve.
a, 31b, and 31c, respectively. 7
Reference numeral 2 denotes a first discharge pipe connecting the discharge side of the first compressor 1 and the high-pressure gas pipe 61 via a first on-off valve 121, and reference numeral 74 denotes a second discharge pipe.
The discharge side of the compressor and the medium pressure gas pipe 62 are connected to the second on-off valve 123.
, A first suction pipe connected to the suction side of the first compressor 1 and the medium-pressure gas pipe 62 via a third on-off valve 125, and 78 a second compression pipe. A second suction pipe connected to the low-pressure gas pipe 63 through the suction side of the machine 2 and the fourth on-off valve 127, and 80 a medium-pressure gas pipe 62 and a second suction pipe 7
8 is connected via a fifth on-off valve 129, and a second bypass 82 connects the low-pressure gas pipe 63 and the first suction pipe 76 via a sixth on-off valve 131. A pipe 83 is a discharge-side connecting pipe connecting the first discharge pipe 72 and the second discharge pipe 74 via the seventh and eighth opening / closing valves 134 and 135, and 86 is a first suction pipe 76 and a second suction pipe. 2 suction pipes 78
Are connected via ninth and tenth on-off valves 137 and 138, and 89 is a suction-side connection pipe between the seventh and eighth on-off valves 137 and 138 of the suction-side connection pipe 86 and a discharge-side connection pipe. A third bypass pipe 91 connecting the ninth and tenth on-off valves 134 and 135 of the 83 via an eleventh on-off valve 140;
Is a fourth bypass pipe connecting the first discharge pipe 72 and the medium pressure gas pipe 62 via the twelfth on-off valve 142, and 93 is a third bypass pipe connecting the second discharge pipe 74 and the high pressure gas pipe 61 to the thirteenth. On-off valve 1
A fifth bypass pipe connected through 44. The multi-temperature generation circuit of the ninth embodiment has six operation modes as shown in Table 1. Hereinafter, these six operation modes are shown in FIG.
This will be described with reference to FIGS.

【0168】まず、図47を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、この凝縮温
度と蒸発温度の差が比較的小さい場合の動作について説
明する。この運転モードは、例えば通常の冷房あるいは
暖房時などに適用される。図47では、熱交換器51a
が凝縮器、熱交換器51bが停止、熱交換器51cが蒸
発器として動作する例を示しており、第1の開閉弁12
1、第4の開閉弁127、第7の開閉弁134、第8の
開閉弁135、第9の開閉弁137、第10の開閉弁1
38と、開閉弁26a,28cを閉状態としている。第
1圧縮機1及び第2圧縮機2から吐出された高温高圧冷
媒ガスは、高圧ガス管61で合流し、開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電気式膨張弁31aを通って液管64に流入
し、電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。このよ
うに、この運転モードでは、熱交換器51aで凝縮温度
が、熱交換器51cで蒸発温度が得られる。
First, with reference to FIG. 47, an operation in the case of generating two temperatures in which one condensing temperature and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating. In FIG. 47, the heat exchanger 51a
Represents an example in which the condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator.
1, fourth on-off valve 127, seventh on-off valve 134, eighth on-off valve 135, ninth on-off valve 137, tenth on-off valve 1
38 and the on-off valves 26a and 28c are closed. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 and the second compressor 2 joins in the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51c.

【0169】次に、図48を用いて1つの凝縮温度と1
つの蒸発温度を生成する2温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば高温給湯や給湯+氷蓄
熱時などに適用される。図48では、例えば熱交換器5
1aが凝縮器、熱交換器51bが停止、熱交換器51c
が蒸発器として動作する例を示しており、第1の開閉弁
121、第4の開閉弁127、第8の開閉弁135、第
9の開閉弁137、第11の開閉弁140と、開閉弁2
6a,28cを開状態としている。
Next, referring to FIG. 48, one condensation temperature and one
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large at the time of generating the two evaporating temperatures. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. In FIG. 48, for example, the heat exchanger 5
1a is a condenser, heat exchanger 51b is stopped, heat exchanger 51c
Shows an example that operates as an evaporator. The first on-off valve 121, the fourth on-off valve 127, the eighth on-off valve 135, the ninth on-off valve 137, the eleventh on-off valve 140, and the on-off valve 2
6a and 28c are open.

【0170】第2圧縮機2から吐出された冷媒ガスは、
第8開閉弁135、第11の開閉弁140、第9の開閉
弁137を通って第1圧縮機1に吸入され高温高圧冷媒
ガスとなって高圧ガス管61に流入する。開閉弁26a
を通って熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は、電気式膨張弁31aを通って液管64に流
入し、電気式膨張弁31cを通って低圧の二相状態とな
って熱交換器51cへ流入し、蒸発ガス化される。この
冷媒ガスは、低圧ガス管63を通って第4の開閉弁12
7、第2の吸入管78を経て第2圧縮機2に吸入され
る。
The refrigerant gas discharged from the second compressor 2 is
The refrigerant is sucked into the first compressor 1 through the eighth on-off valve 135, the eleventh on-off valve 140, and the ninth on-off valve 137, becomes high-temperature and high-pressure refrigerant gas, and flows into the high-pressure gas pipe 61. On-off valve 26a
Through the heat exchanger 51a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. The refrigerant gas passes through the low-pressure gas pipe 63 and passes through the fourth on-off valve 12.
7. The air is sucked into the second compressor 2 via the second suction pipe 78.

【0171】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、第6の開閉弁131、第7の開閉弁134、第1
0の開閉弁138、第11の開閉弁140、第12の開
閉弁142、第13の開閉弁144と、開閉弁27a,
28cを開状態として、熱交換器51cに流入し蒸発ガ
ス化した冷媒ガスを、低圧ガス管63から第6の開閉弁
131、第1の吸入管76を経て第1圧縮機1に吸入さ
せ、その吐出ガスと第12の開閉弁142からの中圧ガ
ス管62の冷媒の一部とを第2圧縮機2に吸入させ、そ
の吐出ガスを第13の開閉弁144から高圧ガス管61
に流入するようにしてもよい。このように、この運転モ
ードでは、2段圧縮運転となり、熱交換器51aで凝縮
温度が、熱交換器51cで蒸発温度が得られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described, but the sixth on-off valve 131, the seventh on-off valve 134, the first
0 on-off valve 138, eleventh on-off valve 140, twelfth on-off valve 142, thirteenth on-off valve 144, on-off valve 27a,
With 28c in the open state, the refrigerant gas flowing into the heat exchanger 51c and being vaporized and gasified is sucked into the first compressor 1 from the low-pressure gas pipe 63 through the sixth on-off valve 131 and the first suction pipe 76, The discharged gas and a part of the refrigerant in the medium-pressure gas pipe 62 from the twelfth on-off valve 142 are sucked into the second compressor 2, and the discharged gas is supplied from the thirteenth on-off valve 144 to the high-pressure gas pipe 61.
It may be made to flow into. Thus, in this operation mode, two-stage compression operation is performed, and the condensing temperature is obtained in the heat exchanger 51a and the evaporation temperature is obtained in the heat exchanger 51c.

【0172】次に図49を用いて、2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。図49では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2の開閉弁123、第4
の開閉弁127、第10の開閉弁138と開閉弁26
a,27b,28cを閉状態としている。第1圧縮機1
から吐出された高温高圧冷媒ガスは、高圧ガス管61に
流入し、開閉弁26aを通って第1凝縮器である熱交換
器51aに流入し、凝縮液化される。この液冷媒は、電
気式膨張弁31aを通って液管64に流入する。一方、
第2圧縮機2から吐出された高温高圧冷媒ガスは、第2
の開閉弁123を経て中圧ガス管62に流入し、開閉弁
27bを通って第2凝縮器である熱交換器51bに流入
し凝縮液化される。この液冷媒は、電気式膨張弁31b
を通って液管64に流入し、第1凝縮器である熱交換器
65aからの液冷媒と合流する。この合流した液冷媒
は、電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。このガ
ス冷媒は、低圧ガス管63を通って第4の開閉弁12
7、第2の吸入管78を経て第1圧縮機1及び第2圧縮
機2に吸入される。
Next, referring to FIG. 49, two condensation temperatures and 1
The operation when the difference between the condensing temperature and the evaporating temperature at the time of generating three temperatures for generating two evaporating temperatures is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation. FIG. 49 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. On-off valve 123, fourth
On-off valve 127, tenth on-off valve 138 and on-off valve 26
a, 27b and 28c are closed. First compressor 1
Flows into the high-pressure gas pipe 61, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. on the other hand,
The high temperature and high pressure refrigerant gas discharged from the second compressor 2
Flows into the medium-pressure gas pipe 62 through the on-off valve 123, and flows into the heat exchanger 51b as the second condenser through the on-off valve 27b to be condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 31b.
Flows into the liquid pipe 64, and merges with the liquid refrigerant from the heat exchanger 65a, which is the first condenser. The merged liquid refrigerant passes through the electric expansion valve 31c, enters a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63 and passes through the fourth on-off valve 12.
7. The air is sucked into the first compressor 1 and the second compressor 2 via the second suction pipe 78.

【0173】上記の説明では、第1圧縮機1の吐出冷媒
を開閉弁26aから第1凝縮器である熱交換器51aに
流入させ、第2圧縮機2の吐出冷媒を開閉弁27bから
第2凝縮器である熱交換器51bに流入させているが、
開閉弁26a,27bを閉じて開閉弁27a,26bを
開状態として第1圧縮機1の吐出冷媒を第2凝縮器であ
る熱交換器51b、第2圧縮機2の吐出冷媒を第1凝縮
器である熱交換器51aに流入させてもよい。従って、
熱交換器51aと熱交換器51bの負荷状態により第1
圧縮機1と第2圧縮機2からの冷媒を開閉弁を切り替え
ることにより熱交換器に導入することができる。このよ
うに、この運転モードでは、熱交換器51aで第1の凝
縮温度、熱交換器51bで第2の凝縮温度、熱交換器5
1cで蒸発温度が得られる。
In the above description, the refrigerant discharged from the first compressor 1 flows from the on-off valve 26a into the heat exchanger 51a as the first condenser, and the refrigerant discharged from the second compressor 2 flows from the on-off valve 27b through the second valve 27b. Although it is flowing into the heat exchanger 51b which is a condenser,
The on / off valves 26a, 27b are closed and the on / off valves 27a, 26b are in an open state, and the refrigerant discharged from the first compressor 1 is supplied to the heat exchanger 51b as a second condenser, and the refrigerant discharged from the second compressor 2 is supplied to the first condenser. May flow into the heat exchanger 51a. Therefore,
The first state depends on the load state of the heat exchangers 51a and 51b.
The refrigerant from the compressor 1 and the second compressor 2 can be introduced into the heat exchanger by switching the on-off valve. Thus, in this operation mode, the first condensing temperature in the heat exchanger 51a, the second condensing temperature in the heat exchanger 51b,
At 1c the evaporation temperature is obtained.

【0174】次に、図50を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図50では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2開閉弁123、第4の
開閉弁127、第8の開閉弁135、第9の開閉弁13
7、第11の開閉弁140と開閉弁26a,27b,2
8cを開状態としている。第2圧縮機2から吐出された
冷媒ガスの一部は、第8の開閉弁135及び第11の開
閉弁140、第9の開閉弁137を通って第1圧縮機1
に吸入され、高温高圧の冷媒ガスとなって高圧ガス管6
1に流入する。このガス冷媒は開閉弁26aを通って第
1凝縮器である熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電気式膨張弁31bを通って液管6
4に流入する。一方、第2圧縮機2から吐出された冷媒
ガスの残りは、第2の開閉弁123を通って中圧ガス管
62に流入し、開閉弁27bを通って第2凝縮器である
熱交換器51bに流入し凝縮液化される。この液冷媒は
電気式膨張弁31を通って液管64に流入し、第1凝縮
器である熱交換器51aからの液冷媒と合流する。この
合流した液冷媒は電気式膨張弁31cを通って低圧の二
相状態となって熱交換器51cへ流入し、蒸発ガス化さ
れる。この冷媒ガスは低圧ガス管63を通って第4の開
閉弁127、第2の吸入管78を経て第2圧縮機2に吸
入される。
Next, referring to FIG. 50, two condensation temperatures and 1
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 50 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. On-off valve 123, fourth on-off valve 127, eighth on-off valve 135, ninth on-off valve 13
7. Eleventh on-off valve 140 and on-off valves 26a, 27b, 2
8c is open. Part of the refrigerant gas discharged from the second compressor 2 passes through the eighth on-off valve 135, the eleventh on-off valve 140, and the ninth on-off valve 137,
Into the high-pressure gas pipe 6
Flow into 1. This gas refrigerant flows into the heat exchanger 51a, which is the first condenser, through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant passes through the electric expansion valve 31b and passes through the liquid pipe 6
Flow into 4. On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 flows into the medium-pressure gas pipe 62 through the second on-off valve 123, passes through the on-off valve 27b, and is a heat exchanger serving as a second condenser. It flows into 51b and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The combined liquid refrigerant passes through the electric expansion valve 31c to be in a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas is sucked into the second compressor 2 through the low-pressure gas pipe 63, the fourth on-off valve 127, and the second suction pipe 78.

【0175】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、第1の開閉弁121、第6の開閉弁131、第7
の開閉弁134、第10の開閉弁138、第11の開閉
弁140と開閉弁27a,28cを開状態として、熱交
換器51cに流入し蒸発ガス化した冷媒ガスを、低圧ガ
ス管63から第6の開閉弁131、第1の吸入管76を
経て第1圧縮機1に吸入させ、その吐出ガスを第2の圧
縮機2に吸入させるようにしてもよい。このように、こ
の運転モードでは、熱交換器51aで第1の凝縮温度、
熱交換器51bで第2の凝縮温度、熱交換器51cで蒸
発温度が得られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described, but the first on-off valve 121, the sixth on-off valve 131, the seventh on-off valve
With the on-off valve 134, the tenth on-off valve 138, the eleventh on-off valve 140, and the on-off valves 27a and 28c in the open state, the refrigerant gas flowing into the heat exchanger 51c and evaporating and gasifying is sent from the low-pressure gas pipe 63 through the low-pressure gas pipe 63. The first compressor 1 may be sucked into the first compressor 1 through the on-off valve 131 and the first suction pipe 76, and the discharged gas may be sucked into the second compressor 2. Thus, in this operation mode, the first condensing temperature in the heat exchanger 51a,
The second condensation temperature is obtained by the heat exchanger 51b, and the evaporation temperature is obtained by the heat exchanger 51c.

【0176】次に図51を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。図51では、熱交換器51aが
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器として動作する例を示しており、第1の開
閉弁121、第3の開閉弁125、第4の開閉弁12
7、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態としている。第1圧縮
機1から吐出された高温高圧冷媒ガスは、第1の開閉弁
121を経た第2圧縮機2の吐出冷媒ガスと高圧ガス管
61で合流し、開閉弁26aを通って熱交換器51aに
流入し凝縮器液化される。この液冷媒は電気式膨張弁3
1aを通って液管64に流入し、その一部は電気式膨張
弁31bを通って低圧の二相状態となって第1蒸発器で
ある熱交換器51bへ流入し蒸発ガス化される。この冷
媒ガスは中圧ガス管62を通って第3の開閉弁125、
第1の吸入管76を経て第1の圧縮機1に吸入される。
一方、液管64に流入した残りの液冷媒は、電気式膨張
弁31cを通って低圧の二相状態となって第2蒸発器で
ある熱交換器51cへ流入し蒸発ガス化される。このガ
ス冷媒は、低圧ガス管63を通って第4の開閉弁12
7、第2の吸入管78を経て第2圧縮機2に吸入され
る。
Next, referring to FIG. 51, one condensation temperature and 2
The operation when the difference between the condensing temperature and the evaporating temperature at the time of generating three temperatures for generating two evaporating temperatures is relatively small will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation. In FIG. 51, the heat exchanger 51a is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example in which the first on-off valve 121, the third on-off valve 125, and the fourth on-off valve 12 operate as a second evaporator.
7, the seventh on-off valve 134, the eighth on-off valve 135, and the on-off valves 26a, 27b, 28c are open. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 joins the refrigerant gas discharged from the second compressor 2 via the first on-off valve 121 at the high-pressure gas pipe 61, passes through the on-off valve 26a, and passes through the heat exchanger. The liquid flows into the condenser 51a and is liquefied. This liquid refrigerant is an electric expansion valve 3
The liquid flows into the liquid pipe 64 through 1a, a part of which flows into the low-pressure two-phase state through the electric expansion valve 31b, flows into the heat exchanger 51b as the first evaporator, and is vaporized. This refrigerant gas passes through the medium-pressure gas pipe 62 and the third on-off valve 125,
It is sucked into the first compressor 1 via the first suction pipe 76.
On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63 and passes through the fourth on-off valve 12.
7. The air is sucked into the second compressor 2 via the second suction pipe 78.

【0177】上記の説明では、中圧ガス管62の冷媒ガ
スを第1圧縮機1、低圧ガス管63の冷媒ガスを第2圧
縮機2に吸入させているが、図52に示すように第1の
開閉弁121、第5の開閉弁129、第6の開閉弁13
1、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態として中圧ガス管62
の冷媒ガスを第2圧縮機2、低圧ガス管63の冷媒ガス
を第1圧縮機1に吸入させてもよい。従って、熱交換器
51cと熱交換器51bの熱負荷に合わせて開閉弁を切
り替えることにより圧縮機からの冷媒の導入することが
できる。このように、この運転モードでは、熱交換器5
1aで凝縮温度、熱交換器51bで第1の蒸発温度、熱
交換器51cで第2の蒸発温度が得られる。
In the above description, the refrigerant gas in the medium-pressure gas pipe 62 is sucked into the first compressor 1 and the refrigerant gas in the low-pressure gas pipe 63 is sucked into the second compressor 2, but as shown in FIG. 1st on-off valve 121, 5th on-off valve 129, 6th on-off valve 13
First, the seventh on-off valve 134, the eighth on-off valve 135 and the on-off valves 26a, 27b, 28c are opened, and the medium-pressure gas pipe 62 is opened.
May be drawn into the second compressor 2 and the refrigerant gas in the low-pressure gas pipe 63 into the first compressor 1. Therefore, refrigerant can be introduced from the compressor by switching the on-off valve in accordance with the heat load of the heat exchanger 51c and the heat exchanger 51b. Thus, in this operation mode, the heat exchanger 5
The condensation temperature is obtained by 1a, the first evaporation temperature is obtained by the heat exchanger 51b, and the second evaporation temperature is obtained by the heat exchanger 51c.

【0178】次に図53を用いて1つの凝縮温度と2つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱+高
温給湯運転時などに適用される。図53では、熱交換器
51aが凝縮器、熱交換器51bが第1蒸発器、熱交換
器51cが第2蒸発器として動作する例を示しており、
第1の開閉弁121、第2の開閉弁123、第4の開閉
弁127、第8の開閉弁135、第11の開閉弁140
と開閉弁26a,27b,28cを開状態としている。
第1圧縮機1から吐出された高温高圧冷媒ガスは、高圧
ガス管61に流入し、開閉弁26aを通って熱交換器5
1aに流入し凝縮液化される。この液冷媒は、電気式膨
張弁31aを通って液管64に流入し、その一部は電気
式膨張弁31bを通って低圧の二相状態となって第1蒸
発器である熱交換器51bへ流入し蒸発ガス化される。
この冷媒ガスは、中圧ガス管62を通って第2の開閉弁
123を経て第2圧縮機2の吐出ガスと合流し、第8の
開閉弁135、第11の開閉弁140、第9の開閉弁1
37を経て第1圧縮機1に吸入される。一方、液管64
に流入した残りの液冷媒は電気式膨張弁31cを通って
低圧の二相状態となって第2蒸発である熱交換器51c
へ流入し蒸発ガス化される。このガス冷媒は、低圧ガス
管63を通って第4の開閉弁127、第2の吸入管78
を経て第2圧縮機2に吸入される。
Next, referring to FIG. 53, an operation in the case of generating three temperatures for generating one condensing temperature and two evaporating temperatures and when the difference between the condensing temperature and the evaporating temperature is relatively large will be described. This operation mode is applied, for example, during normal cooling + ice heat storage + high-temperature hot water supply operation. FIG. 53 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator.
First on-off valve 121, second on-off valve 123, fourth on-off valve 127, eighth on-off valve 135, eleventh on-off valve 140
And the on-off valves 26a, 27b, 28c are in the open state.
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, passes through the on-off valve 26a, and passes through the heat exchanger 5
It flows into 1a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant passes through the electric expansion valve 31b to be in a low-pressure two-phase state. And is vaporized.
This refrigerant gas passes through the intermediate pressure gas pipe 62 and merges with the discharge gas of the second compressor 2 via the second on-off valve 123, and the eighth on-off valve 135, the eleventh on-off valve 140, and the ninth On-off valve 1
It is sucked into the first compressor 1 via 37. On the other hand, the liquid pipe 64
The remaining liquid refrigerant that has flowed into the heat exchanger 51c passes through the electric expansion valve 31c to be in a low-pressure two-phase state, and is a second evaporator heat exchanger 51c.
And is vaporized. The gas refrigerant passes through the low-pressure gas pipe 63 and passes through the fourth on-off valve 127 and the second suction pipe 78.
Through the second compressor 2.

【0179】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図54に示すように第6の開閉弁131、第7の
開閉弁134、第10の開閉弁138、第11の開閉弁
140、第12の開閉弁142、第13の開閉弁144
と、開閉弁27a,28cを開状態として、熱交換器5
1cに流入し蒸発ガス化した冷媒ガスを、低圧ガス管6
3から第6の開閉弁131、第1の吸入管76を経て第
1圧縮機1に吸入させ、その吐出ガスと第12の開閉弁
142からの中圧ガス管62の冷媒の一部とを第2圧縮
機2に吸入させその吐出ガスを第13の開閉弁144か
ら高圧ガス管61に流入するようにしてもよい。このよ
うに、この運転モードでは、熱交換器51aで第1の凝
縮温度、熱交換器51bで第1の蒸発温度、熱交換器5
1cで第2の蒸発温度が得られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. As shown in FIG. 54, the sixth on-off valve 131, seventh on-off valve 134, tenth on-off valve 138, eleventh on-off Valve 140, twelfth on-off valve 142, thirteenth on-off valve 144
And the open / close valves 27a and 28c are opened, and the heat exchanger 5
1c into the low-pressure gas pipe 6
The third to sixth on-off valves 131 and the first compressor 1 are sucked into the first compressor 1 via the first suction pipe 76, and the discharged gas and a part of the refrigerant in the medium-pressure gas pipe 62 from the twelfth on-off valve 142 The second compressor 2 may be sucked and the discharged gas may flow from the thirteenth on-off valve 144 into the high-pressure gas pipe 61. Thus, in this operation mode, the first condensing temperature in the heat exchanger 51a, the first evaporation temperature in the heat exchanger 51b,
At 1c, a second evaporation temperature is obtained.

【0180】実施例10.図55は実施例10の蒸気圧
縮式サイクルの冷媒回路の構成図である。図55におい
て、1は第1圧縮機、2は第2圧縮機、61は高圧ガス
管、63は低圧ガス管、62は中圧ガス管、64は液
管、51a,51b,51cは熱交換器で、熱交換器は
高圧ガス管61、低圧ガス管63、中圧ガス管62に各
々開閉弁26a,27a,28a及び26b,27b,
28b及び26c,27c,28cを介して分岐接続す
るとともに、液管64とは流量制御弁である電子式膨張
弁31a,31b,31cをそれぞれ介して接続してい
る。72は第1圧縮機1の吐出側と高圧ガス管61とを
第1の開閉弁121を介して接続する第1の吐出管、7
4は第2圧縮機の吐出側と中圧ガス管62とを第2の開
閉弁123を介して接続する第2の吐出管、76は第1
圧縮機1の吸入側と第3の開閉弁125を介して四方弁
150に接続する第1の吸入管、78は第2圧縮機2の
吸入側と第4の開閉弁127を介して四方弁150に接
続する第2の吸入管、83は第1の吐出管72と第2の
吐出管74とを第7、第8の開閉弁134,135を介
して接続する吐出側接続管、86は第1の吸入管76と
第2の吸入管78とを第9、第10の開閉弁137,1
38を介して接続する吸入側接続管、89は吸入側接続
管86の第7と第8の開閉弁137,138との間と吐
出側接続管83の第9と第10の開閉弁134,135
との間を第11の開閉弁140を介して接続する第3の
バイパス管、91は第1の吐出管72と中圧ガス管62
とを第12の開閉弁142を介して接続する第4のバイ
パス管93は第2の吐出管74と高圧ガス管61とを第
13の開閉弁144を介して接続する第5のバイパス管
である。四方弁150は中圧ガス管62、低圧ガス管6
3、第1の吸入管76、第2の吸入管78が接続され、
中圧ガス管62と第1の吸入管76、低圧ガス管63と
第2の吸入管78、または中圧ガス管62と第2の吸入
管78、低圧ガス管63と第1の吸入管76とを切り替
えて接続する。この実施例の多温度生成回路には、実施
例9と同様に表1に示すように6つの運転モードがあ
り、以下、この6つの運転モードを図56〜図66を用
いて説明する。
Embodiment 10 FIG. FIG. 55 is a configuration diagram of a refrigerant circuit of a vapor compression cycle according to the tenth embodiment. In FIG. 55, 1 is a first compressor, 2 is a second compressor, 61 is a high-pressure gas pipe, 63 is a low-pressure gas pipe, 62 is a medium-pressure gas pipe, 64 is a liquid pipe, and 51a, 51b, and 51c are heat exchangers. The heat exchanger is connected to the high-pressure gas pipe 61, the low-pressure gas pipe 63, and the medium-pressure gas pipe 62 by the on-off valves 26a, 27a, 28a and 26b, 27b, respectively.
They are branched and connected via 28b and 26c, 27c and 28c, and connected to the liquid pipe 64 via electronic expansion valves 31a, 31b and 31c, which are flow control valves, respectively. A first discharge pipe 72 connects the discharge side of the first compressor 1 and the high-pressure gas pipe 61 via a first opening / closing valve 121;
Reference numeral 4 denotes a second discharge pipe connecting the discharge side of the second compressor and the medium-pressure gas pipe 62 via a second on-off valve 123, and reference numeral 76 denotes a first discharge pipe.
A first suction pipe 78 connected to the four-way valve 150 via the suction side of the compressor 1 and the third on-off valve 125 is a four-way valve 78 via the suction side of the second compressor 2 and the fourth on-off valve 127 A second suction pipe 83 connected to 150, a discharge-side connection pipe 83 connecting the first discharge pipe 72 and the second discharge pipe 74 via seventh and eighth on-off valves 134, 135, 86 The ninth and tenth on-off valves 137, 1 are connected to the first suction pipe 76 and the second suction pipe 78.
A suction side connection pipe 89 connected through the valve 38 is provided between the seventh and eighth open / close valves 137 and 138 of the suction side connection pipe 86 and ninth and tenth open / close valves 134 and 134 of the discharge side connection pipe 83. 135
And a third bypass pipe 91 connecting the first discharge pipe 72 and the medium-pressure gas pipe 62 to each other through the eleventh on-off valve 140.
Is connected via a twelfth on-off valve 142 to a fourth bypass pipe 93 which connects the second discharge pipe 74 and the high-pressure gas pipe 61 via a thirteenth on-off valve 144. is there. The four-way valve 150 includes the medium-pressure gas pipe 62 and the low-pressure gas pipe 6.
3, the first suction pipe 76 and the second suction pipe 78 are connected,
Medium pressure gas pipe 62 and first suction pipe 76, low pressure gas pipe 63 and second suction pipe 78, or medium pressure gas pipe 62 and second suction pipe 78, low pressure gas pipe 63 and first suction pipe 76 Switch to and connect. The multi-temperature generation circuit of this embodiment has six operation modes as shown in Table 1 as in the ninth embodiment. Hereinafter, these six operation modes will be described with reference to FIGS.

【0181】まず図56を用いて1つの凝縮温度と1つ
の蒸発温度を生成する2温度生成時で、この凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房あるいは暖房
時などに適用される。図56では、熱交換器51aが凝
縮器、熱交換器51bが停止、熱交換器51cが蒸発器
として動作する例を示しており、第1の開閉弁121、
第4の開閉弁127、第7の開閉弁134、第8の開閉
弁135、第9の開閉弁137、第10の開閉弁138
と、開閉弁26a,28cを開状態とし、四方弁150
は低圧ガス管63と第2の吸入管78とを連通するよう
に切り替えられている。第1圧縮機1及び第2圧縮機2
から吐出された高温高圧冷媒ガスは、高圧ガス管61で
合流し、開閉弁26aを通って熱交換器51aに流入
し、凝縮液化される。この液冷媒は、電気式膨張弁31
aを通って液管64に流入し、電気式膨張弁31cを通
って低圧の二相状態となって熱交換器51cへ流入し、
蒸発ガス化される。そしたこの冷媒ガスは低圧ガス管6
3に流入し四方弁150から第2の吸入管78、吸入側
接続管86を通り第1圧縮機1と第2圧縮機に吸入され
る。このように、この運転モードでは、熱交換器51a
で凝縮温度が、熱交換器51cで蒸発温度が得られる。
First, with reference to FIG. 56, an operation in the case of generating two temperatures in which one condensing temperature and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively small will be described. This operation mode is applied, for example, during normal cooling or heating. FIG. 56 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops, and the heat exchanger 51c operates as an evaporator.
Fourth on-off valve 127, seventh on-off valve 134, eighth on-off valve 135, ninth on-off valve 137, tenth on-off valve 138
And the open / close valves 26a and 28c are opened, and the four-way valve 150
Are switched to communicate the low pressure gas pipe 63 and the second suction pipe 78. First compressor 1 and second compressor 2
The high-temperature and high-pressure refrigerant gas discharged from is joined by the high-pressure gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant is supplied to the electric expansion valve 31.
a into the liquid pipe 64, through the electric expansion valve 31c, into a low-pressure two-phase state, and into the heat exchanger 51c,
It is vaporized and gasified. The refrigerant gas is supplied to the low-pressure gas pipe 6.
3 and is sucked into the first compressor 1 and the second compressor from the four-way valve 150 through the second suction pipe 78 and the suction-side connection pipe 86. Thus, in this operation mode, the heat exchanger 51a
To obtain the condensation temperature and the heat exchanger 51c to obtain the evaporation temperature.

【0182】次に、図57を用いて1つの凝縮温度と1
つの蒸発温度を生成する2温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば高温給湯や給湯+氷蓄
熱時などに適用される。図57では、例えば熱交換器5
1aが凝縮器、熱交換器51bが停止、熱交換器51c
が蒸発器として動作する例を示しており、第1の開閉弁
121、第4の開閉弁127、第8の開閉弁135、第
9の開閉弁137、第11の開閉弁140と、開閉弁2
6a,28c開状態とし、四方弁150は低圧ガス管6
3と第2の吸入管78とを連通するよう切り替えられて
いる。第2圧縮機2から吐出された冷媒ガスは、第8の
開閉弁135、第11の開閉弁140、第9の開閉弁1
37を通って第1圧縮機1に吸入され高温高圧冷媒ガス
となって高圧ガス管61に流入する。開閉弁26aを通
って熱交換器51aに流入し、凝縮液化される。この液
冷媒は、電気式膨張弁31aを通って液管64に流入し
電気式膨張弁31cを通って低圧の二相状態となって熱
交換器51cへ流入し、蒸発ガス化される。この冷媒ガ
スは、低圧ガス管63を通って四方弁150から第4の
開閉弁127、第2の吸入管78を経て第2圧縮機2に
吸入される。
Next, referring to FIG. 57, one condensation temperature and one
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large at the time of generating the two evaporating temperatures. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. In FIG. 57, for example, the heat exchanger 5
1a is a condenser, heat exchanger 51b is stopped, heat exchanger 51c
Shows an example that operates as an evaporator. The first on-off valve 121, the fourth on-off valve 127, the eighth on-off valve 135, the ninth on-off valve 137, the eleventh on-off valve 140, and the on-off valve 2
6a and 28c are opened, and the four-way valve 150 is connected to the low-pressure gas pipe 6.
3 and the second suction pipe 78 are switched to communicate with each other. The refrigerant gas discharged from the second compressor 2 is supplied to the eighth on-off valve 135, the eleventh on-off valve 140, the ninth on-off valve 1
The refrigerant is sucked into the first compressor 1 through 37 and becomes a high-temperature high-pressure refrigerant gas and flows into the high-pressure gas pipe 61. It flows into the heat exchanger 51a through the on-off valve 26a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters a low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas is sucked into the second compressor 2 from the four-way valve 150 through the low-pressure gas pipe 63, the fourth on-off valve 127, and the second suction pipe 78.

【0183】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図58に示すように第3の開閉弁125、第7の
開閉弁134、第10の開閉弁138、第11の開閉弁
140、第13の開閉弁144と開閉弁27a,28c
を開状態、四方弁150を低圧ガス管63と第1の吸入
管76を連通するように切り替えることにより、熱交換
器51cに流入し蒸発ガス化した冷媒ガスを、低圧ガス
管63から第6の開閉弁131、第1の吸入管76を経
て第1圧縮機1に吸入させ、その吐出ガスを第2圧縮機
2に吸入させその吐出ガスを第13の開閉弁144から
高圧ガス管61に流入するようにしてもよい。このよう
に、この運転モードでは、2段圧縮運転となり、熱交換
器51aで凝縮温度が、熱交換器51cで蒸発温度が得
られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. However, as shown in FIG. 58, the third on-off valve 125, the seventh on-off valve 134, the tenth on-off valve 138, the eleventh on-off Valve 140, thirteenth on-off valve 144 and on-off valves 27a, 28c
Is opened, and the four-way valve 150 is switched so that the low-pressure gas pipe 63 communicates with the first suction pipe 76, so that the refrigerant gas flowing into the heat exchanger 51 c and vaporized and evaporated is transferred from the low-pressure gas pipe 63 to the sixth pipe. The first compressor 1 is sucked through the on-off valve 131 and the first suction pipe 76, and the discharge gas is sucked into the second compressor 2 and the discharge gas is sent from the thirteenth on-off valve 144 to the high-pressure gas pipe 61. You may make it flow in. Thus, in this operation mode, two-stage compression operation is performed, and the condensing temperature is obtained in the heat exchanger 51a and the evaporation temperature is obtained in the heat exchanger 51c.

【0184】次に図59を用いて、2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的低
い給湯運転時などに適用される。図59では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2の開閉弁123、第4
の開閉弁127、第10の開閉弁138と開閉弁26
a,27b,28cを開状態とし、四方弁150は低圧
ガス管63と第2の吸入管78とを連通するよう切り替
えられている。第1圧縮機1から吐出された高温高圧冷
媒ガスは、高圧ガス管61に流入し、開閉弁26aを通
って第1凝縮器である熱交換器51aに流入し、凝縮液
化される。この液冷媒は、電気式膨張弁31aを通って
液管64に流入する。一方、第2圧縮機2から吐出され
た高温高圧冷媒ガスは、第2の開閉弁123を経て中圧
ガス管62に流入し、開閉弁27bを通って第2凝縮器
である熱交換器51cに流入し凝縮液化される。この液
冷媒は、電気式膨張弁31bを通って液管64に流入
し、第1凝縮器である熱交換器51aからの液冷媒と合
流する。この合流した液冷媒は、電気式膨張弁31cを
通って低圧の二相状態となって熱交換器51cへ流入
し、蒸発ガス化される。この冷媒ガスは、低圧ガス管6
3を通って四方弁150から第4の開閉弁127、第2
の吸入管78を経て第1圧縮機1及び第2圧縮機2に吸
入される。
Next, referring to FIG. 59, two condensation temperatures and 1
The operation when the difference between the condensing temperature and the evaporating temperature at the time of generating three temperatures for generating two evaporating temperatures is relatively small will be described. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation. FIG. 59 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. On-off valve 123, fourth
On-off valve 127, tenth on-off valve 138 and on-off valve 26
The valves a, 27b, and 28c are opened, and the four-way valve 150 is switched so as to communicate the low-pressure gas pipe 63 and the second suction pipe 78. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61, flows into the heat exchanger 51a as the first condenser through the on-off valve 26a, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 flows into the medium-pressure gas pipe 62 via the second on-off valve 123, passes through the on-off valve 27b, and is a heat exchanger 51c as a second condenser. And is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The merged liquid refrigerant passes through the electric expansion valve 31c, enters a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas is supplied to the low-pressure gas pipe 6.
3 through the four-way valve 150 to the fourth on-off valve 127, the second
Is sucked into the first compressor 1 and the second compressor 2 through the suction pipe 78.

【0185】上記の説明では、第1圧縮機1の吐出冷媒
を開閉弁26aから第1凝縮器である熱交換器51aに
流入させ、第2圧縮機2の吐出冷媒を開閉弁27bから
第2凝縮器である熱交換器51bに流入させているが、
図60に示すように第4の開閉弁127、第9の開閉弁
137、第10の開閉弁138、第12の開閉弁142
と第13の開閉弁144とを開状態として第1圧縮機1
の吐出冷媒を第2凝縮器である熱交換器51b、第2圧
縮機2の吐出冷媒を第1凝縮器である熱交換器51aに
流入させてもよい。従って、熱交換器51aと熱交換器
51bの負荷状態に合わせて第1圧縮機1と第2圧縮機
2からの冷媒を開閉弁を切り替えることにより熱交換器
に導入することができる。このように、この運転モード
では、熱交換器51aで第1の凝縮温度、熱交換器51
bで第2の凝縮温度、熱交換器51cで蒸発温度が得ら
れる。
In the above description, the refrigerant discharged from the first compressor 1 flows from the on-off valve 26a into the heat exchanger 51a, which is the first condenser, and the refrigerant discharged from the second compressor 2 flows from the on-off valve 27b through the second valve 27b. Although it is flowing into the heat exchanger 51b which is a condenser,
As shown in FIG. 60, the fourth on-off valve 127, the ninth on-off valve 137, the tenth on-off valve 138, and the twelfth on-off valve 142
And the thirteenth on-off valve 144 are opened so that the first compressor 1
May be caused to flow into the heat exchanger 51b as the second condenser, and the refrigerant discharged from the second compressor 2 into the heat exchanger 51a as the first condenser. Therefore, the refrigerant from the first compressor 1 and the second compressor 2 can be introduced into the heat exchanger by switching the on-off valve in accordance with the load state of the heat exchangers 51a and 51b. Thus, in this operation mode, the first condensing temperature and the heat exchanger 51
At b, the second condensation temperature is obtained, and at the heat exchanger 51c, the evaporation temperature is obtained.

【0186】次に、図61を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図61では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第1の開閉弁121、第2開閉弁123、第4の
開閉弁127、第8の開閉弁135、第9の開閉弁13
7、第11の開閉弁140と開閉弁26a,27b,2
8cを開状態とし四方弁150は低圧ガス管63と第1
の吸入管76とを連通するよう切り替えられている。第
2圧縮機2から吐出された冷媒ガスの一部は、第8の開
閉弁135及び第11の開閉弁140、第9の開閉弁1
37を通って第1圧縮機1に吸入され、高温高圧の冷媒
ガスとなって高圧ガス管61に流入する。このガス冷媒
は開閉弁26aを通って第1凝縮器である熱交換器51
aに流入し凝縮液化される。この液冷媒は、電気式膨張
弁31bを通って液管64に流入する。一方、第2圧縮
機2から吐出された冷媒ガスの残りは、第2の開閉弁1
23を通って中圧ガス管62に流入し、開閉弁27bを
通って第2凝縮器である熱交換器51bに流入し凝縮液
化される。この液冷媒は電気式膨張弁31bを通って液
管64に流入し、第1凝縮器である熱交換器51aから
液冷媒と合流する。この合流した液冷媒は電気式膨張弁
31cを通って低圧の二相状態となって熱交換器51c
へ流入し、蒸発ガス化される。この冷媒ガスは低圧ガス
管63を通って四方弁150、第4の開閉弁127、第
2の吸入管78を経て第2圧縮機2に吸入される。
Next, referring to FIG. 61, two condensation temperatures and 1
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 61 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. On-off valve 123, fourth on-off valve 127, eighth on-off valve 135, ninth on-off valve 13
7. Eleventh on-off valve 140 and on-off valves 26a, 27b, 2
8c is opened and the four-way valve 150 is connected to the low-pressure gas pipe 63 and the first
Is switched so as to communicate with the suction pipe 76. Part of the refrigerant gas discharged from the second compressor 2 is supplied to the eighth on-off valve 135, the eleventh on-off valve 140, the ninth on-off valve 1
The refrigerant gas is sucked into the first compressor 1 through 37, becomes a high-temperature and high-pressure refrigerant gas, and flows into the high-pressure gas pipe 61. The gas refrigerant passes through the on-off valve 26a and passes through the heat exchanger 51 as the first condenser.
a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b. On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 is the second on-off valve 1
The gas flows into the medium-pressure gas pipe 62 through 23, flows into the heat exchanger 51b as the second condenser through the on-off valve 27b, and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and joins with the liquid refrigerant from the heat exchanger 51a that is the first condenser. The combined liquid refrigerant passes through the electric expansion valve 31c to be in a low-pressure two-phase state, and becomes a heat exchanger 51c.
And is vaporized and gasified. This refrigerant gas is sucked into the second compressor 2 through the low-pressure gas pipe 63, the four-way valve 150, the fourth on-off valve 127, and the second suction pipe 78.

【0187】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図62に示すように第1の開閉弁121、第7の
開閉弁134、第10の開閉弁138、第11の開閉弁
140、第12の開閉弁142と第13の開閉弁144
を開状態とするとともに四方弁150を低圧ガス管63
と第2の吸入管78とを連通するように切り替えて、熱
交換器51cに流入し蒸発ガス化した冷媒ガスを、低圧
ガス管63から四方弁150、第1の吸入管76を経て
第1圧縮機1に吸入させ、その吐出ガスを第2圧縮機2
に吸入させるようにしてもよい。このように、この運転
モードでは、熱交換器51aで第1の凝縮温度、熱交換
器51bで第2の凝縮温度、熱交換器51cで蒸発温度
が得られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. However, as shown in FIG. 62, the first on-off valve 121, the seventh on-off valve 134, the tenth on-off valve 138, the eleventh on-off Valve 140, twelfth on-off valve 142, and thirteenth on-off valve 144
And the four-way valve 150 is connected to the low-pressure gas pipe 63.
And the second suction pipe 78 are communicated with each other, and the refrigerant gas flowing into the heat exchanger 51c and being evaporated and gasified is transferred from the low-pressure gas pipe 63 to the first suction pipe 76 via the four-way valve 150 and the first suction pipe 76. The gas is sucked into the compressor 1 and the discharged gas is supplied to the second compressor 2.
May be inhaled. Thus, in this operation mode, the first condensing temperature is obtained by the heat exchanger 51a, the second condensing temperature is obtained by the heat exchanger 51b, and the evaporating temperature is obtained by the heat exchanger 51c.

【0188】次に図63を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。図63では、熱交換器51aが
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器として動作する例を示しており、第1の開
閉弁121、第3の開閉弁125、第4の開閉弁12
7、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態とし、四方弁150を
低圧ガス管63と第2の吸入管78、中圧ガス管62と
第1の吸入管76を連通するように切り替えられてい
る。第1圧縮機1から吐出された高温高圧冷媒ガスは、
第7,8の開閉弁135,134を経た第2圧縮機2の
吐出冷媒ガスと高圧ガス管61で合流し、開閉弁26a
を通って熱交換器51aに流入し凝縮液化される。この
液冷媒は、電気式膨張弁31aを通って液管64に流入
し、その一部は電気式膨張弁31bを通って低圧の二相
状態となって第1蒸発器である熱交換器51bへ流入し
蒸発ガス化される。この冷媒ガスは、中圧ガス管62を
通って四方弁150から第3の開閉弁125、第1の吸
入管76を経て第1の圧縮機1に吸入される。一方、液
管64に流入した残りの液冷媒は、電気式膨張弁31c
を通って低圧の二相状態となって第2蒸発器である熱交
換器51cへ流入し蒸発ガス化される。このガス冷媒
は、低圧ガス管63を通って四方弁150から第4の開
閉弁127、第2の吸入管78を経て第2圧縮機2に吸
入される。
Next, referring to FIG. 63, one condensation temperature and 2
The operation when the difference between the condensing temperature and the evaporating temperature at the time of generating three temperatures for generating two evaporating temperatures is relatively small will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation. In FIG. 63, the heat exchanger 51a is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example in which the first on-off valve 121, the third on-off valve 125, and the fourth on-off valve 12 operate as a second evaporator.
7, the seventh on-off valve 134, the eighth on-off valve 135 and the on-off valves 26a, 27b, 28c are opened, and the four-way valve 150 is connected to the low-pressure gas pipe 63, the second suction pipe 78, the medium-pressure gas pipe 62, The switching is performed so as to communicate with the first suction pipe 76. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 is:
The refrigerant gas discharged from the second compressor 2 through the seventh and eighth opening / closing valves 135 and 134 is joined by the high-pressure gas pipe 61 to form the opening / closing valve 26a.
And flows into the heat exchanger 51a to be condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant passes through the electric expansion valve 31b to be in a low-pressure two-phase state. And is vaporized. This refrigerant gas is drawn into the first compressor 1 from the four-way valve 150 via the third pressure valve 125 and the first suction pipe 76 through the medium-pressure gas pipe 62. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 is supplied to the electric expansion valve 31c.
, And flows into a low-pressure two-phase state, flows into the heat exchanger 51c as the second evaporator, and is vaporized and gasified. The gas refrigerant is sucked into the second compressor 2 from the four-way valve 150 through the low-pressure gas pipe 63, through the fourth on-off valve 127, and the second suction pipe 78.

【0189】上記の説明では、中圧ガス管62の冷媒ガ
スを第1圧縮機1、低圧ガス管63の冷媒ガスを第2圧
縮機2に吸入させているが、図64に示すように第1の
開閉弁121、第3の開閉弁125、第4の開閉弁12
7、第7の開閉弁134、第8の開閉弁135と開閉弁
26a,27b,28cを開状態とし、四方弁150を
低圧ガス管63と第1の吸入管76、中圧ガス管62と
第2の吸入管78を連通するよう切り替えることによ
り、中圧ガス管62の冷媒ガスを第2圧縮機2、低圧ガ
ス管63の冷媒ガスを第1圧縮機1に吸入させてもよ
い。従って、熱交換器51cと熱交換器51bの熱負荷
に合わせて開閉弁を切り替えることにより圧縮機からの
冷媒の導入することができる。このように、この運転モ
ードでは、熱交換器51aで凝縮温度、熱交換器51b
で第1の蒸発温度、熱交換器51cで第2の蒸発温度が
得られる。
In the above description, the refrigerant gas in the medium-pressure gas pipe 62 is sucked into the first compressor 1 and the refrigerant gas in the low-pressure gas pipe 63 is sucked into the second compressor 2, but as shown in FIG. First on-off valve 121, third on-off valve 125, fourth on-off valve 12
7. The seventh on-off valve 134, the eighth on-off valve 135 and the on-off valves 26a, 27b, 28c are opened, and the four-way valve 150 is connected to the low-pressure gas pipe 63, the first suction pipe 76, the medium-pressure gas pipe 62, The refrigerant gas in the medium-pressure gas pipe 62 may be sucked into the second compressor 2 and the refrigerant gas in the low-pressure gas pipe 63 may be sucked into the first compressor 1 by switching to communicate the second suction pipe 78. Therefore, refrigerant can be introduced from the compressor by switching the on-off valve in accordance with the heat load of the heat exchanger 51c and the heat exchanger 51b. Thus, in this operation mode, the condensing temperature in the heat exchanger 51a and the heat exchanger 51b
To obtain the first evaporation temperature and the heat exchanger 51c to obtain the second evaporation temperature.

【0190】次に図65を用いて1つの凝縮温度と2つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱+高
温給湯運転時などに適用される。図65では、熱交換器
51aが凝縮器、熱交換器51bが第1蒸発器、熱交換
器51cが第2蒸発器として動作する例を示しており、
第1の開閉弁121、第2の開閉弁123、第4の開閉
弁127、第8の開閉弁135、第11の開閉弁140
と開閉弁26a,27b,28cを開状態とし、四方弁
150は低圧ガス管63と第2の吸入管78を連通する
ように切り替えられている。第1圧縮機1から吐出され
た高温高圧冷媒ガスは、高温ガス管61に流入し、開閉
弁26aを通って熱交換器51aに流入し凝縮液化され
る。この液冷媒は、電気式膨張弁31aを通って液管6
4に流入し、その一部は電気式膨張弁31bを通って低
圧の二相状態となって第1蒸発器である熱交換器51b
へ流入し蒸発ガス化される。この冷媒ガスは、中圧ガス
管62を通って第2の開閉弁123を経て第2圧縮機2
の吐出ガスと合流し、第8の開閉弁135、第11の開
閉弁140、第9の開閉弁137を経て第1圧縮機1に
吸入される。一方、液管64に流入した残りの液冷媒は
電気式膨張弁31cを通って低圧の二相状態となって第
2蒸発器である熱交換器51cへ流入し蒸発ガス化され
る。このガス冷媒は、低圧ガス管63を通って四方弁1
50から第4の開閉弁127、第2の吸入管128を経
て第2圧縮機2に吸入される。
Next, referring to FIG. 65, the operation in the case of generating three temperatures for generating one condensing temperature and two evaporating temperatures and in which the difference between the condensing temperature and the evaporating temperature is relatively large will be described. This operation mode is applied, for example, during normal cooling + ice heat storage + high-temperature hot water supply operation. FIG. 65 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator.
First on-off valve 121, second on-off valve 123, fourth on-off valve 127, eighth on-off valve 135, eleventh on-off valve 140
And the on-off valves 26a, 27b, 28c are opened, and the four-way valve 150 is switched so as to communicate the low-pressure gas pipe 63 and the second suction pipe 78. The high-temperature high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-temperature gas pipe 61, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. The liquid refrigerant passes through the electric expansion valve 31a and passes through the liquid pipe 6
4, a part of which flows into the low-pressure two-phase state through the electric expansion valve 31b to become the heat exchanger 51b as the first evaporator.
And is vaporized. This refrigerant gas passes through the medium-pressure gas pipe 62, passes through the second on-off valve 123, and passes through the second compressor 2
And is sucked into the first compressor 1 via the eighth on-off valve 135, the eleventh on-off valve 140, and the ninth on-off valve 137. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 passes through the electric expansion valve 31c to be in a low-pressure two-phase state, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63 and passes through the four-way valve 1.
The air is sucked into the second compressor 2 from 50 through a fourth on-off valve 127 and a second suction pipe 128.

【0191】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図66に示すように、第7の開閉弁134、第1
0の開閉弁138、第11の開閉弁140、第12の開
閉弁142、第13の開閉弁144と、四方弁150を
低圧ガス管63と第1の吸入管76を連通するよう切り
替えることにより、熱交換器51cに流入し蒸発ガス化
した冷媒ガスを、低圧ガス管63から四方弁150、第
3の開閉弁125、第1の吸入管76を経て第1圧縮機
1に吸入させ、その吐出ガスと第12の開閉弁142か
らの中圧ガス管62の冷媒の一部とを第2圧縮機2に吸
入させその吐出ガスを第13の開閉弁143から高圧ガ
ス管61に流入するようにしてもよい。このように、こ
の運転モードでは、熱交換器51aで凝縮温度、熱交換
器51bで第1の蒸発温度、熱交換器51cで第2の蒸
発温度が得られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. As shown in FIG. 66, the seventh on-off valve 134, the first
0, the eleventh on-off valve 140, the twelfth on-off valve 142, the thirteenth on-off valve 144, and the four-way valve 150 by switching the low-pressure gas pipe 63 to communicate with the first suction pipe 76. The refrigerant gas that has flowed into the heat exchanger 51c and has been evaporated and gasified is sucked into the first compressor 1 from the low-pressure gas pipe 63 via the four-way valve 150, the third on-off valve 125, and the first suction pipe 76. The discharge gas and part of the refrigerant in the medium-pressure gas pipe 62 from the twelfth on-off valve 142 are sucked into the second compressor 2, and the discharge gas flows from the thirteenth on-off valve 143 into the high-pressure gas pipe 61. It may be. Thus, in this operation mode, the condensation temperature is obtained by the heat exchanger 51a, the first evaporation temperature is obtained by the heat exchanger 51b, and the second evaporation temperature is obtained by the heat exchanger 51c.

【0192】実施例11.図67は実施例11の蒸気圧
縮式サイクルの冷媒回路の構成図である。図67におい
て、1は第1圧縮機、2は第2圧縮機、61は高圧ガス
管、63は低圧ガス管、62は中圧ガス管、64は液
管、51a,51b,51cは熱交換器で、熱交換器は
高圧ガス管61、低圧ガス管63、中圧ガス管62に各
々開閉弁26a,27a,28a及び26b,27b,
28b及び26c,27c,28cを介して分岐接続す
るとともに、液管64とは流量制御弁である電子式膨張
弁31a,31b,31cをそれぞれ介して接続してい
る。180は第2圧縮機2の吐出側と高圧ガス管61と
を第1の開閉弁181を介して接続する第2の吐出管、
182は第1圧縮機1の吐出側と高圧ガス管61とを第
1の四方弁183を介して接続する第1の吐出管、18
4は第2圧縮機2の吸入側と低圧ガス管63とを第2の
開閉弁185を介して接続する第2の吸入管、186は
第2圧縮機2の吐出側と第1の開閉弁181との間と第
1の四方弁183を接続する第1の接続管、188は第
2圧縮機2の吸入側と第2の開閉弁185との管と第2
の四方弁187とを接続する第2の接続管、190は第
1の四方弁183と第2の四方弁187とを第3の開閉
弁189を介して接続する第3の接続管、193と19
5は第3の接続管190の第3の開閉弁189の両側よ
り分岐しそれぞれに第4の開閉弁191と第5の開閉弁
192を介し中圧ガス管62に接続する第4の接続管と
第5の接続管である。この実施例の多温度生成回路に
は、実施例9と同様に表1に示すように6つの運転モー
ドがあり、以下、この6つの運転モードを図68〜図7
8を用いて説明する。
Embodiment 11 FIG. FIG. 67 is a configuration diagram of a refrigerant circuit of a vapor compression cycle according to Embodiment 11. In FIG. 67, 1 is a first compressor, 2 is a second compressor, 61 is a high-pressure gas pipe, 63 is a low-pressure gas pipe, 62 is a medium-pressure gas pipe, 64 is a liquid pipe, and 51a, 51b, and 51c are heat exchangers. The heat exchangers are connected to the high-pressure gas pipe 61, the low-pressure gas pipe 63, and the medium-pressure gas pipe 62, respectively.
They are branched and connected via 28b and 26c, 27c and 28c, and connected to the liquid pipe 64 via electronic expansion valves 31a, 31b and 31c, which are flow control valves, respectively. 180 is a second discharge pipe connecting the discharge side of the second compressor 2 and the high-pressure gas pipe 61 via a first on-off valve 181;
182 is a first discharge pipe connecting the discharge side of the first compressor 1 and the high-pressure gas pipe 61 via a first four-way valve 183;
Reference numeral 4 denotes a second suction pipe connecting the suction side of the second compressor 2 and the low-pressure gas pipe 63 via a second on-off valve 185, and 186 denotes a discharge side of the second compressor 2 and a first on-off valve. 181 and a first connection pipe 188 for connecting the first four-way valve 183 to a pipe between the suction side of the second compressor 2 and the second on-off valve 185 and the second connection pipe 188.
The second connection pipe 190 connects the four-way valve 187 to the third connection pipe 193 that connects the first four-way valve 183 and the second four-way valve 187 via the third on-off valve 189. 19
Reference numeral 5 denotes a fourth connection pipe which branches off from both sides of the third on-off valve 189 of the third connection pipe 190 and is connected to the medium-pressure gas pipe 62 via the fourth on-off valve 191 and the fifth on-off valve 192, respectively. And the fifth connection pipe. The multi-temperature generating circuit of this embodiment has six operation modes as shown in Table 1 similarly to the ninth embodiment. Hereinafter, these six operation modes will be described with reference to FIGS.
8 will be described.

【0193】まず図68を用いて1つの凝縮温度と1つ
の蒸発温度を生成する2温度生成時で、この凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房あるいは暖房
時などに適用される。図68では、熱交換器51aが凝
縮器、熱交換器51bが停止、熱交換器51cが蒸発器
として動作する例を示しており、第1の開閉弁181、
第2の開閉弁185と、開閉弁26a、28cを開状態
とし、第1の四方弁183は第1の吐出管182と高圧
ガス管61、第2の四方弁187は低圧ガス管63と第
1の吸入管194とを連通するよう切り替えられてい
る。第1圧縮機1及び第2圧縮機2から吐出された高温
高圧冷媒ガスは、高圧ガス管61で合流し、開閉弁26
aを通って熱交換器51aに流入し、凝縮液化される。
この液冷媒は、電気式膨張弁31aを通って液管64に
流入し、電気式膨張弁31cを通って低圧の二相状態と
なって熱交換器51cへ流入し、蒸発ガス化される。そ
してこの冷媒ガスは低圧ガス管63に流入し、その一部
は第2の四方弁187、第1の吸入管194を通り第1
圧縮機1に吸入される。そして残りの冷媒は第2の吸入
管184を通り第2圧縮機に吸入される。このように、
この運転モードでは、熱交換器51aで凝縮温度が、熱
交換器51cで蒸発温度が得られる。
First, referring to FIG. 68, a description will be given of the operation in the case of generating two temperatures in which one condensing temperature and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively small. This operation mode is applied, for example, during normal cooling or heating. FIG. 68 illustrates an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b stops operating, and the heat exchanger 51c operates as an evaporator.
The second open / close valve 185 and the open / close valves 26a and 28c are opened. It is switched so as to communicate with one suction pipe 194. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 and the second compressor 2 joins in the high-pressure gas pipe 61 and is connected to the on-off valve 26.
a and flows into the heat exchanger 51a and is condensed and liquefied.
The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas flows into the low-pressure gas pipe 63, and a part of the refrigerant gas passes through the second four-way valve 187 and the first suction pipe 194,
It is sucked into the compressor 1. Then, the remaining refrigerant is sucked into the second compressor through the second suction pipe 184. in this way,
In this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51c.

【0194】次に図69を用いて1つの凝縮温度と1つ
の蒸発温度を生成する2温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば高温給湯や給湯+氷蓄熱
時などに適用される。図69では、例えば熱交換器51
aが凝縮器、熱交換器51bが停止、熱交換器51cが
蒸発器として動作する例を示しており、第2の開閉弁1
85、第3の開閉弁189と、開閉弁26a,28cを
開状態とし、第1の四方弁183は第1の吐出管182
と高圧ガス管61、第1接続管186と第3の接続管1
89とを連通、第2の四方弁187は第1の吸入管19
4と第3の接続管189とを連通するよう切り替えられ
ている。第2圧縮機2から吐出された冷媒ガスは、第1
接続管186、第3の接続管189、第2の四方弁18
7を通って第1圧縮機1に吸入され高温高圧冷媒ガスと
なって第1の四方弁183から高圧ガス管61に流入す
る。この冷媒ガスは開閉弁26aを通って熱交換器51
aに流入し、凝縮液化される。この液冷媒は、電気式膨
張弁31aを通って液管64に流入し電気式膨張弁31
cを通って低圧の二相状態となって熱交換器51cへ流
入し、蒸発ガス化される。この冷媒ガスは、低圧ガス管
63を通って第2の開閉弁185、第2の吸入管184
を経て第2圧縮機2に吸入される。
Next, referring to FIG. 69, an operation in the case of generating two temperatures in which one condensing temperature and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively large will be described. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. In FIG. 69, for example, the heat exchanger 51
a is a condenser, the heat exchanger 51b is stopped, and the heat exchanger 51c is operated as an evaporator.
85, the third on-off valve 189 and the on-off valves 26a and 28c are opened, and the first four-way valve 183 is connected to the first discharge pipe 182.
And the high-pressure gas pipe 61, the first connection pipe 186 and the third connection pipe 1
89, and the second four-way valve 187 is connected to the first suction pipe 19.
4 and the third connection pipe 189 are switched to communicate with each other. The refrigerant gas discharged from the second compressor 2
Connection pipe 186, third connection pipe 189, second four-way valve 18
7, the refrigerant is sucked into the first compressor 1 and becomes a high-temperature and high-pressure refrigerant gas, and flows into the high-pressure gas pipe 61 from the first four-way valve 183. This refrigerant gas passes through the on-off valve 26a and passes through the heat exchanger 51.
a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a and flows into the electric expansion valve 31.
c, into a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas passes through the low-pressure gas pipe 63 and passes through the second on-off valve 185 and the second suction pipe 184.
Through the second compressor 2.

【0195】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図70に示すように、第3の開閉弁189と、第
1の四方弁183は第1の吐出管182と第3の接続管
189、第1の接続管186と高圧ガス管61とを連
通、第2の四方弁187は低圧ガス管63と第1の吸入
管194、第3の接続管189と第2の接続管188を
連通するよう切り替えることにより、熱交換器51cに
流入し蒸発ガス化した冷媒ガスを、低圧ガス管63から
第2の四方弁187を経て第1圧縮機1に吸入させ、そ
の吐出ガスを第1の四方弁183、第3の接続管19
6、第2の接続管188を経て第2圧縮機2に吸入さ
せ、その吐出ガスを第1の開閉弁181から高圧ガス管
61に流入するようにしてもよい。このように、この運
転モードでは2段圧縮運転となり、熱交換器51aで凝
縮温度が、熱交換器51cで蒸発温度が得られる。
In the above description, the second compressor 2 is connected to the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. As shown in FIG. 70, the third on-off valve 189 and the first four-way valve 183 are connected to the first discharge pipe 182 and the third The second four-way valve 187 connects the low-pressure gas pipe 63 to the first suction pipe 194, and the third connection pipe 189 to the second connection pipe 189, the first connection pipe 186, and the high-pressure gas pipe 61. By switching the pipes 188 to communicate with each other, the refrigerant gas flowing into the heat exchanger 51c and being evaporated and vaporized is sucked into the first compressor 1 from the low-pressure gas pipe 63 via the second four-way valve 187, and the discharge gas To the first four-way valve 183 and the third connection pipe 19
6. The second compressor 2 may be sucked into the second compressor 2 via the second connection pipe 188, and the discharged gas may flow into the high-pressure gas pipe 61 from the first on-off valve 181. Thus, in this operation mode, two-stage compression operation is performed, and the condensing temperature is obtained in the heat exchanger 51a and the evaporation temperature is obtained in the heat exchanger 51c.

【0196】次に図71を用いて2つの凝縮温度と1つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の暖房+比較的低い
給湯運転時などに適用される。図71では、例えば熱交
換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第2の開閉弁185、第4の開閉弁191と開閉
弁26a,27b,28cを開状態とし、第1の四方弁
183は第1の吐出管182と高圧ガス管61とを連
通、第2の四方弁187は低圧ガス管63と第1の吸入
管194を連通するよう切り替えられている。第1圧縮
機1から吐出された高温高圧冷媒ガスは、第1の吐出管
182、第1の四方弁183を経て高圧ガス管61に流
入し、開閉弁26aを通って第1凝縮器である熱交換器
51aに流入し、凝縮液化される。この液冷媒は、電気
式膨張弁31aを通って液管64に流入する。一方、第
2圧縮機2から吐出された高温高圧冷媒ガスは、第1の
四方弁183、第4開閉弁191を経て中圧ガス管62
に流入し、開閉弁27bを通って第2凝縮器である熱交
換器51bに流入し凝縮液化される。この液冷媒は、電
気式膨張弁31bを通って液管64に流入し、第1凝縮
器である熱交換器51aからの液冷媒と合流する。この
合流した液冷媒は、電気式膨張弁31cを通って低圧の
二相状態となって熱交換器51cへ流入し、蒸発ガス化
される。この冷媒ガスは、低圧ガス管63を通って、そ
の一部は第2四方弁187、第1の吸入管194を経て
第1圧縮機1に、残りは第2の開閉弁、第2の吸入管1
84を経て第2圧縮機2にそれぞれ吸入される。
Referring to FIG. 71, description will be given of an operation in the case of generating three temperatures in which two condensing temperatures and one evaporating temperature are generated and the difference between the condensing temperature and the evaporating temperature is relatively small. This operation mode is applied, for example, during normal heating + relatively low hot water supply operation. FIG. 71 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The first four-way valve 183 communicates with the first discharge pipe 182 and the high-pressure gas pipe 61, and the second four-way valve 187 is connected to the low-pressure gas pipe 63. And the first suction pipe 194. The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61 through the first discharge pipe 182 and the first four-way valve 183, passes through the on-off valve 26a, and becomes the first condenser. It flows into the heat exchanger 51a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a. On the other hand, the high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 passes through the first four-way valve 183 and the fourth on-off valve 191, and passes through the medium-pressure gas pipe 62.
And flows into the heat exchanger 51b as the second condenser through the on-off valve 27b to be condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b, and merges with the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The merged liquid refrigerant passes through the electric expansion valve 31c, enters a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas passes through the low-pressure gas pipe 63, a part of which passes through the second four-way valve 187 and the first suction pipe 194 to the first compressor 1, and the rest is a second opening / closing valve and a second suction valve. Tube 1
The refrigerant is sucked into the second compressor 2 via 84.

【0197】上記の説明では、第1圧縮機1の吐出冷媒
を開閉弁26aから第1凝縮器である熱交換器51aに
流入させ、第2圧縮機2の吐出冷媒を開閉弁27bから
第2凝縮器である熱交換器51bに流入させているが、
図72に示すように第1の開閉弁181を開とし、第1
の四方弁183を第1の吐出管182と第3の接続管1
90とを連通するよう切り替えることにより、第1圧縮
機1の吐出冷媒を第2凝縮器である熱交換器51b、第
2圧縮機2の吐出冷媒を第1凝縮器である熱交換器51
aに流入させてもよい。従って、熱交換器51aと熱交
換器51bの負荷状態に合わせて第1圧縮機1と第2圧
縮機2からの冷媒を開閉弁を切り替えることにより熱交
換器に導入することができる。このように、この運転モ
ードでは、熱交換器51aで第1の凝縮温度、熱交換器
51bで第2の凝縮温度、熱交換器51cで蒸発温度が
得られる。
In the above description, the refrigerant discharged from the first compressor 1 flows from the on-off valve 26a into the heat exchanger 51a as the first condenser, and the refrigerant discharged from the second compressor 2 flows from the on-off valve 27b through the second valve 27b. Although it is flowing into the heat exchanger 51b which is a condenser,
As shown in FIG. 72, the first on-off valve 181 is opened,
The four-way valve 183 is connected to the first discharge pipe 182 and the third connection pipe 1
90, the refrigerant discharged from the first compressor 1 is transferred to the heat exchanger 51b as the second condenser, and the refrigerant discharged from the second compressor 2 is transferred to the heat exchanger 51 as the first condenser.
a. Therefore, the refrigerant from the first compressor 1 and the second compressor 2 can be introduced into the heat exchanger by switching the on-off valve in accordance with the load state of the heat exchangers 51a and 51b. Thus, in this operation mode, the first condensing temperature is obtained by the heat exchanger 51a, the second condensing temperature is obtained by the heat exchanger 51b, and the evaporating temperature is obtained by the heat exchanger 51c.

【0198】次に、図73を用いて2つの凝縮温度と1
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的大きい場合の動作について説明
する。この運転モードは、例えば通常の暖房+比較的高
い給湯運転時などに適用される。図73では、例えば熱
交換器51aが第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51cが蒸発器として動作する例を示して
おり、第2開閉弁185、第3の開閉弁184、第4の
開閉弁191と開閉弁26a,26b,28cを開状態
とし、第1の四方弁183は第1の吐出管182と高圧
ガス管61、第1の接続管186と第3の接続管190
とを連通、第2の四方弁187は第1の吸入管194と
第3の接続管190とを連通するよう切り替えられてい
る。
Next, referring to FIG. 73, two condensation temperatures and 1
A description will be given of the operation when the difference between the condensing temperature and the evaporating temperature is relatively large when the three evaporating temperatures are generated. This operation mode is applied, for example, during normal heating + relatively high hot water supply operation. FIG. 73 shows an example in which the heat exchanger 51a operates as a first condenser, the heat exchanger 51b operates as a second condenser, and the heat exchanger 51c operates as an evaporator. The on-off valve 184, the fourth on-off valve 191 and the on-off valves 26a, 26b, 28c are opened, and the first four-way valve 183 is connected to the first discharge pipe 182 and the high-pressure gas pipe 61, and the first connection pipe 186 to the first connection pipe 186. 3 connection pipe 190
And the second four-way valve 187 is switched to communicate the first suction pipe 194 and the third connection pipe 190.

【0199】第2圧縮機2から吐出された冷媒ガスの一
部は、第3の開閉弁189、第2の四方弁187、第1
の吸入管194を通って第1の圧縮機1に吸入され、高
温高圧の冷媒ガスとなって高圧ガス管61に流入する。
このガス冷媒は開閉弁26aを通って第1凝縮器である
熱交換器51aに流入し凝縮液化される。この液冷媒
は、電気式膨張弁31bを通って液管64に流入する。
一方、第2圧縮機2から吐出された冷媒ガスの残りは、
第4の開閉弁191を通って中圧ガス管62に流入し、
開閉弁27bを通って第2凝縮器である熱交換器51b
に流入し凝縮液化される。この液冷媒は電気式膨張弁3
1bを通って液管64に流入し、第1凝縮器である熱交
換器51aからの液冷媒と合流する。この合流した液冷
媒は電気式膨張弁31cを通って低圧の二相状態となっ
て熱交換器51cへ流入し、蒸発ガス化される。この冷
媒ガスは低圧ガス管63を通って第2の開閉弁185、
第2の吸入管184を経て第2圧縮機2に吸入される。
Part of the refrigerant gas discharged from the second compressor 2 is supplied to the third on-off valve 189, the second four-way valve 187, the first
Is sucked into the first compressor 1 through the suction pipe 194 of the compressor, and flows into the high-pressure gas pipe 61 as a high-temperature and high-pressure refrigerant gas.
This gas refrigerant flows into the heat exchanger 51a as the first condenser through the on-off valve 26a and is condensed and liquefied. This liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31b.
On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 is:
Flows into the medium-pressure gas pipe 62 through the fourth on-off valve 191,
Heat exchanger 51b as a second condenser through the on-off valve 27b
And is condensed and liquefied. This liquid refrigerant is an electric expansion valve 3
1b, flows into the liquid pipe 64, and joins the liquid refrigerant from the heat exchanger 51a, which is the first condenser. The combined liquid refrigerant passes through the electric expansion valve 31c to be in a low-pressure two-phase state, flows into the heat exchanger 51c, and is vaporized. This refrigerant gas passes through the low-pressure gas pipe 63 and the second on-off valve 185,
It is sucked into the second compressor 2 via the second suction pipe 184.

【0200】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図74に示すように第3の開閉弁189、第1の
四方弁183は第1の吐出管182と第2の接続管19
0、第1の接続管186と高圧ガス管61とを連通、第
2の四方弁187は低圧ガス管63と第1の吸入管19
4、第3の接続管190と第2の接続管188とを連通
するように切り替えて、熱交換器51cに流入し蒸発ガ
ス化した冷媒ガスを、低圧ガス管63から第2の四方弁
187、第1の吸入管194を経て第1圧縮機1に吸入
させ、その吐出ガスの一部を第2圧縮機2に吸入させ、
残りのガスを第5の開閉弁192から中圧ガス管62に
流入させるようにしてもよい。このように、この運転モ
ードでは、熱交換器51aで第1の凝縮温度、熱交換器
51bで第2の凝縮温度、熱交換器51cで蒸発温度が
得られる。
In the above description, the second compressor 2 is set at the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. However, as shown in FIG. 74, the third on-off valve 189 and the first four-way valve 183 are connected to the first discharge pipe 182 and the second connection. Tube 19
0, the first connection pipe 186 communicates with the high-pressure gas pipe 61, and the second four-way valve 187 connects the low-pressure gas pipe 63 with the first suction pipe 19.
4. The third connection pipe 190 and the second connection pipe 188 are switched so as to communicate with each other, and the refrigerant gas that flows into the heat exchanger 51c and is vaporized and evaporated is transferred from the low-pressure gas pipe 63 to the second four-way valve 187. The first compressor 1 is sucked into the first compressor 1 via the first suction pipe 194, and a part of the discharge gas is sucked into the second compressor 2,
The remaining gas may be allowed to flow from the fifth on-off valve 192 to the medium-pressure gas pipe 62. Thus, in this operation mode, the first condensing temperature is obtained by the heat exchanger 51a, the second condensing temperature is obtained by the heat exchanger 51b, and the evaporating temperature is obtained by the heat exchanger 51c.

【0201】次に図75を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、この凝縮温度
と蒸発温度の差が比較的小さい場合の動作について説明
する。この運転モードは、例えば通常の冷房+氷蓄熱運
転時などに適用される。図75では、熱交換器51aが
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器として動作する例を示しており、第1の開
閉弁181、第2の開閉弁185、第5の開閉弁192
と開閉弁26a,27b,28cを開状態とし、第1の
四方弁183は第1の吐出管182と高圧ガス管61と
を連通、第2の四方弁187は第3の接続管190と第
1の吸入管194を連通するように切り替えられてい
る。
Next, referring to FIG. 75, one condensation temperature and 2
The operation when the difference between the condensing temperature and the evaporating temperature at the time of generating three temperatures for generating two evaporating temperatures is relatively small will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation. In FIG. 75, the heat exchanger 51a is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example in which the first on-off valve 181, the second on-off valve 185, and the fifth on-off valve 192 operate as a second evaporator.
The first four-way valve 183 communicates the first discharge pipe 182 with the high-pressure gas pipe 61, and the second four-way valve 187 communicates with the third connection pipe 190. One suction pipe 194 is switched so as to communicate therewith.

【0202】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1の四方弁を通り、第1の開閉弁181を経
た第2圧縮機2の吐出冷媒ガスと高圧ガス管61で合流
し、開閉弁26aを通って熱交換器51aに流入し凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入し、その一部は電気式膨張弁31bを
通って低圧の二相状態となって第1蒸発器である熱交換
器51bへ流入し蒸発ガス化される。この冷媒ガスは、
中圧ガス管62を通って第5の開閉弁192、第2の四
方弁187、第1の吸入管76を経て第1の圧縮機1に
吸入される。一方、液管64に流入した残りの液冷媒
は、電気式膨張弁31cを通って低圧の二相状態となっ
て第2蒸発器である熱交換器51cへ流入し蒸発ガス化
される。このガス冷媒は、低圧ガス管63を通って第2
の開閉弁185、第2の吸入管184を経て第2圧縮機
2に吸入される。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through the first four-way valve, and joins with the refrigerant gas discharged from the second compressor 2 via the first on-off valve 181 at the high-pressure gas pipe 61. Then, it flows into the heat exchanger 51a through the on-off valve 26a and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant passes through the electric expansion valve 31b to be in a low-pressure two-phase state. And is vaporized. This refrigerant gas is
The gas is sucked into the first compressor 1 through the fifth on-off valve 192, the second four-way valve 187, and the first suction pipe 76 through the medium pressure gas pipe 62. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 enters the low-pressure two-phase state through the electric expansion valve 31c, flows into the heat exchanger 51c as the second evaporator, and is vaporized. This gas refrigerant passes through the low-pressure gas pipe 63 and
, And is sucked into the second compressor 2 through the second suction pipe 184.

【0203】上記の説明では、中圧ガス管62の冷媒ガ
スを第1圧縮機1、低圧ガス管63の冷媒ガスを第2圧
縮機2に吸入させているが、図76に示すように第1の
開閉弁181、第5の開閉弁192と開閉弁26a,2
7b,28cを開状態とし、第1の四方弁183は第1
の吐出管182と高圧ガス管61とを連通、第2の四方
弁187は第3の接続管190と第2の接続管188、
低圧ガス管63と第1の吸入管194を連通するよう切
り替えることにより、中圧ガス管62の冷媒ガスを第2
圧縮機2、低圧ガス管63の冷媒ガスを第1圧縮機1に
吸入させてもよい。従って、熱交換器51cと熱交換器
51bの熱負荷に合わせて開閉弁を切り替えることによ
り圧縮機からの冷媒の導入することができる。このよう
に、この運転モードでは、熱交換器51aで凝縮温度、
熱交換器51bで第1の蒸発温度、熱交換器51cで第
2の蒸発温度が得られる。
In the above description, the refrigerant gas in the medium-pressure gas pipe 62 is sucked into the first compressor 1 and the refrigerant gas in the low-pressure gas pipe 63 is sucked into the second compressor 2, but as shown in FIG. The first on-off valve 181, the fifth on-off valve 192, and the on-off valves 26a, 26
7b and 28c are opened, and the first four-way valve 183 is
The second four-way valve 187 communicates with the third connection pipe 190 and the second connection pipe 188.
By switching the low-pressure gas pipe 63 to communicate with the first suction pipe 194, the refrigerant gas in the medium-pressure gas pipe 62 is switched to the second suction pipe 194.
The refrigerant gas in the compressor 2 and the low-pressure gas pipe 63 may be sucked into the first compressor 1. Therefore, refrigerant can be introduced from the compressor by switching the on-off valve in accordance with the heat load of the heat exchanger 51c and the heat exchanger 51b. Thus, in this operation mode, the condensing temperature in the heat exchanger 51a,
The first evaporating temperature is obtained by the heat exchanger 51b, and the second evaporating temperature is obtained by the heat exchanger 51c.

【0204】次に図77を用いて1つの凝縮温度と2つ
の蒸発温度を生成する3温度生成時で、この凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱+高
温給湯運転時などに適用される。図77では、熱交換器
51aが凝縮器、熱交換器51bが第1蒸発器、熱交換
器51cが第2蒸発器として動作する例を示しており、
第2の開閉弁185、第3の開閉弁189、第5の開閉
弁192と開閉弁26a,27b,28cを開状態と
し、第1の四方弁183は第1の吐出管182と高圧ガ
ス管61、第1の接続管186と第3の接続管190と
を連通、第2の四方弁187は第3の接続管190と第
1の吸入管194とを連通するように切り替えられてい
る。
Next, referring to FIG. 77, an operation in the case where one temperature is generated when one condensation temperature and two evaporation temperatures are generated and the difference between the condensation temperature and the evaporation temperature is relatively large will be described. This operation mode is applied, for example, during normal cooling + ice heat storage + high-temperature hot water supply operation. FIG. 77 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, and the heat exchanger 51c operates as a second evaporator.
The second on-off valve 185, the third on-off valve 189, the fifth on-off valve 192 and the on-off valves 26a, 27b, 28c are opened, and the first four-way valve 183 is connected to the first discharge pipe 182 and the high-pressure gas pipe. 61, the first connection pipe 186 communicates with the third connection pipe 190, and the second four-way valve 187 is switched so as to communicate the third connection pipe 190 with the first suction pipe 194.

【0205】第1圧縮機1から吐出された高温高圧冷媒
ガスは、第1の四方弁183から高圧ガス管61に流入
し、開閉弁26aを通って熱交換器51aに流入し凝縮
液化される。この液冷媒は、電気式膨張弁31aを通っ
て液管64に流入し、その一部は電気式膨張弁31bを
通って低圧の二相状態となって第1蒸発器である熱交換
器51bへ流入し蒸発ガス化される。この冷媒ガスは、
中圧ガス管62を通って第5の開閉弁192を経て第2
圧縮機2の吐出ガスと合流し、第2の四方弁187、第
1の吸入管194を経て第1圧縮機1に吸入される。一
方、液管64に流入した残りの液冷媒は電気式膨張弁3
1cを通って低圧の二相状態となって第2蒸発器である
熱交換器51cへ流入し蒸発ガス化される。このガス冷
媒は、低圧ガス管63を通って第2の開閉弁185、第
2の吸入管184を経て第2圧縮機2に吸入される。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the high-pressure gas pipe 61 from the first four-way valve 183, flows into the heat exchanger 51a through the on-off valve 26a, and is condensed and liquefied. . The liquid refrigerant flows into the liquid pipe 64 through the electric expansion valve 31a, and a part of the liquid refrigerant passes through the electric expansion valve 31b to be in a low-pressure two-phase state. And is vaporized. This refrigerant gas is
The second through the fifth on-off valve 192 through the medium pressure gas pipe 62
The gas merges with the gas discharged from the compressor 2 and is sucked into the first compressor 1 via the second four-way valve 187 and the first suction pipe 194. On the other hand, the remaining liquid refrigerant flowing into the liquid pipe 64 is supplied to the electric expansion valve 3.
After passing through 1c, it becomes a low-pressure two-phase state, flows into the heat exchanger 51c as the second evaporator, and is vaporized and gasified. This gas refrigerant is sucked into the second compressor 2 through the low-pressure gas pipe 63, the second on-off valve 185, and the second suction pipe 184.

【0206】上記の説明では、第2圧縮機2が低段側、
第1圧縮機1が高段側とした場合の動作について説明し
たが、図78に示すように、第1の開閉弁181、第3
の開閉弁189、第5の開閉弁192を開状態とし、第
1の四方弁183は第1の吐出管182と第3の接続管
190、第1の接続管186と高圧ガス管61とを連
通、第2の四方弁187は低圧ガス管63と第1の吸入
管194、第3の接続管190と第2の接続管188と
を連通するよう切り替えることにより、熱交換器51c
に流入し蒸発ガス化した冷媒ガスを、低圧ガス管63か
ら第2の四方弁187、第1の吸入管194を経て第1
圧縮機1に吸入させ、その吐出ガスと第5の開閉弁19
2からの中圧ガス管62の冷媒の一部とを第2圧縮機2
に吸入させその吐出ガスを第1の開閉弁181から高圧
ガス管61に流入するようにしてもよい。このように、
この運転モードでは、熱交換器51aで凝縮温度、熱交
換器51bで第1の蒸発温度、熱交換器51cで第2の
蒸発温度が得られる。なお実施例9〜11では負荷に応
じて低段圧縮機と高段圧縮機の選択が可能であるため高
範囲な運転に十分の性能が発揮できる回路となってい
る。
In the above description, the second compressor 2 is set at the lower stage,
The operation when the first compressor 1 is on the high-stage side has been described. As shown in FIG. 78, the first on-off valve 181, the third
The first on-off valve 189 and the fifth on-off valve 192 are opened, and the first four-way valve 183 connects the first discharge pipe 182 and the third connection pipe 190, and the first connection pipe 186 and the high-pressure gas pipe 61. The communication and the second four-way valve 187 switch the low-pressure gas pipe 63 and the first suction pipe 194 and the third connection pipe 190 and the second connection pipe 188 so as to communicate with each other.
The refrigerant gas that has flowed into the evaporator and evaporated from the low pressure gas pipe 63 passes through the second four-way valve 187 and the first suction pipe 194 to the first suction pipe 194.
The compressed gas is sucked into the compressor 1 and the discharged gas and the fifth on-off valve 19
And a part of the refrigerant in the medium-pressure gas pipe 62 from the second compressor 2
And the discharged gas may flow into the high-pressure gas pipe 61 from the first on-off valve 181. in this way,
In this operation mode, the condensation temperature is obtained by the heat exchanger 51a, the first evaporation temperature is obtained by the heat exchanger 51b, and the second evaporation temperature is obtained by the heat exchanger 51c. In the ninth to eleventh embodiments, a low-stage compressor and a high-stage compressor can be selected according to the load, so that the circuit can exhibit sufficient performance for a wide range of operation.

【0207】実施例12.実施例12を図79について
説明する。図において、1は第1圧縮機、2は第2圧縮
機、11は第1アキュムレータ、12は第2アキュムレ
ータ、51a,51b,51cは熱交換器、57は給湯
用熱交換器である。61は第1圧縮機1の吐出側に接続
された高圧ガス管である第1配管、62は第2圧縮機2
の吐出側に第1の開閉器である第1開閉弁21を介して
接続された中圧ガス管である第2配管、63は第1圧縮
機1に吸入側に第1アキュムレータ11を介して接続さ
れた低圧ガス管である第3配管、64は液管である。第
1圧縮機1と第1アキュムレータ11の間の第3配管6
3には第3開閉器を構成する第2開閉弁と第1逆止弁4
1が設けられている。23は第2圧縮機2と第1開閉弁
21の間の第2配管62と第1配管61とを接続する高
圧ガス連通管65に設けられた第5開閉弁の第3開閉
弁、24は第2圧縮機2と第3開閉弁23の間の高圧ガ
ス連通管65と第2開閉弁22と第1逆止弁41の間の
第3の配管63とを接続する圧縮機連通管66に設けら
れた第4開閉弁で、この場合は第4開閉器は第2開閉
弁、第4開閉弁及び第1逆止弁で構成されている。25
は分岐して第1圧縮機1の吸入側に接続する第2配管6
2の分岐点と第2アキュムレータ12間の第2配管62
に設けられた第5開閉弁、42は第1圧縮機1と第2ア
キュムレータ12の間の第2配管62に設けられた第2
逆止弁で、第2開閉器は第5開閉弁25と第2逆止弁4
2で構成されている。また熱交換器51aには第1配管
が第1切換四方弁271、第3切換四方弁273を介し
て、熱交換器51bには第3配管が第1切換四方弁27
1、第2切換四方弁272を介して、熱交換器51cに
は第2配管が第2切換四方弁272、第3切換四方弁2
73を介して接続するとともに、液管64が冷媒流量制
御器である電子式膨張弁31a,31b,31cをそれ
ぞれ介して接続している。また給湯用熱交換器57には
第1配管より分岐接続するとともに、液管64が冷媒流
量制御器である電子式膨張弁31dを介して接続してい
る。
Embodiment 12 FIG. The twelfth embodiment will be described with reference to FIG. In the figure, 1 is a first compressor, 2 is a second compressor, 11 is a first accumulator, 12 is a second accumulator, 51a, 51b, 51c are heat exchangers, and 57 is a hot water supply heat exchanger. 61 is a first pipe which is a high-pressure gas pipe connected to the discharge side of the first compressor 1, 62 is a second pipe 2
The second pipe 63, which is a medium-pressure gas pipe connected to the discharge side of the compressor via a first on-off valve 21 as a first switch, is connected to the first compressor 1 via a first accumulator 11 on the suction side. The third pipe 64, which is a connected low-pressure gas pipe, is a liquid pipe. Third pipe 6 between first compressor 1 and first accumulator 11
Reference numeral 3 denotes a second on-off valve and a first check valve 4 constituting a third switch.
1 is provided. 23 is a third on-off valve of a fifth on-off valve provided in a high-pressure gas communication pipe 65 connecting the second pipe 62 and the first pipe 61 between the second compressor 2 and the first on-off valve 21; The high-pressure gas communication pipe 65 between the second compressor 2 and the third on-off valve 23 and the third pipe 63 between the second on-off valve 22 and the first check valve 41 are connected to the compressor communication pipe 66. A fourth on-off valve is provided, in which case the fourth switch comprises a second on-off valve, a fourth on-off valve, and a first check valve. 25
Is a second pipe 6 branched and connected to the suction side of the first compressor 1.
2nd pipe 62 between the branch point 2 and the second accumulator 12
A second on-off valve 42 provided on the second pipe 62 provided on the second pipe 62 between the first compressor 1 and the second accumulator 12 is provided.
The second switch is a fifth check valve 25 and a second check valve 4.
2 is comprised. The first pipe is connected to the heat exchanger 51a via the first switching four-way valve 271 and the third switching four-way valve 273, and the third pipe is connected to the heat exchanger 51b via the first switching four-way valve 27.
1. Via the second switching four-way valve 272, the heat exchanger 51c has a second pipe connected to the second switching four-way valve 272 and the third switching four-way valve 2
The liquid tubes 64 are connected via electronic expansion valves 31a, 31b, 31c, which are refrigerant flow controllers, respectively. The hot water supply heat exchanger 57 is branched from the first pipe, and the liquid pipe 64 is connected via an electronic expansion valve 31d as a refrigerant flow controller.

【0208】この実施例の冷暖房蓄熱給湯システムに
は、表1に示すように6つの運転モードがある。以下に
この6つの運転モードを図80〜85を用いて説明す
る。
The cooling / heating heat storage hot water supply system of this embodiment has six operation modes as shown in Table 1. The six operation modes will be described below with reference to FIGS.

【0209】まず、図80の冷暖房蓄熱給湯システムの
運転動作状態を示す説明図を用いて、1つの凝縮温度と
1つの蒸発温度を生成する2温度生成時で、凝縮温度と
蒸発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房時あるいは暖
房時に適用される。図80では、熱交換器51aが凝縮
器、熱交換器51bが蒸発器、熱交換器51c,57が
停止として動作する例を示しており、第1開閉弁21、
第4開閉弁24、第5開閉弁25を閉止状態(図中塗り
つぶし)としている。第1切換四方弁271、第2切換
四方弁272、第3切換四方弁273はいずれも無通電
状態である。第1圧縮機1、第2圧縮機2は並列運転さ
れる。矢印で冷媒の流れを示す。第2圧縮機2から吐出
された高温高圧冷媒ガスは高圧ガス連通管65を経て第
1配管61で第1圧縮機1から吐出された高温高圧冷媒
ガスと合流し、第1切換四方弁271、第3切換四方弁
273を通って熱交換器51aに流入し、凝縮液化され
る。この液冷媒は、電気式膨張弁31aを通って液管6
4に流入し、電子式膨張弁31bを通って低圧の二相状
態となって熱交換器51bへ流入し、蒸発ガス化され
る。このガス冷媒は、第3配管63を通って第1アキュ
ムレータ11を経て第1圧縮機1及び第2圧縮機2に吸
入される。このように、この運転モードでは、熱交換器
51aで凝縮温度が、熱交換器51bで蒸発温度が得ら
れる。
First, referring to the explanatory diagram showing the operating state of the cooling and heating heat storage hot water supply system in FIG. 80, when two temperatures are generated in which one condensing temperature and one evaporating temperature are generated, the difference between the condensing temperature and the evaporating temperature is determined. The operation in the case of a relatively small size will be described. This operation mode is applied, for example, during normal cooling or heating. FIG. 80 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as an evaporator, and the heat exchangers 51c and 57 operate as stop.
The fourth on-off valve 24 and the fifth on-off valve 25 are in a closed state (filled in the drawing). The first switching four-way valve 271, the second switching four-way valve 272, and the third switching four-way valve 273 are all in a non-energized state. The first compressor 1 and the second compressor 2 are operated in parallel. Arrows indicate the flow of the refrigerant. The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2 joins with the high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 in the first pipe 61 via the high-pressure gas communication pipe 65, and the first switching four-way valve 271, It flows into the heat exchanger 51a through the third switching four-way valve 273 and is condensed and liquefied. The liquid refrigerant passes through the electric expansion valve 31a and passes through the liquid pipe 6
4, and flows into the heat exchanger 51b in a low-pressure two-phase state through the electronic expansion valve 31b, where it is vaporized and gasified. This gas refrigerant is sucked into the first compressor 1 and the second compressor 2 via the first accumulator 11 through the third pipe 63. Thus, in this operation mode, the condensation temperature is obtained in the heat exchanger 51a, and the evaporation temperature is obtained in the heat exchanger 51b.

【0210】次に図81の冷暖房蓄熱給湯システムの運
転動作状態を示す説明図を用いて、1つの凝縮温度と1
つの蒸発温度を生成する2温度生成時で、凝縮温度と蒸
発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば高温給湯や給湯+氷蓄熱
時などに適用される。図81では、熱交換器57dが凝
縮器、熱交換器51bが蒸発器、熱交換器51a,51
cが停止として動作する例を示しており、第1開閉弁2
1、第3開閉弁23、第5開閉弁25を閉止状態(図中
塗りつぶし)としている。第1切換四方弁71、第2切
換四方弁272、第3切換四方弁273はいずれも無通
電状態である。第1圧縮機1、第2圧縮機2は直列運転
される。矢印で冷媒の流れを示す。
Next, one condensing temperature and one condensing temperature will be described with reference to FIG.
The operation when the difference between the condensing temperature and the evaporating temperature is relatively large when generating two temperatures for generating two evaporating temperatures will be described. This operation mode is applied to, for example, high-temperature hot water supply or hot water + ice heat storage. In FIG. 81, the heat exchanger 57d is a condenser, the heat exchanger 51b is an evaporator, and the heat exchangers 51a, 51
1 shows an example in which the first stop valve 2 operates as a stop.
1, the third on-off valve 23 and the fifth on-off valve 25 are in a closed state (filled in the figure). The first switching four-way valve 71, the second switching four-way valve 272, and the third switching four-way valve 273 are all in a non-energized state. The first compressor 1 and the second compressor 2 are operated in series. Arrows indicate the flow of the refrigerant.

【0211】第2圧縮機から吐出された高温高圧冷媒ガ
スは、高圧ガス連通管65とこれから分岐した圧縮機連
通管66に流入し、第4開閉弁24及び第2開閉弁22
を通って第1圧縮機1に吸入され、二段圧縮され高温高
圧の冷媒ガスとなって第1配管61に流入する。このガ
ス冷媒は、第1配管61を通って熱交換器51aに流入
し、凝縮液化される。この液冷媒は、電子式膨張弁31
aを通って液管64に流入し、電子式膨張弁31bを通
って低圧の二相状態となって熱交換器51bへ流入し、
蒸発ガス化される。このガス冷媒は、第3配管63を通
って第1アキュムレータ11を経て第2圧縮機2に吸入
される。このように、この運転モードでは、二段圧縮運
転になり、熱交換器51aで凝縮温度が、熱交換器51
bで蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the second compressor flows into the high-pressure gas communication pipe 65 and the compressor communication pipe 66 branched from the high-pressure gas communication pipe 65, and the fourth on-off valve 24 and the second on-off valve 22
Then, the refrigerant gas is sucked into the first compressor 1, is compressed in two stages, becomes high-temperature and high-pressure refrigerant gas, and flows into the first pipe 61. This gas refrigerant flows into the heat exchanger 51a through the first pipe 61 and is condensed and liquefied. This liquid refrigerant is supplied to the electronic expansion valve 31.
a into the liquid pipe 64, through the electronic expansion valve 31b, into a low-pressure two-phase state, and into the heat exchanger 51b,
It is vaporized and gasified. This gas refrigerant is sucked into the second compressor 2 via the first accumulator 11 through the third pipe 63. As described above, in this operation mode, the two-stage compression operation is performed, and the condensing temperature in the heat exchanger 51a is reduced.
The evaporation temperature is obtained in b.

【0212】次に図82のこの実施例の冷暖房蓄熱給湯
システムの運転動作状態を示す説明図を用いて、2つの
凝縮温度と1つの蒸発温度を生成する3温度生成時で、
凝縮温度と蒸発温度の差が比較的小さい場合の動作につ
いて説明する。この運転モードは、例えば通常の暖房+
比較的低い給湯運転時などに適用される。図82では、
熱交換器57が第1凝縮器、熱交換器51bが第2凝縮
器、熱交換器51aが蒸発器、熱交換器51cが停止と
して動作する例を示しており、第3開閉弁23、第4開
閉弁24、第5開閉弁25を閉止状態(図中塗りつぶ
し)としている。第1切換四方弁271、第2切換四方
弁272、は通電状態(回路切換状態)、第3切換四方
弁273は無通電状態である。第1圧縮機1、第2圧縮
機2は並列運転される。矢印で冷媒の流れを示す。
Next, referring to FIG. 82, which is an explanatory view showing the operating state of the cooling and heating heat storage hot water supply system of this embodiment, at the time of generating three temperatures for generating two condensing temperatures and one evaporating temperature,
The operation when the difference between the condensation temperature and the evaporation temperature is relatively small will be described. This operation mode is, for example, normal heating +
Applied during a relatively low hot water supply operation. In FIG. 82,
The heat exchanger 57 operates as a first condenser, the heat exchanger 51b operates as a second condenser, the heat exchanger 51a operates as an evaporator, and the heat exchanger 51c operates as a stop. The fourth on-off valve 24 and the fifth on-off valve 25 are in a closed state (filled in the drawing). The first switching four-way valve 271 and the second switching four-way valve 272 are in an energized state (circuit switching state), and the third switching four-way valve 273 is in a non-energized state. The first compressor 1 and the second compressor 2 are operated in parallel. Arrows indicate the flow of the refrigerant.

【0213】第1圧縮機から吐出された高温高圧冷媒ガ
スは、第1配管61に流入し、第1凝縮器である熱交換
器51dに流入し、凝縮液化される。この液冷媒は、電
子式膨張弁31dを通って液管64に流入する。一方、
第2圧縮機2から吐出された高温高圧冷媒ガスは、第1
開閉弁21を経て第2配管62に流入し、第2切換四方
弁272を通って第2凝縮器である熱交換器51bに流
入し、凝縮液化される。この液冷媒は、電子式膨張弁3
1bを通って液管64へ流入し、第1凝縮器である熱交
換器57からの液冷媒と合流する。この合流した液冷媒
は、電子式膨張弁31aを通って低圧の二相状態となっ
て熱交換器51aへ流入し、蒸発ガス化される。このガ
ス冷媒は、第3配管63を通って第1アキュムレータ1
1を経て、第1圧縮機1及び第2圧縮機2に吸入され
る。このように、この運転モードでは、熱交換器57で
第1の凝縮温度が、熱交換器51bで第2の凝縮温度
が、熱交換器51aで蒸発温度が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor flows into the first pipe 61, flows into the heat exchanger 51d as the first condenser, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31d. on the other hand,
The high-temperature and high-pressure refrigerant gas discharged from the second compressor 2
It flows into the second pipe 62 via the on-off valve 21, flows through the second switching four-way valve 272 to the heat exchanger 51 b as the second condenser, and is condensed and liquefied. This liquid refrigerant is supplied to the electronic expansion valve 3.
It flows into the liquid pipe 64 through 1b, and merges with the liquid refrigerant from the heat exchanger 57 as the first condenser. The combined liquid refrigerant passes through the electronic expansion valve 31a, enters a low-pressure two-phase state, flows into the heat exchanger 51a, and is vaporized. This gas refrigerant passes through the third pipe 63 and passes through the first accumulator 1
1 and is sucked into the first compressor 1 and the second compressor 2. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 57, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51a.

【0214】次に、図83のこの実施例の冷暖房蓄熱給
湯システムの運転動作状態を示す説明図を用いて、2つ
の凝縮温度と1つの蒸発温度を生成する3温度生成時
で、凝縮温度と蒸発温度の差が比較的大きい場合の動作
について説明する。この運転モードは例えば通常の暖房
+比較的高い給湯運転時などに適用される。図83で
は、熱交換器57が第1凝縮器、熱交換器51bが第2
凝縮器、熱交換器51aが蒸発器、熱交換器51cが停
止として動作する例を示しており、第3開閉弁23、第
5開閉弁25を閉止状態(図中塗りつぶし)としてい
る。第1切換四方弁271、第2切換四方弁272、は
通電状態(回路切換状態)、第3切換四方弁273は無
通電状態である。第1圧縮機1、第2圧縮機2は直列運
転される。矢印で冷媒の流れを示す。
Next, referring to FIG. 83, which is an explanatory diagram showing the operating state of the cooling / heating heat storage hot water supply system of this embodiment, when the three temperatures for generating two condensing temperatures and one evaporating temperature are generated, the condensing temperature and The operation when the difference between the evaporation temperatures is relatively large will be described. This operation mode is applied to, for example, a normal heating operation and a relatively high hot water supply operation. In FIG. 83, the heat exchanger 57 is the first condenser, and the heat exchanger 51b is the second condenser.
This shows an example in which the condenser and the heat exchanger 51a operate with the evaporator and the heat exchanger 51c stopped, and the third on-off valve 23 and the fifth on-off valve 25 are in a closed state (filled in the figure). The first switching four-way valve 271 and the second switching four-way valve 272 are in an energized state (circuit switching state), and the third switching four-way valve 273 is in a non-energized state. The first compressor 1 and the second compressor 2 are operated in series. Arrows indicate the flow of the refrigerant.

【0215】第2圧縮機2から吐出された冷媒ガスの一
部は、圧縮機連通管66に流入し、第4開閉弁24及び
第2開閉弁22を通って第1圧縮機1に吸入され、二段
圧縮され、高温高圧の冷媒ガスとなって第1配管61に
流入する。このガス冷媒は、第1凝縮器である熱交換器
51dに流入し、凝縮液化される。この液冷媒は、電子
式膨張弁31dを通って液管64に流入する。一方、第
2圧縮機2から吐出された冷媒ガスの残りは第1開閉弁
21を通って第2配管62に流入し、第2切換四方弁2
72を通って第2凝縮器である熱交換器51bに流入
し、凝縮液化される。この液冷媒は電子式膨張弁31b
を通って液管64へ流入し、第1凝縮器である熱交換器
57からの液冷媒と合流する。この合流した液冷媒は、
電子式膨張弁31aを通って低圧の二相状態となって熱
交換器51aへ流入し、蒸発ガス化される。このガス冷
媒は、第3配管63を通って第1アキュムレータ11を
経て、第2圧縮機2に吸入される。このように、この運
転モードでは、熱交換器57で第1の凝縮温度が、熱交
換器51bで第2の凝縮温度が、熱交換器51aで蒸発
温度が得られる。
A part of the refrigerant gas discharged from the second compressor 2 flows into the compressor communication pipe 66, and is sucked into the first compressor 1 through the fourth on-off valve 24 and the second on-off valve 22. The refrigerant gas is two-stage compressed and flows into the first pipe 61 as a high-temperature and high-pressure refrigerant gas. This gas refrigerant flows into the heat exchanger 51d, which is the first condenser, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31d. On the other hand, the remainder of the refrigerant gas discharged from the second compressor 2 flows into the second pipe 62 through the first opening / closing valve 21, and the second switching four-way valve 2
It flows into the heat exchanger 51b which is the second condenser through 72, and is condensed and liquefied. This liquid refrigerant is supplied to the electronic expansion valve 31b.
And flows into the liquid pipe 64 to join the liquid refrigerant from the heat exchanger 57 as the first condenser. This combined liquid refrigerant is
The gas enters the low-pressure two-phase state through the electronic expansion valve 31a, flows into the heat exchanger 51a, and is vaporized. The gas refrigerant passes through the third pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the first condensing temperature is obtained in the heat exchanger 57, the second condensing temperature is obtained in the heat exchanger 51b, and the evaporation temperature is obtained in the heat exchanger 51a.

【0216】次に図84の冷暖房蓄熱給湯システムの運
転動作状態を示す説明図を用いて、1つの凝縮温度と2
つの蒸発温度を生成する3温度生成時で、凝縮温度と蒸
発温度の差が比較的小さい場合の動作について説明す
る。この運転モードは、例えば通常の冷房+氷蓄熱運転
時などに適用される。図84では、熱交換器51aが凝
縮器、熱交換器51bが第1蒸発器、熱交換器51cが
第2蒸発器、熱交換器57が停止として動作する例を示
しており、第1開閉弁21、第2開閉弁22、第4開閉
弁24を閉止状態(図中塗りつぶし)としている。第1
切換四方弁271、第2切換四方弁272、第3切換四
方弁273は無通電状態である。第1圧縮機1、第2圧
縮機2は並列運転される。矢印で冷媒の流れを示す。
Next, one condensing temperature and 2 condensing temperatures will be described with reference to FIG.
The operation when the difference between the condensing temperature and the evaporating temperature is relatively small at the time of generating the three evaporating temperatures will be described. This operation mode is applied, for example, during normal cooling + ice heat storage operation. FIG. 84 shows an example in which the heat exchanger 51a operates as a condenser, the heat exchanger 51b operates as a first evaporator, the heat exchanger 51c operates as a second evaporator, and the heat exchanger 57 operates as a stop. The valve 21, the second on-off valve 22, and the fourth on-off valve 24 are in a closed state (filled in the figure). First
The switching four-way valve 271, the second switching four-way valve 272, and the third switching four-way valve 273 are in a non-energized state. The first compressor 1 and the second compressor 2 are operated in parallel. Arrows indicate the flow of the refrigerant.

【0217】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第3開閉弁23を経て高圧ガス連通管265
を通って第2圧縮機2の吐出冷媒ガスと第1配管61で
合流し、第1切換四方弁271、第3切換四方弁273
を通って熱交換器51aに流入し、凝縮液化される。こ
の液冷媒は、電子式膨張弁31aを通って液管64に流
入し、その一部は電子式膨張弁31bを通って低圧の二
相状態となって第1蒸発器である熱交換器51bへ流入
し蒸発ガス化する。このガス冷媒は、第2配管62を通
って第5開閉弁25、第2アキュムレータ12、第2逆
止弁を経て、第1圧縮機1に吸入される。一方、液管6
4に流入した残りの液冷媒は、電子式膨張弁31cを通
って低圧の二相状態となって第2蒸発器である。熱交換
器51cへ流入し、蒸発ガス化される。このガス冷媒
は、第3配管63を通って第1アキュムレータ11を経
て、第2圧縮機2に吸入される。このように、この運転
モードでは、熱交換器51aで凝縮温度が、熱交換器5
1bで第1蒸発温度が、熱交換器51cで第2蒸発温度
が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 passes through the third on-off valve 23 and passes through the high-pressure gas communication pipe 265.
And the refrigerant gas discharged from the second compressor 2 merges with the first pipe 61 to form a first switching four-way valve 271, a third switching four-way valve 273.
Through the heat exchanger 51a, and is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant passes through the electronic expansion valve 31b to be in a low-pressure two-phase state. And evaporates into gas. The gas refrigerant passes through the second pipe 62, passes through the fifth on-off valve 25, the second accumulator 12, and the second check valve, and is sucked into the first compressor 1. On the other hand, the liquid pipe 6
The remaining liquid refrigerant that has flowed into 4 enters the low-pressure two-phase state through the electronic expansion valve 31c and is the second evaporator. It flows into the heat exchanger 51c and is vaporized and gasified. The gas refrigerant passes through the third pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensing temperature in the heat exchanger 51a is
The first evaporation temperature is obtained by 1b, and the second evaporation temperature is obtained by the heat exchanger 51c.

【0218】次に、図85の冷暖房蓄熱給湯システムの
運転動作状態を示す説明図を用いて、1つの凝縮温度と
2つの蒸発温度を生成する3温度生成時で、凝縮温度と
蒸発温度の差が比較的大きい場合の動作について説明す
る。この運転モードは、例えば冷房+氷蓄熱+高温給湯
運転時などに適用される。図85では、熱交換器57が
凝縮器、熱交換器51bが第1蒸発器、熱交換器51c
が第2蒸発器、熱交換器51aが停止として動作する例
を示しており、第3開閉弁23、第5開閉弁25を閉止
状態(図中塗りつぶし)としている。第2切換四方弁2
72は通電状態(切換状態)、第1切換四方弁271、
第3切換四方弁273は無通電状態である。第1圧縮機
1、第2圧縮機2は直列運転される。矢印で冷媒の流れ
を示す。
Next, using the explanatory diagram showing the operating state of the cooling and heating heat storage hot water supply system shown in FIG. The operation in the case where is relatively large will be described. This operation mode is applied, for example, during cooling + ice heat storage + high-temperature hot water supply operation. In FIG. 85, the heat exchanger 57 is a condenser, the heat exchanger 51b is a first evaporator, and the heat exchanger 51c.
Shows an example in which the second evaporator and the heat exchanger 51a operate in a stopped state, and the third on-off valve 23 and the fifth on-off valve 25 are in a closed state (filled in the drawing). Second switching four-way valve 2
72 is an energized state (switching state), a first switching four-way valve 271,
The third switching four-way valve 273 is in a non-energized state. The first compressor 1 and the second compressor 2 are operated in series. Arrows indicate the flow of the refrigerant.

【0219】第1圧縮機1から吐出された高温高圧の冷
媒ガスは、第1配管61を経て熱交換器57に流入し、
凝縮液化される。この液冷媒は、電子式膨張弁31aを
通って液管64に流入し、その一部は電子式膨張弁31
bを通って低圧の二相状態となって第1蒸発器である熱
交換器51bへ流入し蒸発ガス化する。このガス冷媒
は、第2配管62を通って第1開閉弁21を経て第2圧
縮機2の吐出ガスと合流し、第4開閉弁24、第2開閉
弁22を経て、第1圧縮機1に吸入される。一方、液管
64に流入した残りの液冷媒は、電子式膨張弁31cを
通って低圧の二相状態となって第2蒸発器である。熱交
換器51cへ流入し、蒸発ガス化される。このガス冷媒
は、第3配管63を通って第1アキュムレータ11を経
て、第2圧縮機2に吸入される。このように、この運転
モードでは、熱交換器51aで凝縮温度が、熱交換器5
1bで第1蒸発温度が、熱交換器51cで第2蒸発温度
が得られる。
The high-temperature and high-pressure refrigerant gas discharged from the first compressor 1 flows into the heat exchanger 57 via the first pipe 61,
It is condensed and liquefied. The liquid refrigerant flows into the liquid pipe 64 through the electronic expansion valve 31a, and a part of the liquid refrigerant flows through the electronic expansion valve 31a.
b into a low-pressure two-phase state and flows into the heat exchanger 51b, which is the first evaporator, to evaporate. This gas refrigerant passes through the second pipe 62 and merges with the discharge gas of the second compressor 2 via the first opening / closing valve 21, passes through the fourth opening / closing valve 24 and the second opening / closing valve 22, and passes through the first compressor 1 Inhaled. On the other hand, the remaining liquid refrigerant that has flowed into the liquid pipe 64 passes through the electronic expansion valve 31c to be in a low-pressure two-phase state and is the second evaporator. It flows into the heat exchanger 51c and is vaporized and gasified. The gas refrigerant passes through the third pipe 63, passes through the first accumulator 11, and is sucked into the second compressor 2. Thus, in this operation mode, the condensing temperature in the heat exchanger 51a is
The first evaporation temperature is obtained by 1b, and the second evaporation temperature is obtained by the heat exchanger 51c.

【0220】上記のように、この実施例では上記した6
つの運転モード、冷暖房や給湯、氷蓄熱などの各熱交換
器に要求される機能に応じて、各熱交換器毎に3つの飽
和温度が設定可能となる。また凝縮温度と蒸発温度の差
が小さい時や大きい時で、第1、第2圧縮機の運転を単
独あるいは並列運転、または直列運転(二段圧縮運転)
に使い分けることができ、高効率なサイクルが実現でき
る。さらに冷房や氷蓄熱と暖房や給湯が同時に運転され
る時には、冷房や氷蓄熱の廃熱が暖房や給湯に利用する
ことができるので、さらに効率の高いサイクルを実現す
ることができる。又高圧ガス連通管を設けているので第
2圧縮機の吐出ガスを第1圧縮機の吐出ガスに足せ、凝
縮又は蒸発能力を向上できる。第1、第2の圧縮機の吸
入側にアキュムレータを設けているので、起動時や運転
モード切換時の圧縮機への液戻りが防止でき圧縮機が保
護でき、冷媒量の調整が行える。又、四方弁を用いるこ
とにより大巾に弁数を削減でき、ユニットのコンパクト
化が実現できる。
As described above, in this embodiment, the above 6
Three saturation temperatures can be set for each heat exchanger according to the functions required for each heat exchanger such as one of the operation modes, cooling / heating, hot water supply, and ice heat storage. When the difference between the condensing temperature and the evaporating temperature is small or large, the operation of the first and second compressors may be performed independently, in parallel, or in series (two-stage compression operation).
And a highly efficient cycle can be realized. Further, when cooling and ice heat storage and heating and hot water supply are simultaneously operated, waste heat of cooling and ice heat storage can be used for heating and hot water supply, so that a more efficient cycle can be realized. Further, since the high-pressure gas communication pipe is provided, the discharge gas of the second compressor can be added to the discharge gas of the first compressor, and the condensation or evaporation ability can be improved. Since the accumulators are provided on the suction sides of the first and second compressors, the liquid can be prevented from returning to the compressors at the time of starting or switching the operation mode, the compressors can be protected, and the amount of refrigerant can be adjusted. Also, by using a four-way valve, the number of valves can be greatly reduced and the unit can be made compact.

【0221】この発明の実施例6〜12の蒸気式圧縮式
冷凍サイクルによる多温度生成回路は以下のような効果
を奏する。この発明の蒸気圧縮式冷凍サイクルによる多
温度生成回路は、第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が前記第1圧縮機の吐出側に、他端
が開閉弁を介して前記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して前記第2圧縮機の
吐出側に、他端が開閉弁を介して前記複数台の熱交換器
に接続するとともに、前記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して前記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が前記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して前記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して前記複数台の熱交換器に接続
する低圧ガス管と、前記複数台の熱交換器に冷媒流量制
御器を介して接続する液管と、前記第1圧縮機の吐出側
と前記第2の圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から第7開閉弁を
介して前記液管に至る第1のバイパス路と、前記液管か
ら第8開閉弁を介して前記第1圧縮機の吸入側へ至る第
2のバイパス路と、を備えた構成にしたので、凝縮温度
と蒸発温度の差が比較的大きく、圧縮比が比較的大きい
高温給湯・暖房同時運転や氷蓄熱・給湯同時運転の場
合、低段側圧縮機の吐出ガスを開閉弁を介して液管に通
して冷却した後、高段側圧縮機に吸入させる2段圧縮運
転を行うことで、吐出温度上昇を防止し、かつ2つの凝
縮温度と1つの蒸発温度を効率よく得られる。凝縮温度
と蒸発温度の差が比較的大きく、圧縮比が比較的大きい
氷蓄冷・冷房・給湯同時運転のような場合には、低段側
圧縮機の吐出ガスを液管から開閉弁を介してバイパスさ
せた液で合流させて冷却した後、高段側圧縮機に吸入さ
せる多段圧縮運転を行うことで、吐出温度上昇を防止
し、かつ1つの凝縮温度と2つの蒸発温度を効率よく得
られる。
The multi-temperature generation circuit using the vapor compression refrigeration cycle according to the sixth to twelfth embodiments of the present invention has the following effects. A multi-temperature generation circuit using a vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, one end on the discharge side of the first compressor, and the other end. A high-pressure gas pipe connected to the plurality of heat exchangers via an on-off valve, one end of which is connected to a discharge side of the second compressor via a first on-off valve, and the other end connected to the plurality of heat exchangers via an on-off valve; Medium-pressure gas that is connected to the heat exchanger of the first compressor and is branched from between the first on-off valve and the on-off valve and connected to the suction side of the first compressor via a fifth on-off valve and a second check valve. Tube and one end of the second
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe having an on-off valve connected to the suction side of the first compressor via this order and the other end connected to the plurality of heat exchangers via the on-off valve; and a plurality of heat exchangers. A liquid pipe connected via a refrigerant flow controller, a high-pressure gas communication pipe connecting a discharge side of the first compressor and a discharge side of the second compressor via a third on-off valve, A compressor communication pipe connecting the discharge side of the compressor and the first check valve and the second on-off valve via a fourth on-off valve; and the liquid from the medium-pressure gas pipe via a seventh on-off valve. The configuration includes a first bypass path leading to a pipe, and a second bypass path leading from the liquid pipe to the suction side of the first compressor via an eighth on-off valve. In the case of simultaneous operation of high-temperature hot-water supply and heating, or simultaneous operation of ice storage and hot-water supply, where the temperature difference is relatively large and the compression ratio is relatively large, the low-stage compressor The outlet gas is cooled by passing it through a liquid pipe through an on-off valve and then sucked into a high-stage compressor to prevent a rise in discharge temperature, and to prevent two condensing temperatures and one evaporation The temperature can be obtained efficiently. In the case of simultaneous operation of ice cold storage / cooling / hot water supply where the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is supplied from the liquid pipe through the on-off valve. By performing the multi-stage compression operation in which the liquids are combined by the bypassed liquid and cooled, and then sucked into the high-stage compressor, the discharge temperature rise can be prevented, and one condensation temperature and two evaporation temperatures can be efficiently obtained. .

【0222】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮記
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器の冷媒流量
制御器を介して接続する液管と、前記第1圧縮機の吐出
側と前記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、前記第2圧縮機の吐出側と前記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、前記中圧ガス管から冷媒流量制御
器を介して前記液管に至る第1のバイパス路と、前記液
管から第8開閉弁を介して前記第1圧縮機の吸入側へ至
る第2のバイパス路と、を備えた構成にしたので、凝縮
温度と蒸発温度の差が比較的大きく、圧縮比が比較的大
きい高温給湯・暖房同時運転の場合、低段側圧縮機の吐
出ガスを膨張弁を介して液管に通して冷却した後、高段
側圧縮機に吸入させる多段圧縮運転を行うことで、吐出
温度上昇を防止すると同時に、高段側へのバイパス量を
最適制御することで、より高い給湯圧力を得ることが可
能で、また暖房能力も同時に確保し、かつ2つの凝縮温
度と1つの蒸発温度を効率よく得られる。また、凝縮温
度と蒸発温度の差が比較的大きく、圧縮比が比較的大き
い氷蓄冷・冷房・給湯同時運転のような場合には、低段
側圧縮機の吐出ガスを液管から膨張弁を介してバイパス
させた液と合流させて冷却した後、高段側圧縮機に吸入
させる多段圧縮運転を行うことで、吐出温度上昇を防止
すると同時に液バイパス量を最適制御することで、高段
側圧縮機の液圧縮を防止しながら、より高い凝縮温度を
得ることが可能で、かつ1つの凝縮温度と2つの蒸発温
度を効率よく得られる。
The multi-temperature generating circuit according to the present invention comprises a first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compression unit via a first on-off valve, and the other end via an on-off valve Connected to the plurality of heat exchangers, branched from between the first on-off valve and the on-off valve, through the fifth on-off valve and the second check valve, and
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve. Side, the other end is connected to the plurality of heat exchangers via an on-off valve, a low-pressure gas pipe, a liquid pipe connected via a refrigerant flow controller of the plurality of heat exchangers, A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor through a third on-off valve; a discharge side of the second compressor; the first check valve; A compressor communication pipe connecting between the on-off valves via a fourth on-off valve, a first bypass passage from the medium-pressure gas pipe to the liquid pipe via a refrigerant flow controller, and a And a second bypass passage extending to the suction side of the first compressor through an on-off valve (8). In the case of high-temperature hot water supply / heating simultaneous operation with a relatively large compression ratio and a relatively high compression ratio, the gas discharged from the low-stage compressor is cooled through the liquid pipe through the expansion valve, and then sucked into the high-stage compressor. By performing the multi-stage compression operation to prevent the discharge temperature rise, at the same time, by controlling the bypass amount to the high stage side optimally, it is possible to obtain a higher hot water supply pressure, and also secure the heating capacity at the same time, In addition, two condensation temperatures and one evaporation temperature can be obtained efficiently. In addition, when the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large, such as simultaneous operation of ice cold storage, cooling, and hot water supply, the discharge gas of the low stage compressor is supplied from the liquid pipe to the expansion valve. After cooling by combining with the liquid bypassed through the compressor, the multi-stage compression operation is performed in which the liquid is sucked into the high-stage compressor. A higher condensing temperature can be obtained while preventing liquid compression of the compressor, and one condensing temperature and two evaporating temperatures can be obtained efficiently.

【0223】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して前記第2圧縮機
の吐出側に、他端が開閉弁を介して前記複数台の熱交換
器に接続するとともに、前記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して前記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が前記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して前記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して前記複数台の熱交換器に接
続する低圧ガス管と、前記複数台の熱交換器に冷媒流量
制御器を介して接続する液レシーバーと、前記第1圧縮
機の吐出側と前記第2圧縮機の吐出側を第3開閉弁を介
して連結する高圧ガス連通管と、前記第2圧縮機の吐出
側と前記第1逆止弁と第2開閉弁の間を第4開閉弁を介
して連結する圧縮機連通管と、前記中圧ガス管から第7
開閉弁を介して前記液レシーバーに至る第1のバイパス
路と、前記液レシーバーから第8開閉弁を介して前記第
1圧縮機の吸入側へ至る第2のバイパス路と、を備えた
構成にしたので、凝縮温度と蒸発温度の差が比較的大き
く、圧縮比が比較的大きい高温給湯・暖房同時運転や氷
蓄熱・給湯同時運転の場合、低段側圧縮機の吐出ガスを
開閉弁を介して液レシーバーに通して、冷却と気液分離
を同時に行った後、高段側圧縮機に吸入させる多段圧縮
運転を行うことで、吐出温度上昇及び高段側圧縮機の液
圧縮を防止しながら、より高い凝縮温度を得ることが可
能で、かつ2つの凝縮温度と1つの蒸発温度を効率よく
得られる。また、凝縮温度と蒸発温度の差が比較的大き
く、圧縮比が比較的大きい氷蓄冷・冷房・給湯同時運転
のような場合には、低段側圧縮機の吐出ガスを液レシー
バーから開閉弁を介してバイパスさせた液と合流させて
冷却した後、高段側圧縮機に吸入させる多段圧縮運転を
行うことで、吐出温度上昇を防止し、より高い凝縮温度
を得ることが可能で、かつ1つの凝縮温度と2つの蒸発
温度を効率よく得られる。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention comprises a first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, one end on the discharge side of the second compressor via a first on-off valve, and the other end via an on-off valve Connected to the plurality of heat exchangers, branched from between the first on-off valve and the on-off valve, through the fifth on-off valve and the second check valve, and
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve, which are connected in this order to the suction of the first compressor; And a low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, a liquid receiver connected to the plurality of heat exchangers via a refrigerant flow controller, and A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve; a discharge side of the second compressor; the first check valve; A compressor communication pipe connecting between the on-off valves via a fourth on-off valve;
A first bypass passage leading to the liquid receiver via an on-off valve, and a second bypass passage leading from the liquid receiver to the suction side of the first compressor via an eighth on-off valve. Therefore, in the case of high-temperature hot water supply / heating simultaneous operation or ice heat storage / hot water supply simultaneous operation in which the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large, the discharge gas of the low-stage compressor is passed through the on-off valve. After passing through the liquid receiver and performing cooling and gas-liquid separation at the same time, by performing a multi-stage compression operation to suck into the high-stage compressor, it is possible to prevent discharge temperature rise and liquid compression of the high-stage compressor , A higher condensation temperature can be obtained, and two condensation temperatures and one evaporation temperature can be obtained efficiently. In addition, when the difference between the condensing temperature and the evaporating temperature is relatively large and the compression ratio is relatively large, such as ice cold storage / cooling / hot water simultaneous operation, the gas discharged from the low-stage compressor is opened and closed via the liquid receiver. By performing a multi-stage compression operation in which the liquid is cooled by being merged with the liquid bypassed through the compressor and then sucked into the high-stage compressor, it is possible to prevent a rise in discharge temperature and obtain a higher condensation temperature. One condensation temperature and two evaporation temperatures can be obtained efficiently.

【0224】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が第1の開閉弁を有する第1の吐
出管を介して前記第1圧縮機の吐出側に、他端が開閉弁
を介して前記複数台の熱交換器に接続する高圧ガス管
と、一端が第2の開閉弁を有する第2の吐出管を介して
前記第2圧縮機の吐出側に、他端が開閉弁を介して前記
複数台の熱交換器に接続する中圧ガス管と、一端が第4
の開閉弁を有する第2の吸入管を介して前記第2圧縮機
の吸入側に、他端が開閉弁を介して前記複数台の熱交換
器に接続する低圧ガス管と、前記複数台の熱交換器に冷
媒流量制御器を介して接続する液管と、前記中圧ガス管
と前記第1圧縮機の吸入側とを第3の開閉弁を介して接
続する第1の吸入管と、前記第1の吐出管と前記第2の
吐出管を第7の開閉弁及び第8の開閉弁を介して接続す
る吐出側接続管と、前記第1の吸入管と前記第2の吸入
管を第9の開閉弁及び第10の開閉弁を介して接続する
吸入側接続管と、前記中圧ガス管と前記第2の吸入管と
を第5の開閉弁を介して接続する第1のバイパス管と、
前記低圧管と前記第1の吸入管を第6開閉弁を介して接
続する第2のバイパス管と、前記第7の開閉弁、第8の
開閉弁の間と前記第9の開閉弁、第10の開閉弁の間を
第11の開閉弁を介して接続する第3のバイパス管と、
前記第2の吐出管と前記高圧ガス管とを第13の開閉弁
を介して接続する第4のバイパス管と、前記第1の吐出
管と前記中圧ガス管とを第12の開閉弁を介して接続す
る第5のバイパス管と、を備えた構成にしたので、冷暖
房や給湯、氷蓄熱などの各熱交換器に要求される機能に
応じて、各熱交換器毎に3つ以下の飽和温度が設定でき
る。また、凝縮温度と蒸発温度の差が小さい時や大きい
時及び負荷の大小により容量の異なる複数台の圧縮機の
運転を使い分けることによって、負荷にあった能力の確
保と多段圧縮運転を行うことによって高効率な冷媒回路
が実現できる。またさらに、冷房や氷蓄熱と暖房や給湯
が同時に運転される時には、冷房や氷蓄熱の廃熱が暖房
や給湯に利用することができるので、エネルギーの有効
利用ができるなど、多大な効果を有するものである。
[0224] The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention comprises a first compressor, a second compressor, a plurality of heat exchangers, and a first on-off valve having one end having a first on-off valve. A second high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve on the discharge side of the first compressor via a discharge pipe, and a second on-off valve at one end. A medium-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve via a discharge pipe to the discharge side of the second compressor;
A low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve via a second suction pipe having an on-off valve; A liquid pipe connected to the heat exchanger via a refrigerant flow controller, a first suction pipe connecting the medium-pressure gas pipe and a suction side of the first compressor via a third on-off valve, A discharge-side connecting pipe that connects the first discharge pipe and the second discharge pipe via a seventh on-off valve and an eighth on-off valve, the first suction pipe and the second suction pipe, A suction side connection pipe connected via a ninth on / off valve and a tenth on / off valve, and a first bypass connecting the intermediate pressure gas pipe and the second suction pipe via a fifth on / off valve Tubes and
A second bypass pipe connecting the low-pressure pipe and the first suction pipe via a sixth on-off valve, a section between the seventh on-off valve and the eighth on-off valve, the ninth on-off valve, A third bypass pipe connecting the ten on-off valves via an eleventh on-off valve,
A fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve; and a twelfth on-off valve connecting the first discharge pipe and the medium-pressure gas pipe to each other. And a fifth bypass pipe connected through the heat exchanger, so that three or less heat exchangers are provided for each heat exchanger according to functions required for each heat exchanger such as cooling, heating, hot water supply, and ice heat storage. Saturation temperature can be set. In addition, when the difference between the condensing temperature and the evaporating temperature is small or large, and when the load is large and small, the operation of a plurality of compressors with different capacities is properly used. A highly efficient refrigerant circuit can be realized. Further, when the cooling and ice heat storage and the heating and hot water supply are operated at the same time, the waste heat of the cooling and ice heat storage can be used for heating and hot water supply. Things.

【0225】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、四方弁と、一端が第1の開閉弁を有す
る第1の吐出管を介して前記第1圧縮機の吐出側に、他
端が開閉弁を介して前記複数台の熱交換器に接続する高
圧ガス管と、一端が第2の開閉弁を有する第2の吐出管
を介して前記第2圧縮機の吐出側に、他端が開閉弁を介
して前記複数台の熱交換器に接続するとともに、途中か
ら分岐して前記四方弁に接続する中圧ガス管と、一端が
前記四方弁に、他端が開閉弁を介して前記複数台の熱交
換器に接続する低圧ガス管と、前記複数台の熱交換器に
冷媒流量制御器を介して接続する液管と、前記四方弁と
前記第1圧縮機の吸入側とを第3の開閉弁を介して接続
する第1の吸入管と、前記四方弁と前記第2圧縮機の吸
入側とを第4の開閉弁を介して接続する第2の吸入管
と、前記第1の吐出管と前記第2の吐出管を第7の開閉
弁及び第8の開閉弁を介して接続する吐出側接続管と、
前記第1の吸入管と前記第2の吸入管を第9の開閉弁及
び第10の開閉弁を介して接続する吸入側接続管と、前
記第7の開閉弁、第8の開閉弁の間と前記第9の開閉
弁、第10の開閉弁の間を第11の開閉弁を介して接続
する第3のバイパス管と、前記第2の吐出管と前記高圧
ガス管とを第13の開閉弁を介して接続する第4のバイ
パス管と、前記第1の吐出管と前記中圧ガス管とを第1
2の開閉弁を介して接続する第5のバイパス管と、を備
えた構成にしたので、冷暖房や給湯、氷蓄熱などの各熱
交換器に要求される機能に応じて、各熱交換器毎に3つ
以下の飽和温度が設定できる。また、凝縮温度と蒸発温
度の差が小さい時や大きい時及び負荷の大小により容量
の異なる複数台の圧縮機の運転を使い分けることによっ
て、負荷にあった能力の確保と多段圧縮運転を行うこと
によって高効率な冷媒回路が実現できる。またさらに、
冷房や氷蓄熱と暖房や給湯が同時に運転される時には、
冷房や氷蓄熱の廃熱が暖房や給湯に利用することができ
るので、エネルギーの有効利用ができるなど、多大な効
果を有するものである。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, and a first opening / closing valve at one end. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve and a second on-off valve on the discharge side of the first compressor via a first discharge pipe having The other end is connected to the plurality of heat exchangers via an on-off valve to the discharge side of the second compressor via a second discharge pipe, and is branched from the middle and connected to the four-way valve. A medium-pressure gas pipe, a low-pressure gas pipe having one end connected to the four-way valve and the other end connected to the plurality of heat exchangers via an on-off valve, and a refrigerant flow controller connected to the plurality of heat exchangers. Pipe connecting the four-way valve and the suction side of the first compressor via a third on-off valve. A second opening / closing pipe connecting the four-way valve and the suction side of the second compressor via a fourth opening / closing valve, and a seventh opening / closing of the first discharge pipe and the second discharge pipe. A discharge-side connecting pipe connected via a valve and an eighth on-off valve;
Between a suction-side connecting pipe connecting the first suction pipe and the second suction pipe via a ninth on-off valve and a tenth on-off valve, and the seventh on-off valve and the eighth on-off valve; A third bypass pipe connecting the ninth on-off valve and the tenth on-off valve via an eleventh on-off valve, and a thirteenth on-off connection between the second discharge pipe and the high-pressure gas pipe. A fourth bypass pipe connected via a valve, the first discharge pipe and the medium-pressure gas pipe being connected to a first bypass pipe;
And a fifth bypass pipe connected via the on-off valve of No. 2 so that each of the heat exchangers can be changed according to the functions required for each heat exchanger such as cooling and heating, hot water supply, and ice heat storage. Can be set to three or less saturation temperatures. In addition, when the difference between the condensing temperature and the evaporating temperature is small or large, and when the load is large and small, the operation of a plurality of compressors with different capacities is properly used. A highly efficient refrigerant circuit can be realized. In addition,
When cooling and ice heat storage and heating and hot water are operated at the same time,
Since the waste heat of cooling and ice storage can be used for heating and hot water supply, it has a great effect such as effective use of energy.

【0226】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、第1の四方弁と、第2の四方弁と、一
端が前記第1の四方弁が接続された第1の吐出管を介し
て前記第1圧縮機の吐出側に、他端が開閉弁を介して前
記複数台の熱交換器に接続する高圧ガス管と、他端が開
閉弁を介して前記複数台の熱交換器に接続すると中圧ガ
ス管と、一端が前記第2圧縮機の吸入側に第2の開閉弁
を介して接続する第2の吸入管に、他端が開閉弁を介し
て前記複数台の熱交換器に接続する低圧ガス管と、前記
複数台の熱交換器に冷媒流量制御器を介して接続する液
管と、前記低圧ガス管と前記第1圧縮機とを前記第2の
四方弁を介して接続する第1の吸入管と、前記第2の圧
縮機の吐出側と前記第1の開閉弁の間と前記第1の四方
弁とを接続する第1の接続管と、前記第2の圧縮機の吸
入側と前記第2の開閉弁との間と前記第2の四方弁とを
接続する第2の接続管と、前記第1の四方弁と第2の四
方弁を第3の開閉弁を介して接続する第3の接続管と、
前記第3の開閉弁の両側から分岐し、第4の開閉弁、第
5の開閉弁を介してそれぞれ前記中圧ガス管の一端に接
続する第4の接続管及び第5の接続管と、を備えた構成
にしたので、冷暖房や給湯、氷蓄熱などの各熱交換器に
要求される機能に応じて、各熱交換器毎に3つ以下の飽
和温度が設定できる。また、凝縮温度と蒸発温度の差が
小さい時や大きい時及び負荷の大小により容量の異なる
複数台の圧縮機の運転を使い分けることによって、負荷
にあった能力の確保と多段圧縮運転を行うことによって
高効率な冷媒回路が実現できる。またさらに、冷房や氷
蓄熱と暖房や給湯が同時に運転される時には、冷房や氷
蓄熱の廃熱が暖房や給湯に利用することができるので、
エネルギーの有効利用ができるなど、多大な効果を有す
るものである。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a plurality of heat exchangers, a first four-way valve, and a second four-way valve. And one end is connected to the discharge side of the first compressor via a first discharge pipe to which the first four-way valve is connected, and the other end is connected to the plurality of heat exchangers via an on-off valve. When the other end is connected to the plurality of heat exchangers via an on-off valve via a high-pressure gas pipe, the medium-pressure gas pipe is connected on one end to the suction side of the second compressor via a second on-off valve. A second suction pipe, a low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, and a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller. A first suction pipe connecting the low-pressure gas pipe and the first compressor via the second four-way valve, and a discharge side of the second compressor, A first connection pipe connecting between the first on-off valves and the first four-way valve; and a second connection between the suction side of the second compressor and the second on-off valve and the second four-way valve. A second connection pipe connecting the valve, a third connection pipe connecting the first four-way valve and the second four-way valve via a third on-off valve,
A fourth connection pipe and a fifth connection pipe branched from both sides of the third on-off valve and connected to one end of the intermediate-pressure gas pipe via a fourth on-off valve and a fifth on-off valve, respectively; , Three or less saturation temperatures can be set for each heat exchanger according to the functions required for each heat exchanger, such as cooling and heating, hot water supply, and ice heat storage. In addition, when the difference between the condensing temperature and the evaporating temperature is small or large, and when the load is large and small, the operation of a plurality of compressors with different capacities is properly used. A highly efficient refrigerant circuit can be realized. Furthermore, when cooling and ice heat storage and heating and hot water supply are operated at the same time, the waste heat of cooling and ice heat storage can be used for heating and hot water supply.
It has a great effect, such as effective use of energy.

【0227】この発明の蒸気圧縮式冷凍サイクルによる
多温度生成回路は、第1圧縮機と、第2圧縮機と、給湯
用熱交換器及び複数台の熱交換器と、第1の四方弁と、
第2の四方弁と、第3の四方弁と、一端が前記第1圧縮
機の吐出側に、他端が前記給湯用熱交換器及び前記第1
の四方弁、第3の四方弁を介して前記複数台の熱交換器
に接続する高圧ガス管と、一端が第1開閉弁を介して前
記第2圧縮機の吐出側に、他端が第2の四方弁、第3の
四方弁を介して前記複数台の熱交換器に接続するととも
に、途中で分岐して第5開閉弁を介して前記第1圧縮機
の吸入側に接続する中圧ガス管と、一端が前記第2圧縮
機の吸入側に接続するとともに第1逆止弁と第2開閉弁
をこの順に介して前記第1圧縮機の吸入側に接続し、他
端が第1の四方弁、第2の四方弁を介して前記複数台の
熱交換器に接続する低圧ガス管と、前記給湯用熱交換器
及び前記複数台の熱交換器に冷媒流量制御器を介して接
続する液管と、前記第1圧縮機の吐出側と前記第2圧縮
機の吐出側を第3開閉弁を介して連結する高圧ガス連通
管と、前記第2圧縮機の吐出側と前記第1逆止弁と第2
開閉弁の間を第4開閉弁を介して連結する圧縮機連通管
と、を備えた構成にしたので、冷暖房や給湯、氷蓄熱な
どの各熱交換器に要求される機能に応じて、各熱交換器
毎に3つ以上の飽和温度が設定できる。また、凝縮温度
と蒸発温度の差が小さい時や大きい時で、複数台の圧縮
機の運転を使い分けることによって、高効率なサイクル
が実現できる。また、冷房や氷蓄熱と暖房や給湯が同時
に運転される時には、冷房や氷蓄熱の廃熱が暖房や給湯
に利用することができるので、エネルギーの有効利用が
できる。
The multi-temperature generating circuit using the vapor compression refrigeration cycle according to the present invention includes a first compressor, a second compressor, a hot water supply heat exchanger and a plurality of heat exchangers, a first four-way valve, ,
A second four-way valve, a third four-way valve, one end on the discharge side of the first compressor, and the other end on the hot water supply heat exchanger and the first
A high-pressure gas pipe connected to the plurality of heat exchangers via a four-way valve, a third four-way valve, one end on the discharge side of the second compressor via a first on-off valve, and Medium pressure which is connected to the plurality of heat exchangers via a second four-way valve and a third four-way valve, and is branched midway and connected to a suction side of the first compressor via a fifth on-off valve. A gas pipe has one end connected to the suction side of the second compressor, a first check valve and a second on-off valve connected in this order to the suction side of the first compressor, and the other end connected to the first side. A low-pressure gas pipe connected to the plurality of heat exchangers via a four-way valve and a second four-way valve, and connected to the hot water supply heat exchanger and the plurality of heat exchangers via a refrigerant flow controller. A high-pressure gas communication pipe connecting a discharge side of the first compressor and a discharge side of the second compressor via a third on-off valve; Wherein a discharge side of the machine the first check valve and the second
And a compressor communication pipe connecting the on-off valves via a fourth on-off valve, so that each of the heat exchangers such as cooling and heating, hot water supply, ice heat storage, etc. Three or more saturation temperatures can be set for each heat exchanger. Also, when the difference between the condensing temperature and the evaporating temperature is small or large, the operation of a plurality of compressors can be properly used to realize a highly efficient cycle. Further, when the cooling and ice heat storage and the heating and hot water supply are simultaneously operated, the waste heat of the cooling and ice heat storage can be used for the heating and hot water supply, so that the energy can be effectively used.

【0228】[0228]

【発明の効果】この発明の請求項1に関わる実施例1、
2、6乃至12の中の運転モードの説明に使用され主と
して図1乃至7にて説明されているような多温度生成回
路は、複数の開閉弁あるいは逆止弁を介して直列又は並
列に切り換え可能に設けられた複数台の圧縮機と、圧縮
機の各吐出側もしくは各吸入側のいずれか一方に開閉弁
もしくは逆止弁を介して、または直接にそれぞれ接続さ
れた複数のガス管と、圧縮機の各吐出側もしくは各吸入
側のいずれか他方に開閉弁もしくは逆止弁を介して、ま
たは直接に接続された少なくとも1本の他のガス管と、
複数のガス管及び他のガス管に開閉弁を介してそれぞれ
一端が接続されるとともに、他端が減圧手段を介して冷
媒を流す共通の冷媒管にそれぞれ接続された複数台の熱
交換器と、を備えたので、圧縮機を直列や並列あるいは
単独運転を行い、複数台の熱交換器に対して様々な運転
を同時に行うことが出来、複数の温度の運転を同時に効
率よく得ることが出来る。
According to the first embodiment of the present invention ,
Used mainly to describe the operation modes in 2, 6 to 12
A multi-temperature generating circuit as described in FIGS. 1 to 7 includes a plurality of compressors provided so as to be switchable in series or in parallel via a plurality of on-off valves or check valves, and a compressor. A plurality of gas pipes respectively connected to each of the discharge side or each suction side of the compressor via an on-off valve or a check valve or directly to each of the discharge side or each suction side of the compressor At least one other gas pipe connected via an on-off valve or a check valve or directly to
A plurality of heat exchangers each having one end connected to the plurality of gas pipes and other gas pipes via an on-off valve, and the other end respectively connected to a common refrigerant pipe through which a refrigerant flows through a pressure reducing means. , So that the compressors can be operated in series, in parallel, or independently, and various operations can be simultaneously performed on a plurality of heat exchangers, and operations at a plurality of temperatures can be efficiently obtained simultaneously. .

【0229】この発明の請求項2に関わる実施例1、
2、6乃至8、12の中の運転モードの説明に使用され
主として図3にて説明されているような多温度生成回路
は、第1圧縮機、第2圧縮機、及び複数台の熱交換器を
備え、一端部が第1圧縮機の吐出側もしくは吸入側のい
ずれか一方に、他端部が開閉器を介して複数台の熱交換
器に接続する第1高圧ガス管、一端部が第1開閉器を介
して第2圧縮機の吐出側もしくは吸入側のいずれか一方
に、他端部が開閉器を介して複数台の熱交換器に接続す
るとともに、途中で分岐して第2開閉器を介して上記第
1圧縮機の吸入側もしくは吐出側のいずれか他方に接続
される第2高圧ガス管、一端部が上記第2圧縮機の吸入
側もしくは吐出側のいずれか他方に接続するとともに第
3開閉器を介して第1圧縮機の吸入側もしくは吐出側の
いずれか他方に接続し、他端部が開閉器を介して複数台
の熱交換器に接続する低圧ガス管、複数台の熱交換器に
冷媒流量制御器を介して接続する液管、及び第4開閉器
を介して第2圧縮機の吐出側と第1圧縮機の吸入側とを
連結し第2圧縮機の吐出ガスを第1圧縮機に送給する圧
縮機連通管を設けたので、例えば、凝縮温度と蒸発温度
の差が大きく、圧縮比が比較的大きい高温給湯運転や給
湯、氷蓄熱同時運転時のような場合などには、圧縮機を
直列に二段圧縮運転を行ったり、圧縮機を並列や単独で
運転することが出来、高効率な運転で複数の飽和温度が
同時に得られる。この発明の請求項3に関わる実施例
1、2、6乃至8、12の中の運転モードの説明に使用
され主として図6にて説明されているような多温度生成
回路は、第5開閉器を介して第2圧縮機の吐出側と第1
高圧ガス管を連結し上記第2圧縮機の吐出ガスを上記第
1高圧ガス管に送給する高圧ガス連通管が設けられるの
で、例えば凝縮温度と蒸発温度の差が比較的小さい冷房
・氷蓄熱同時運転のような場合には圧縮機の蒸発温度を
変えた並列運転により、又圧縮機を直列や単独で運転す
ることが出来、多温度を同時に効率よく得られる。この
発明の請求項4に関わる実施例1、2、7、8の中の運
転モードの説明に使用され主として図7にて説明されて
いるような多温度生成回路は、第2圧縮機の吐出配管は
第2高圧ガス管と高圧ガス連通管及び圧縮機連通管の共
通配管に分岐し、さらに上記高圧ガス連通管と圧縮機連
通管配管に分岐して、上記高圧ガス連通管は第1高圧ガ
ス管に接続し、上記圧縮機連通管は第3開閉器を構成す
る逆止弁と開閉弁間の低圧ガス管と接続して第1圧縮機
に連通するので、例えば、複数の圧縮機を同時に運転し
て凝縮温度と蒸発温度の差が比較的大きく、圧縮比が比
較的大きい、暖房・高温給湯同時運転や、冷房・給湯・
氷蓄熱同時運転など、又圧縮機を単独で運転したりし
て、複数の温度を同時に効率よく得られる。この発明の
請求項5に関わる実施例1、2、6、7、8、12の中
の運転モードの説明に使用され主として図1乃至7にて
説明されているような多温度生成回路は、第1圧縮機及
び第2圧縮機の吸入側の低圧ガス管に第1アキュムレー
タが第1圧縮機の吸入側の第2高圧ガス管に第2アキュ
ムレータが設けられるので、起動時や運転モード切替時
の圧縮機の保護が行える。この発明の請求項6に関わる
実施例2の中の運転モードの説明に使用され主として図
8にて説明されているような多温度生成回路は、液管と
第1アキュムレータを接続し、管路に第6開閉器と流量
制御器を有するバイパス配管、及び上記流量制御器と第
1アキュムレータ間のバイパス配管と第1圧縮機の吸入
配管との間で熱交換を行う熱交換部を設けたことによ
り、凝縮温度と蒸発温度の差が比較的大きく、圧縮機が
直列運転となる場合でも、運転範囲を拡大することが出
来る。この発明の請求項7に関わる実施例2の中の運転
モードの説明に使用されている多温度生成回路は、第1
圧縮機または第2圧縮機は能力可変型圧縮機であるの
で、必要な能力を効率よく発揮することが出来る。この
発明の請求項8に関わる実施例3の中の運転モードの図
9乃至図11の説明に使用されているような多温度生成
回路は、n個の飽和温度を同時に得ることが出来る蒸気
圧縮式冷凍サイクルにおいてn−1個の圧縮機を備え、
それぞれの圧縮機を複数の開閉弁あるいは逆止弁を介し
て直列または並列に切り換え可能に接続するとともに、
一端部が圧縮機のそれぞれの吐出あるいは吸入側に他端
部が開閉弁を介して複数台の熱交換器に接続される任意
の飽和温度を持つn個の配管群と複数台の熱交換器に冷
媒流量制御弁を介して接続する1個の液配管とを設け、
nが少なくとも4であって、温度の異なる複数の蒸発温
度及び複数の凝縮温度をそれぞれ独立した熱交換器にて
同時に生成することにより多くの飽和温度の同時の設定
がそれぞれの熱交換器にて可能となり、しかも高効率で
運転範囲の広いサイクルが実現できる。所望の構成を自
在に選択できるので標準構成品で様々な条件に適用でき
るとともに仕様変更などの改造も容易であり、温度条件
を最大限に利用したり熱回収が可能になるなど高効率で
運転範囲の広い冷凍サイクルを得ることが出来る。この
発明の請求項9に関わる実施例4の中の運転モードの図
12、13の説明に使用されているような多温度生成回
路は、第1圧縮機、第2圧縮機、及び複数台の熱交換器
を備え、一端部が第1の逆止弁を介して第1圧縮機の吐
出側に、他端部が開閉器を介して複数台の熱交換器に接
続する第1ガス管、一端部が第2圧縮機の吐出側に、
端部が開閉器を介して複数台の熱交換器に接続する第2
ガス管、一端部がアキュムレータの吸入側に、他端部が
開閉弁を介して複数台の熱交換器に接続する第3ガス
管、複数台の熱交換器に冷媒流量制御器を介して接続す
る液管を設けるとともに、アキュムレータの吐出側と第
1、第2の圧縮機の吸入側とをそれぞれ、第2、第3の
逆止弁を介して個々に接続し、第1ガス管の第1の逆止
弁出口側の配管と第2ガス管とを第1の開閉弁を介して
連通させたので、多温度の運転モードを同時に実現でき
る。この発明の請求項10に関わる実施例5の中の運転
モードの図14乃至24の説明に使用されているような
多温度生成回路は、第1圧縮機、第2圧縮機及び給湯熱
交換器、風呂の追焚き熱交換器、室内熱交換器、室外熱
交換器の複数台の熱交換器を備え、一端部が第1の逆止
弁を介して上記第1圧縮機の吐出側に、他端部が開閉弁
を介して給湯熱交換器、追焚き熱交換器、室外熱交換器
にそれぞれ接続する第1ガス管、一端部が上記第2圧縮
機の吐出側に、他端部が開閉器を介して室内熱交換器、
室外熱交換器にそれぞれ接続する第2ガス管、一端部が
アキュムレータの吸入側に、他端部が開閉弁を介して複
数台の熱交換器のそれぞれに接続する第3ガス管、複数
台の熱交換器のそれぞれに冷媒流量制御器を介して接続
する液管を設けるとともに、アキュムレータの吐出側と
第1、第2の圧縮機の吸入側とをそれぞれ、第2、第3
の逆止弁を介して個々に接続し、第1ガス管の第1の逆
止弁出口側の配管と第2ガス管とを第1の開閉弁を介し
て連通させたので、同時に複数の運転をそれぞれの運転
が支障無く行え、経済的で快適な住生活が得られる。こ
の発明の請求項11に関わる実施例6の中の運転モード
の図25乃至31の説明に使用されているような多温度
生成回路は、第1圧縮機と、第2圧縮機と、複数台の熱
交換器と、一端が上記第1圧縮機の吐出側に、他端が開
閉弁を介して複数台の熱交換器に接続する高圧ガス管
と、一端が第1開閉弁を介して第2圧縮機の吐出側に、
他端が開閉弁を介して複数台の熱交換器に接続するとと
もに、第1開閉弁と開閉弁の間から分岐して第5開閉弁
及び第2逆止弁を介して第1圧縮機の吸入側に接続する
中圧ガス管と、一端が第2圧縮機の吸入側に接続すると
ともに第1逆止弁及び第2開閉弁をこの順に介して第1
圧縮機の吸入側に接続し、他端が開閉弁を介して複数台
の熱交換器に接続する低圧ガス管と、複数台の熱交換器
に冷媒流量制御器を介して接続する液管と、第1圧縮機
の吐出側と上記第2圧縮機の吐出側を第3開閉弁を介し
て連結する高圧ガス連通管と、第2圧縮機の吐出側と第
1逆止弁と第2開閉弁の間を第4開閉弁を介して連結す
る圧縮機連通管と、中圧ガス管から第7開閉弁を介して
液管に至る第1のバイパス路と、液管から第8開閉弁を
介して第1圧縮機への吸入側に至る第2バイパス路と、
を備えたので、複数の温度が同時に効率よく得られる。
この発明の請求項12に関わる実施例7の中の運転モー
ドの図32乃至38の説明に使用されているような多温
度生成回路は、第1圧縮機と、第2圧縮機と、複数台の
熱交換器と、一端部が第1圧縮機の吐出側に、他端が開
閉弁を介して複数台の熱交換器に接続する高圧ガス管
と、一端が第1開閉弁を介して第2圧縮機の吐出側に、
他端が開閉弁を介して複数台の熱交換器に接続するとと
もに、第1開閉弁と開閉弁の間から分岐して第5開閉弁
及び第2逆止弁を介して第1圧縮機の吸入側に接続する
中圧ガス管と、一端が第2圧縮機の吸入側に接続すると
ともに第1逆止弁及び第2開閉弁をこの順に介して第1
圧縮機の吸入側に接続し、他端が開閉弁を介して複数台
の熱交換器に接続する低圧ガス管と、複数台の熱交換器
に冷媒流量制御器を介して接続する液管と、第1圧縮機
の吐出側と第2圧縮機の吐出側を第3開閉弁を介して連
結する高圧ガス連通管と、第2圧縮機の吐出側と第1逆
止弁と第2開閉弁の間を第4開閉弁を介して連結する圧
縮機連通管と、中圧ガス管から冷媒流量制御器を介して
液管に至る第1のバイパス路と、液管から第8開閉弁を
介して第1圧縮機の吸入側に至る第2バイパス路と、を
備えたので、複数の温度が同時に効率よく得られる。こ
の発明の請求項13に関わる実施例8の中の運転モード
の図39乃至45の説明に使用されているような多温度
生成回路は、第1圧縮機と、第2圧縮機と、複数台の熱
交換器と、一端が第1圧縮機の吐出側に、他端が開閉弁
を介して複数台の熱交換器に接続する高圧ガス管と、一
端が第1開閉弁を介して第2圧縮機の吐出側に、他端が
開閉弁を介して複数台の熱交換器に接続するとともに、
第1開閉弁と開閉弁の間から分岐して第5開閉弁及び第
2逆止弁を介して第1圧縮機の吸入側に接続する中圧ガ
ス管と、一端が第2圧縮機の吸入側に接続するとともに
第1逆止弁及び第2開閉弁をこの順に介して第1圧縮機
の吸入側に接続し、他端が開閉弁を介して複数台の熱交
換器に接続する低圧ガス管と、複数台の熱交換器に冷媒
流量制御器を介して接続する液レシーバーと、第1圧縮
機の吐出側と第2圧縮機の吐出側を第3開閉弁を介して
連結する高圧ガス連通管と、第2圧縮機の吐出側と第1
逆止弁と第2開閉弁の間を第4開閉弁を介して連結する
圧縮機連通管と、中圧ガス管から第7開閉弁を介して液
レシーバーに至る第1のバイパス路と、液レシーバーか
ら第8開閉弁を介して第1圧縮機の吸入側に至る第2バ
イパス路と、を備えたので、圧縮機の吐出温度上昇や液
圧縮を抑えながら、複数の温度が同時に効率よく得られ
る。この発明の請求項14に関わる実施例9の中の運転
モードの図46乃至54の説明に使用されているような
多温度生成回路は、第1圧縮機と、第2圧縮機と、複数
台の熱交換器と、一端が第1の開閉弁を有する第1の吐
出管を介して第1圧縮機の吐出側に、他端が開閉弁を介
して複数台の熱交換器に接続する高圧ガス管と、一端が
第2の開閉弁を有する第2の吐出管を介して第2圧縮機
の吐出側に、他端が開閉弁を介して複数台の熱交換器に
接続する中圧ガス管と、一端が第4の開閉弁を有する第
2の吸入管を介して第2圧縮機の吸入側に、他端が開閉
弁を介して複数台の熱交換器に接続する低圧ガス管と、
複数台の熱交換器に冷媒流量制御器を介して接続する液
管と、中圧ガス管と第1圧縮機の吸入側とを第3の開閉
弁を介して接続する第1の吸入管と、第1の吐出管と第
2の吐出管を第7の開閉弁及び第8の開閉弁を介して接
続する吐出側接続管と、第1の吸入管と第2の吸入管を
第9の開閉弁及び第10の開閉弁を介して接続する吸入
側接続管と、中圧ガス管と上記第2の吸入管とを第5開
閉弁を介して接続する第1のバイパス管と、低圧管と第
1の吸入管を第6開閉弁を介して接続する第2のバイパ
ス管と、第7の開閉弁、第8の開閉弁の間と第9の開閉
弁、第10の開閉弁の間を第11の開閉弁を介して接続
する第3のバイパス管と、第2の吐出管と高圧ガス管と
を第13の開閉弁を介して接続する第5のバイパス管
と、第1の吐出管と中圧ガス管とを第12の開閉弁を介
して接続する第5のバイパス管と、を備えたので、凝縮
温度や蒸発温度の差が小さいときや大きいとき、負荷の
大小などにより圧縮機を使い分けて必要な能力を確保
し、同時に高効率な運転が可能で、エネルギーの有効な
利用が出来る。この発明の請求項15に関わる実施例1
0の中の運転モードの図55乃至66の説明に使用され
ているような多温度生成回路は、第1圧縮機と、第2圧
縮機と、複数台の熱交換器と、四方弁と、一端が第1の
開閉弁を有する第1の吐出管を介して第1圧縮機の吐出
側に、他端が開閉弁を介して複数台の熱交換器に接続す
る高圧ガス管と、一端が第2の開閉弁を有する第2の吐
出管を介して第2圧縮機の吐出側に、他端が開閉弁を介
して上記複数台の熱交換器に接続するとともに、途中か
ら分岐して四方弁に接続する中圧ガス管と、一端が四方
弁に、他端が開閉弁を介して複数台の熱交換器に接続す
る低圧ガス管と、複数台の熱交換器に冷媒流量制御器を
介して接続する液管と、四方弁と第1圧縮機の吸入側と
を第3の開閉弁を介して接続する第1の吸入管と、四方
弁と第2圧縮機の吸入側とを第4の開閉弁を介して接続
する第2の吸入管と、第1の吐出管と第2の吐出管を第
7の開閉弁及び第8の開閉弁を介して接続する吐出側接
続管と、第1の吸入管と第2の吸入管を第9の開閉弁及
び第10の開閉弁を介して接続する吸入側接続管と、第
7の開閉弁、第8の開閉弁の間と第9の開閉弁、第10
の開閉弁の間を第11の開閉弁を介して接続する第3の
バイパス管と、第2の吐出管と高圧ガス管とを第13の
開閉弁を介して接続する第4のバイパス管と、第1の吐
出管と中圧ガス管とを第12の開閉弁を介して接続する
第5のバイパス管と、を備えたので、凝縮温度や蒸発温
度の差が小さいときや大きいとき、負荷の大小などによ
り圧縮機を使い分けて必要な能力を確保し、同時に高効
率な運転が可能で、エネルギーの有効な利用が出来る。
この発明の請求項16に関わる実施例11の中の運転モ
ードの図67乃至78の説明に使用されているような多
温度生成回路は、第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、第1の四方弁と、第2の四方弁と、一端
が第1の四方弁が接続された第1の吐出管を介して第1
圧縮機の吐出側に、他端が開閉弁を介して複数台の熱交
換器に接続する高圧ガス管と、他端が開閉弁を介して複
数台の熱交換器に接続する中圧ガス管と、一端が第2圧
縮機の吸入側に第2の開閉弁を介して接続する第2の吸
入管に、他端が開閉弁を介して複数台の熱交換器に接続
する低圧ガス管と、複数台の熱交換器に冷媒流量制御器
を介して接続する液管と、低圧ガス管と第1圧縮機とを
第2の四方弁を介して接続する第1の吸入管と、第2圧
縮機の吐出側と第1の開閉弁の間と第1の四方弁とを接
続する第1の接続管と、第2の圧縮機の吸入側と第2の
開閉弁との間に第2の四方弁を接続する第2の接続管
と、第1の四方弁と第2の四方弁を第3の開閉弁を介し
て接続する第3の接続管と、第3の開閉弁の両側から分
岐し、第4の開閉弁、第5の開閉弁を介してそれぞれ中
圧ガス管の一端に接続する第4の接続管及び第5の接続
管と、を備えたので、凝縮温度や蒸発温度の差が小さい
ときや大きいとき、負荷の大小などにより圧縮機を使い
分けて必要な能力を確保し、同時に高効率な運転が可能
で、エネルギーの有効な利用が出来る。この発明の請求
項17に関わる実施例12の中の運転モードの図79乃
至85の説明に使用されているような多温度生成回路
は、第1圧縮機と、第2圧縮機と、給湯用熱交換器及び
複数台の熱交換器と、第1の四方弁と、第2の四方弁
と、第3の四方弁と、一端が第1圧縮機の吐出側に、他
端が給湯用熱交換器及び上記第1の四方弁、第3の四方
弁を介して複数台の熱交換器に接続する高圧ガス管と、
一端が第1開閉弁を介して第2圧縮機の吐出側に、他端
が第2の四方弁、第3の四方弁を介して複数台の熱交換
器に接続するとともに、途中で分岐して第5開閉弁を介
して第1圧縮機の吸入側に接続する中圧ガス管と、一端
が第2圧縮機の吸入側に接続するとともに第1の逆止弁
と第2開閉弁をこの順に介して第1圧縮機の吸入側に接
続し、他端が第1の四方弁、第2の四方弁を介して複数
台の熱交換器に接続する低圧ガス管と、給湯用熱交換器
及び複数台の熱交換器に冷媒流量制御器を介して接続す
る液管と、第1圧縮機の吐出側と第2圧縮機の吐出側を
第3開閉弁を介して連結する高圧ガス連通管と、第2の
圧縮機の吐出側と第1逆止弁と第2開閉弁の間を第4開
閉弁を介して連結する圧縮機連通管と、を備えたので、
凝縮温度や蒸発温度の差が小さいときや大きいとき、負
荷の大小などにより圧縮機を使い分けて必要な能力を確
保し、同時に高効率な運転が可能で、エネルギーの有効
な利用が出来る。
Embodiment 1 according to claim 2 of the present invention,
The multi-temperature generating circuit used to describe the operation modes among 2, 6 to 8, and 12 and mainly described in FIG. 3 includes a first compressor, a second compressor, and a plurality of heat exchangers. A first high-pressure gas pipe having one end connected to one of the discharge side and the suction side of the first compressor, and the other end connected to a plurality of heat exchangers via switches. The other end is connected to either one of the discharge side or the suction side of the second compressor via the first switch, and to a plurality of heat exchangers via the switch. A second high-pressure gas pipe connected to one of the suction side and the discharge side of the first compressor via a switch, and one end connected to one of the suction side and the discharge side of the second compressor; And at the same time, through the third switch, to the other of the suction side and the discharge side of the first compressor. A low-pressure gas pipe having the other end connected to a plurality of heat exchangers via a switch, a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a fourth switch. And the compressor communication pipe for connecting the discharge side of the second compressor and the suction side of the first compressor and supplying the discharge gas of the second compressor to the first compressor is provided. In cases such as high-temperature hot-water supply operation, hot water supply, and simultaneous ice storage operation where the difference in evaporation temperature is large and the compression ratio is relatively large, two-stage compression operation can be performed by connecting the compressors in series. It can be operated alone, and a plurality of saturation temperatures can be obtained at the same time with highly efficient operation. The multi-temperature generating circuit used in the description of the operation mode in the first, second, sixth to eighth and twelfth embodiments according to claim 3 of the present invention and mainly described in FIG. Via the discharge side of the second compressor and the first
Since a high-pressure gas communication pipe for connecting a high-pressure gas pipe and supplying the discharge gas of the second compressor to the first high-pressure gas pipe is provided, for example, cooling / ice heat storage in which the difference between the condensation temperature and the evaporation temperature is relatively small In the case of simultaneous operation, the compressor can be operated in series or independently by parallel operation in which the evaporation temperature of the compressor is changed, and multiple temperatures can be obtained efficiently at the same time. The multi-temperature generating circuit used in the description of the operation mode in the first, second, seventh and eighth embodiments according to claim 4 of the present invention and mainly described in FIG. The pipe branches to a common pipe of a second high-pressure gas pipe, a high-pressure gas communication pipe, and a compressor communication pipe, and further branches to the high-pressure gas communication pipe and the compressor communication pipe. Connected to a gas pipe, and the compressor communication pipe is connected to a low-pressure gas pipe between a check valve and an on-off valve constituting a third switch to communicate with the first compressor. Simultaneous operation, the difference between the condensation temperature and the evaporation temperature is relatively large and the compression ratio is relatively large.
A plurality of temperatures can be efficiently obtained at the same time by simultaneously operating the compressor, such as simultaneous operation with ice storage. The multi-temperature generating circuit used in the description of the operation mode in the embodiments 1, 2, 6, 7, 8, and 12 according to claim 5 of the present invention and mainly described in FIGS. The first accumulator is provided in the low-pressure gas pipe on the suction side of the first compressor and the second compressor, and the second accumulator is provided in the second high-pressure gas pipe on the suction side of the first compressor. Compressor can be protected. The multi-temperature generating circuit used for describing the operation mode in the second embodiment according to claim 6 of the present invention and mainly described in FIG. 8 connects the liquid pipe and the first accumulator, and connects the liquid pipe to the first accumulator. Provided with a bypass pipe having a sixth switch and a flow controller, and a heat exchange part for performing heat exchange between a bypass pipe between the flow controller and the first accumulator and a suction pipe of the first compressor. Accordingly, even when the difference between the condensing temperature and the evaporating temperature is relatively large and the compressor is operated in series, the operating range can be expanded. The multi-temperature generating circuit used in the description of the operation mode in the second embodiment according to claim 7 of the present invention includes a first temperature control circuit.
Since the compressor or the second compressor is a variable capacity type compressor, the required capacity can be efficiently exhibited. The multi-temperature generation circuit as used in the description of FIGS. 9 to 11 of the operation mode in the third embodiment according to claim 8 of the present invention is a vapor compression circuit capable of simultaneously obtaining n saturation temperatures. Equipped with n-1 compressors in a refrigerating cycle,
Each compressor is connected so as to be switchable in series or in parallel via a plurality of on-off valves or check valves,
N heat exchangers and n pipe groups having an arbitrary saturation temperature, one end of which is connected to each of the discharge or suction sides of the compressor and the other end of which is connected to a plurality of heat exchangers via on-off valves And one liquid pipe connected via a refrigerant flow control valve to the
When n is at least 4, a plurality of evaporating temperatures and a plurality of condensing temperatures having different temperatures are simultaneously generated in independent heat exchangers, so that many saturation temperatures can be simultaneously set in each heat exchanger. It is possible to realize a cycle with high efficiency and a wide operating range. Since the desired configuration can be freely selected, standard components can be applied to various conditions and modifications such as specification changes are easy, and high efficiency operation such as maximizing temperature conditions and enabling heat recovery is possible. A refrigeration cycle with a wide range can be obtained. The multi-temperature generating circuit used in the description of FIGS. 12 and 13 of the operation mode according to the ninth embodiment of the present invention includes a first compressor, a second compressor, and a plurality of compressors. A first gas pipe comprising a heat exchanger , one end of which is connected to a discharge side of the first compressor via a first check valve, and the other end of which is connected to a plurality of heat exchangers via a switch; A second end having one end connected to the discharge side of the second compressor and the other end connected to a plurality of heat exchangers via a switch.
A gas pipe, one end of which is connected to the suction side of the accumulator, and the other end of which is connected to a plurality of heat exchangers via an on-off valve. A third gas pipe which is connected to a plurality of heat exchangers via a refrigerant flow controller. And the suction side of the accumulator and the suction side of the first and second compressors are individually connected via second and third check valves, respectively. Since the first pipe on the outlet side of the check valve and the second gas pipe are connected via the first on-off valve, a multi-temperature operation mode can be realized at the same time. The multi-temperature generating circuit as used in the description of FIGS. 14 to 24 of the operation mode in the fifth embodiment according to the tenth aspect of the present invention includes a first compressor, a second compressor, and a hot water supply heat exchanger. Equipped with a plurality of heat exchangers of a post-heating heat exchanger for a bath, an indoor heat exchanger, and an outdoor heat exchanger, one end of which is disposed on a discharge side of the first compressor via a first check valve . The other end is a first gas pipe connected to the hot water supply heat exchanger, the additional heat exchanger, and the outdoor heat exchanger via the on-off valve, one end is on the discharge side of the second compressor , and the other end is on the other side. Indoor heat exchanger through the switch,
A second gas pipe connected to each of the outdoor heat exchangers, a third gas pipe having one end connected to the suction side of the accumulator, and a third end connected to each of the plurality of heat exchangers via an on-off valve; A liquid pipe connected to each of the heat exchangers via a refrigerant flow controller is provided, and the discharge side of the accumulator and the suction sides of the first and second compressors are respectively connected to the second and third compressors.
Are connected individually via the check valve, and the pipe on the first check valve outlet side of the first gas pipe and the second gas pipe are communicated via the first on-off valve. Driving can be performed without any trouble, and economical and comfortable living can be obtained. The multi-temperature generating circuit used in the description of FIGS. 25 to 31 of the operation mode in the sixth embodiment according to claim 11 of the present invention includes a first compressor, a second compressor, and a plurality of compressors. A high-pressure gas pipe having one end connected to the discharge side of the first compressor and the other end connected to a plurality of heat exchangers via an on-off valve, and one end connected to the first compressor via a first on-off valve. 2 On the discharge side of the compressor,
The other end is connected to a plurality of heat exchangers via an on-off valve, and branches off from between the first on-off valve and the first compressor via a fifth on-off valve and a second check valve. An intermediate-pressure gas pipe connected to the suction side, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve.
A low-pressure gas pipe connected to the suction side of the compressor and the other end connected to a plurality of heat exchangers via an on-off valve, and a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller. A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve, a discharge side of the second compressor, a first check valve, and a second on-off valve. A compressor communication pipe connecting the valves via a fourth on-off valve, a first bypass from the medium pressure gas pipe to the liquid pipe via the seventh on-off valve, and an eighth on-off valve from the liquid pipe. A second bypass passage leading to the suction side to the first compressor through
, A plurality of temperatures can be obtained efficiently at the same time.
The multi-temperature generation circuit used in the description of FIGS. 32 to 38 of the operation mode in the seventh embodiment according to the twelfth embodiment of the present invention includes a first compressor, a second compressor, A high-pressure gas pipe having one end connected to the discharge side of the first compressor, the other end connected to a plurality of heat exchangers via an on-off valve, and one end connected to the first compressor via a first on-off valve. 2 On the discharge side of the compressor,
The other end is connected to a plurality of heat exchangers via an on-off valve, and branches off from between the first on-off valve and the first compressor via a fifth on-off valve and a second check valve. An intermediate-pressure gas pipe connected to the suction side, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve.
A low-pressure gas pipe connected to the suction side of the compressor and the other end connected to a plurality of heat exchangers via an on-off valve, and a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller. A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve, a discharge side of the second compressor, a first check valve, and a second on-off valve Through a fourth opening / closing valve, a first bypass passage extending from the medium pressure gas pipe to the liquid pipe via the refrigerant flow controller, and a liquid pipe via the eighth opening / closing valve. And a second bypass passage leading to the suction side of the first compressor, so that a plurality of temperatures can be obtained simultaneously and efficiently. The multi-temperature generating circuit used in the description of FIGS. 39 to 45 of the operation mode in the eighth embodiment according to claim 13 of the present invention includes a first compressor, a second compressor, and a plurality of compressors. A high-pressure gas pipe having one end connected to the discharge side of the first compressor, the other end connected to a plurality of heat exchangers via an on-off valve, and one end connected to the second compressor via a first on-off valve. On the discharge side of the compressor, the other end is connected to a plurality of heat exchangers via an on-off valve,
A medium-pressure gas pipe branched from between the first on-off valve and the on-off side of the first compressor via a fifth on-off valve and a second check valve, and one end of which is suctioned by the second compressor; Low-pressure gas connected to the suction side of the first compressor via the first check valve and the second on-off valve via this order, and the other end connected to the plurality of heat exchangers via the on-off valve A pipe, a liquid receiver connected to a plurality of heat exchangers via a refrigerant flow controller, and a high-pressure gas connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve. The communication pipe, the discharge side of the second compressor and the first
A compressor communication pipe connecting the check valve and the second on-off valve via a fourth on-off valve, a first bypass passage from the medium pressure gas pipe to the liquid receiver via the seventh on-off valve, A second bypass path from the receiver to the suction side of the first compressor via the eighth on-off valve is provided, so that a plurality of temperatures can be efficiently obtained simultaneously while suppressing a rise in the discharge temperature of the compressor and liquid compression. Can be The multi-temperature generating circuit used in the description of FIGS. 46 to 54 of the operation mode in the ninth embodiment according to claim 14 of the present invention includes a first compressor, a second compressor, and a plurality of compressors. And a high pressure connecting one end to the discharge side of the first compressor through a first discharge pipe having a first on-off valve and the other end to a plurality of heat exchangers via an on-off valve. Medium-pressure gas connected to the discharge side of the second compressor via a gas pipe and a second discharge pipe having one end with a second on-off valve, and the other end connected to a plurality of heat exchangers via an on-off valve A low-pressure gas pipe having one end connected to the suction side of the second compressor via a second suction pipe having a fourth on-off valve and the other end connected to a plurality of heat exchangers via the on-off valve; ,
A liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, a first suction pipe connecting an intermediate-pressure gas pipe and a suction side of the first compressor via a third on-off valve, A discharge-side connecting pipe connecting the first discharge pipe and the second discharge pipe via a seventh on-off valve and an eighth on-off valve, and a ninth suction pipe and a second suction pipe. A suction-side connection pipe connected through an on-off valve and a tenth on-off valve, a first bypass pipe connecting the medium-pressure gas pipe and the second suction pipe via a fifth on-off valve, and a low-pressure pipe And a second bypass pipe connecting the first suction pipe and the first suction pipe via a sixth switching valve, and between a seventh switching valve and an eighth switching valve and between a ninth switching valve and a tenth switching valve. A third bypass pipe connecting the second discharge pipe via an eleventh on-off valve, a fifth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve, and a first discharge pipe. Tubes and And a fifth bypass pipe connecting the pressurized gas pipe via a twelfth on-off valve, so that when the difference between the condensing temperature and the evaporating temperature is small or large, or when the load is large or small, the compressor is selectively used. As a result, the necessary capacity can be secured, and at the same time, high-efficiency operation is possible and the energy can be used effectively. Embodiment 1 according to claim 15 of the present invention
The multi-temperature generating circuit as used in the description of FIGS. 55 to 66 of the operation mode in 0 includes a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, A high-pressure gas pipe having one end connected to the discharge side of the first compressor via a first discharge pipe having a first on-off valve, the other end connected to a plurality of heat exchangers via an on-off valve, The other end is connected to the plurality of heat exchangers via an on-off valve via a second discharge pipe having a second on-off valve to the discharge side of the second compressor. A medium-pressure gas pipe connected to the valve, a low-pressure gas pipe connected at one end to a four-way valve, the other end to a plurality of heat exchangers via an on-off valve, and a refrigerant flow controller at a plurality of heat exchangers A first suction pipe connecting the four-way valve and the suction side of the first compressor through a third on-off valve; a liquid pipe connected through the third on-off valve; A second suction pipe connecting the inlet side via a fourth on-off valve, and a discharge connecting the first discharge pipe and the second discharge pipe via a seventh on-off valve and an eighth on-off valve. A side connection pipe, a suction side connection pipe connecting the first suction pipe and the second suction pipe via a ninth on-off valve and a tenth on-off valve, a seventh on-off valve, and an eighth on-off valve And the ninth on-off valve, the tenth
A third bypass pipe connecting between the on-off valves via an eleventh on-off valve, a fourth bypass pipe connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve, And a fifth bypass pipe connecting the first discharge pipe and the medium-pressure gas pipe via a twelfth on-off valve, so that when the difference between the condensation temperature and the evaporation temperature is small or large, The required capacity is secured by using different compressors according to the size of the compressor, etc., and at the same time, highly efficient operation is possible and energy can be used effectively.
The multi-temperature generating circuit used in the description of FIGS. 67 to 78 of the operation mode according to the eleventh embodiment of the present invention includes a first compressor, a second compressor, and a plurality of compressors. Heat exchanger, a first four-way valve, a second four-way valve, and a first discharge pipe having one end connected to the first four-way valve.
On the discharge side of the compressor, the other end is connected to a plurality of heat exchangers via an on-off valve, and the other end is connected to a plurality of heat exchangers via an on-off valve. A second suction pipe having one end connected to the suction side of the second compressor via a second on-off valve, and a low-pressure gas pipe having the other end connected to a plurality of heat exchangers via the on-off valve. A liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller; a first suction pipe connecting the low-pressure gas pipe and the first compressor via a second four-way valve; A first connection pipe for connecting a first four-way valve between a discharge side of the compressor and the first on-off valve and a second connection pipe between a suction side of the second compressor and the second on-off valve; A second connection pipe for connecting the four-way valves of the first, second and third four-way valves via a third on-off valve; and a third on-off valve from both sides of the third on-off valve. Branch, fourth on-off valve Since the fourth connection pipe and the fifth connection pipe are connected to one end of the medium-pressure gas pipe via the fifth on-off valve, respectively, when the difference between the condensation temperature and the evaporation temperature is small or large, Depending on the load, the compressor can be used properly to secure the necessary capacity, and at the same time, highly efficient operation is possible and energy can be used effectively. The multi-temperature generating circuit used in the description of FIGS. 79 to 85 of the operation mode according to the twelfth embodiment of the present invention includes a first compressor, a second compressor, and a hot water supply circuit. A heat exchanger and a plurality of heat exchangers, a first four-way valve, a second four-way valve, a third four-way valve, one end on the discharge side of the first compressor, and the other end on the hot water supply side. A high-pressure gas pipe connected to a plurality of heat exchangers via an exchanger and the first four-way valve and the third four-way valve;
One end is connected to the discharge side of the second compressor via the first opening / closing valve, and the other end is connected to a plurality of heat exchangers via the second four-way valve and the third four-way valve. And a medium-pressure gas pipe connected to the suction side of the first compressor via a fifth on-off valve, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve. A low-pressure gas pipe connected to the suction side of the first compressor via the order and the other end connected to the plurality of heat exchangers via the first four-way valve and the second four-way valve; A liquid pipe connected to a plurality of heat exchangers via a refrigerant flow controller, and a high-pressure gas communication pipe connecting a discharge side of the first compressor and a discharge side of the second compressor via a third on-off valve. And a compressor communication pipe that connects the discharge side of the second compressor, the first check valve, and the second on-off valve via a fourth on-off valve.
When the difference between the condensing temperature and the evaporating temperature is small or large, the necessary capacity is secured by using the compressor depending on the load, etc., and at the same time, highly efficient operation is possible and the energy can be used effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1の多温度生成回路の冷媒系
の構成図である。
FIG. 1 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit according to Embodiment 1 of the present invention.

【図2】この発明の実施例1の多温度生成回路の凝縮温
度と蒸発温度の差が比較的小さい2温度生成時の運転動
作状態説明図である。
FIG. 2 is an explanatory diagram of an operation state of the multi-temperature generating circuit according to the first embodiment of the present invention when two temperatures in which a difference between a condensing temperature and an evaporating temperature is relatively small are generated;

【図3】この発明の実施例1の多温度生成回路の凝縮温
度と蒸発温度の差が比較的大きい2温度生成時の運転動
作状態説明図である。
FIG. 3 is an explanatory diagram of an operation state of the multi-temperature generating circuit according to the first embodiment of the present invention when generating two temperatures in which the difference between the condensing temperature and the evaporating temperature is relatively large.

【図4】この発明の実施例1の多温度生成回路の2つの
凝縮温度と1つの蒸発温度の差が比較的小さい3温度生
成時の運転動作状態説明図である。
FIG. 4 is an explanatory diagram of an operation state when the multi-temperature generating circuit according to the first embodiment of the present invention generates three temperatures in which a difference between two condensing temperatures and one evaporating temperature is relatively small.

【図5】この発明の実施例1の多温度生成回路の2つの
凝縮温度と1つの蒸発温度の差が比較的大きい3温度生
成時の運転動作状態説明図である。
FIG. 5 is an explanatory diagram of an operation state of the multi-temperature generating circuit according to the first embodiment of the present invention at the time of generating three temperatures where the difference between two condensing temperatures and one evaporating temperature is relatively large.

【図6】この発明の実施例1の多温度生成回路の1つの
凝縮温度と2つの蒸発温度の差が比較的小さい3温度生
成時の運転動作状態説明図である。
FIG. 6 is an explanatory diagram of an operation state of the multi-temperature generating circuit according to the first embodiment of the present invention when generating three temperatures in which a difference between one condensing temperature and two evaporating temperatures is relatively small.

【図7】この発明の実施例1の多温度生成回路の1つの
凝縮温度と2つの蒸発温度の差が比較的大きい3温度生
成時の運転動作状態説明図である。
FIG. 7 is an explanatory diagram of an operation state of the multi-temperature generating circuit according to the first embodiment of the present invention at the time of generating three temperatures in which a difference between one condensing temperature and two evaporating temperatures is relatively large.

【図8】この発明の実施例2の多温度生成回路の冷媒系
の構成図である。
FIG. 8 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit according to Embodiment 2 of the present invention.

【図9】この発明の実施例3の多温度生成回路の構成図
である。
FIG. 9 is a configuration diagram of a multi-temperature generation circuit according to Embodiment 3 of the present invention.

【図10】この発明の実施例3の3凝縮1蒸発運転時の
動作状態説明図である。
FIG. 10 is an explanatory diagram of an operation state during a three-condensation one-evaporation operation according to the third embodiment of the present invention.

【図11】この発明の実施例3の2凝縮2蒸発運転時の
動作状態説明図である。
FIG. 11 is an explanatory diagram of an operation state during a two-condensation-two-evaporation operation according to the third embodiment of the present invention.

【図12】この発明の実施例4の多温度生成回路の構成
図である。
FIG. 12 is a configuration diagram of a multi-temperature generation circuit according to Embodiment 4 of the present invention.

【図13】この発明の実施例4の2凝縮1蒸発運転時の
動作状態説明図である。
FIG. 13 is a diagram illustrating an operation state during a two-condensation and one-evaporation operation according to the fourth embodiment of the present invention.

【図14】この発明の実施例5の多温度生成回路の構成
図である。
FIG. 14 is a configuration diagram of a multi-temperature generation circuit according to Embodiment 5 of the present invention.

【図15】この発明の実施例5の冷房運転時の動作状態
説明図である。
FIG. 15 is an explanatory diagram illustrating an operation state during a cooling operation according to the fifth embodiment of the present invention.

【図16】この発明の実施例5の暖房運転時の動作状態
説明図である。
FIG. 16 is a diagram illustrating an operation state during a heating operation according to the fifth embodiment of the present invention.

【図17】この発明の実施例5の給湯運転時の動作状態
説明図である。
FIG. 17 is an explanatory diagram of an operation state at the time of a hot water supply operation of Embodiment 5 of the present invention.

【図18】この発明の実施例5の冷房給湯運転時の動作
状態説明図である。
FIG. 18 is an explanatory diagram of an operation state during a cooling hot water supply operation according to a fifth embodiment of the present invention.

【図19】この発明の実施例5の暖房給湯運転時の動作
状態説明図である。
FIG. 19 is a diagram illustrating an operation state during a heating and hot water supply operation according to Embodiment 5 of the present invention.

【図20】この発明の実施例5の追焚き運転時の動作状
態説明図である。
FIG. 20 is an explanatory diagram of an operation state during a reheating operation according to the fifth embodiment of the present invention.

【図21】この発明の実施例5の給湯利用急速追焚き運
転時の動作状態説明図である。
FIG. 21 is an explanatory diagram of an operation state during a hot water supply rapid reheating operation according to a fifth embodiment of the present invention.

【図22】この発明の実施例5の暖房追焚き運転時の動
作状態説明図である。
FIG. 22 is an explanatory diagram of an operation state at the time of a supplementary heating operation according to Embodiment 5 of the present invention.

【図23】この発明の実施例5の残湯熱回収給湯運転時
の動作状態説明図である。
FIG. 23 is an explanatory diagram of an operation state at the time of the residual hot-water heat recovery / hot-water supply operation of Embodiment 5 of the present invention.

【図24】この発明の実施例5の給湯利用デフロスト暖
房運転時の動作状態説明図である。
FIG. 24 is an explanatory diagram illustrating an operation state during a defrost heating operation using hot water supply according to Embodiment 5 of the present invention.

【図25】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。
FIG. 25 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 6 of the present invention.

【図26】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的小さい場合の2温度生成時の運転動
作状態図である。
FIG. 26 is an operation state diagram at the time of generating two temperatures when the difference between the condensing temperature and the evaporating temperature is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention.

【図27】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的大きい場合の2温度生成時の運転動
作状態図である。
FIG. 27 is an operation state diagram at the time of generating two temperatures when the difference between the condensing temperature and the evaporating temperature is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention.

【図28】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 28 is an operation state diagram at the time of generating three temperatures when the difference between two condensing temperatures and one evaporating temperature is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. It is.

【図29】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 29 is an operation state diagram at the time of generating three temperatures when the difference between two condensing temperatures and one evaporating temperature is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. It is.

【図30】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 30 is an operation state diagram at the time of generating three temperatures when the difference between one condensing temperature and two evaporating temperatures is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. It is.

【図31】この発明の実施例6に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 31 is an operation state diagram at the time of generating three temperatures when the difference between one condensing temperature and two evaporating temperatures is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 6 of the present invention. It is.

【図32】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。
FIG. 32 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 7 of the present invention.

【図33】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的小さい場合の2温度生成時の運転動
作状態図である。
FIG. 33 is an operation state diagram at the time of generating two temperatures when the difference between the condensing temperature and the evaporating temperature is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 7 of the present invention.

【図34】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的大きい場合の2温度生成時の運転動
作状態図である。
FIG. 34 is an operation state diagram at the time of generating two temperatures when the difference between the condensing temperature and the evaporating temperature is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 7 of the present invention.

【図35】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 35 is an operation state diagram at the time of generating three temperatures when the difference between two condensing temperatures and one evaporating temperature is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. It is.

【図36】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 36 is an operation state diagram at the time of generating three temperatures when the difference between two condensing temperatures and one evaporating temperature is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. It is.

【図37】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 37 is an operation state diagram at the time of generating three temperatures when the difference between one condensing temperature and two evaporating temperatures is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. It is.

【図38】この発明の実施例7に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 38 is an operation state diagram at the time of generating three temperatures when the difference between one condensation temperature and two evaporation temperatures is relatively large in the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 7 of the present invention. It is.

【図39】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路の冷媒系の構成図であ
る。
FIG. 39 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 8 of the present invention.

【図40】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的小さい場合の2温度生成時の運転動
作状態図である。
FIG. 40 is an operation state diagram at the time of generating two temperatures when the difference between the condensing temperature and the evaporating temperature is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 8 of the present invention.

【図41】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、凝縮温度と蒸
発温度の差が比較的大きい場合の2温度生成時の運転動
作状態図である。
FIG. 41 is an operation state diagram at the time of generating two temperatures when the difference between the condensing temperature and the evaporating temperature is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to the eighth embodiment of the present invention.

【図42】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 42 is an operation state diagram at the time of generating three temperatures when the difference between two condensing temperatures and one evaporating temperature is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 8 of the present invention. It is.

【図43】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、2つの凝縮温
度と1つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 43 is an operation state diagram at the time of generating three temperatures when the difference between two condensing temperatures and one evaporating temperature is relatively large in a multi-temperature generating circuit using a vapor compression refrigeration cycle according to Embodiment 8 of the present invention. It is.

【図44】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的小さい場合の3温度生
成時の運転動作状態図である。
FIG. 44 is an operation state diagram at the time of generating three temperatures when the difference between one condensing temperature and two evaporating temperatures is relatively small in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 8 of the present invention. It is.

【図45】この発明の実施例8に係わる蒸気圧縮式冷凍
サイクルによる多温度生成回路において、1つの凝縮温
度と2つの蒸発温度の差が比較的大きい場合の3温度生
成時の運転動作状態図である。
FIG. 45 is an operation state diagram when three temperatures are generated when the difference between one condensing temperature and two evaporating temperatures is relatively large in the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 8 of the present invention. It is.

【図46】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の冷媒系の構成図である。
FIG. 46 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 9 of the present invention.

【図47】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の凝縮温度と蒸発温度の差が比
較的小さい2温度生成時の運転動作状態図である。
FIG. 47 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the ninth embodiment of the present invention at the time of generating two temperatures where the difference between the condensing temperature and the evaporation temperature is relatively small.

【図48】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の凝縮温度と蒸発温度の差が比
較的大きい2温度生成時の運転動作状態図である。
FIG. 48 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporating temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to the ninth embodiment of the present invention is relatively large.

【図49】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の2つの凝縮温度と1つの蒸発
温度の差が比較的小さい3温度生成時の運転動作状態図
である。
FIG. 49 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 9 of the present invention at the time of generating three temperatures in which the difference between two condensing temperatures and one evaporating temperature is relatively small.

【図50】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の2つの凝縮温度と1つの蒸発
温度の差が比較的大きい3温度生成時の運転動作状態図
である。
FIG. 50 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the ninth embodiment of the present invention at the time of generating three temperatures where the difference between two condensing temperatures and one evaporation temperature is relatively large.

【図51】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的小さい3温度生成時の運転動作状態図
である。
FIG. 51 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to a ninth embodiment of the present invention at the time of generating three temperatures in which a difference between one condensing temperature and two evaporation temperatures is relatively small.

【図52】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的小さい3温度生成時の運転動作状態図
である。
FIG. 52 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the ninth embodiment of the present invention when generating three temperatures in which the difference between one condensing temperature and two evaporation temperatures is relatively small.

【図53】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的大きい3温度生成時の運転動作状態図
である。
FIG. 53 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 9 of the present invention at the time of generating three temperatures where the difference between one condensing temperature and two evaporation temperatures is relatively large.

【図54】この発明の実施例9の蒸気圧縮式冷凍サイク
ルによる多温度生成回路の1つの凝縮温度と2つの蒸発
温度の差が比較的大きい3温度生成時の運転動作状態図
である。
FIG. 54 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the ninth embodiment of the present invention at the time of generating three temperatures where the difference between one condensation temperature and two evaporation temperatures is relatively large.

【図55】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の冷媒系の構成図である。
FIG. 55 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention.

【図56】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的小さい2温度生成時の運転動作状態図である。
FIG. 56 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporating temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to the tenth embodiment of the present invention is relatively small.

【図57】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
FIG. 57 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporation temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to the tenth embodiment of the present invention is relatively large.

【図58】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
FIG. 58 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporating temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to the tenth embodiment of the present invention is relatively large.

【図59】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 59 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 10 of the present invention when generating three temperatures in which the difference between two condensing temperatures and one evaporating temperature is relatively small.

【図60】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 60 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention when three temperatures in which a difference between two condensation temperatures and one evaporation temperature is relatively small are generated.

【図61】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 61 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention at the time of generating three temperatures where the difference between two condensing temperatures and one evaporation temperature is relatively large.

【図62】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 62 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 10 of the present invention at the time of generating three temperatures in which the difference between two condensing temperatures and one evaporation temperature is relatively large.

【図63】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
63 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention at the time of generating three temperatures where the difference between one condensing temperature and two evaporation temperatures is relatively small. FIG.

【図64】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 64 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention when three temperatures are generated in which the difference between one condensation temperature and two evaporation temperatures is relatively small.

【図65】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 65 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention at the time of generating three temperatures where the difference between one condensing temperature and two evaporation temperatures is relatively large.

【図66】この発明の実施例10の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 66 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 10 of the present invention when three temperatures in which a difference between one condensing temperature and two evaporation temperatures is relatively large are generated.

【図67】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の冷媒系の構成図である。
FIG. 67 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 11 of the present invention.

【図68】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的小さい2温度生成時の運転動作状態図である。
FIG. 68 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporating temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to Embodiment 11 of the present invention is relatively small.

【図69】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
FIG. 69 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporating temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to Embodiment 11 of the present invention is relatively large.

【図70】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
FIG. 70 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporating temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to Embodiment 11 of the present invention is relatively large.

【図71】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 71 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures in which the difference between two condensing temperatures and one evaporating temperature is relatively small.

【図72】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 72 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures in which the difference between two condensation temperatures and one evaporation temperature is relatively small.

【図73】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 73 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures in which the difference between two condensing temperatures and one evaporating temperature is relatively large.

【図74】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 74 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures where the difference between two condensing temperatures and one evaporating temperature is relatively large.

【図75】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 75 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures in which the difference between one condensing temperature and two evaporating temperatures is relatively small.

【図76】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 76 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures in which the difference between one condensing temperature and two evaporating temperatures is relatively small.

【図77】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 77 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 11 of the present invention when generating three temperatures where the difference between one condensing temperature and two evaporating temperatures is relatively large.

【図78】この発明の実施例11の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 78 is an operation state diagram of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 11 of the present invention when three temperatures in which a difference between one condensing temperature and two evaporation temperatures is relatively large are generated.

【図79】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の冷媒系の構成図である。
FIG. 79 is a configuration diagram of a refrigerant system of a multi-temperature generation circuit using a vapor compression refrigeration cycle according to Embodiment 12 of the present invention.

【図80】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的小さい2温度生成時の運転動作状態図である。
FIG. 80 is an operation state diagram at the time of generating two temperatures in which the difference between the condensing temperature and the evaporation temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to the twelfth embodiment of the present invention is relatively small.

【図81】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の凝縮温度と蒸発温度の差が
比較的大きい2温度生成時の運転動作状態図である。
FIG. 81 is an operation state diagram at the time of generating two temperatures where the difference between the condensing temperature and the evaporation temperature of the multi-temperature generating circuit by the vapor compression refrigeration cycle according to the twelfth embodiment of the present invention is relatively large.

【図82】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 82 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to Embodiment 12 of the present invention when three temperatures in which the difference between two condensation temperatures and one evaporation temperature are relatively small are generated.

【図83】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の2つの凝縮温度と1つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 83 is an operation state diagram of the multi-temperature generation circuit using the vapor compression refrigeration cycle according to the twelfth embodiment of the present invention at the time of generating three temperatures in which the difference between two condensing temperatures and one evaporation temperature is relatively large.

【図84】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的小さい3温度生成時の運転動作状態
図である。
FIG. 84 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 12 of the present invention when generating three temperatures in which the difference between one condensing temperature and two evaporating temperatures is relatively small.

【図85】この発明の実施例12の蒸気圧縮式冷凍サイ
クルによる多温度生成回路の1つの凝縮温度と2つの蒸
発温度の差が比較的大きい3温度生成時の運転動作状態
図である。
FIG. 85 is an operation state diagram of the multi-temperature generating circuit using the vapor compression refrigeration cycle according to Embodiment 12 of the present invention when generating three temperatures in which the difference between one condensing temperature and two evaporating temperatures is relatively large.

【図86】従来の蒸気圧縮式サイクルの冷媒系の構成図
である。
FIG. 86 is a configuration diagram of a refrigerant system of a conventional vapor compression cycle.

【図87】従来の蒸気圧縮式サイクルの運転動作状態図
である。
FIG. 87 is an operation state diagram of a conventional vapor compression cycle.

【符号の説明】[Explanation of symbols]

1 第1圧縮機 2 第2圧縮機 3 第3圧縮機 4a〜d 開閉弁 5 第1ガス管 6 第2ガス管 7 第3ガス管 8 第4ガス管 11 第1アキュムレータ 12 第2アキュムレータ 13 第3圧縮機の吐出配管 14 第2圧縮機の吐出配管 15 第1圧縮機の吐出配管 16 第3圧縮機の吸入配管 17 第2圧縮機の吸入配管 18 第1圧縮機の吸入配管 20a〜d 開閉弁 21 第1開閉弁 22 第2開閉弁 23 第3開閉弁 24 第4開閉弁 25 第5開閉弁 26a〜d 開閉弁 27a〜d 開閉弁 28a〜d 開閉弁 29a〜d 開閉弁 30a 第7開閉弁 30b 第8開閉弁 30d 第6開閉弁 31a〜d 膨張弁 32 毛細管 33 冷媒流量制御器 41 第1逆止弁 42 第2逆止弁 51a〜c 熱交換器 52 第1の逆止弁 53 第1の開閉弁 54 第2の逆止弁 55 第3の逆止弁 56 アキュムレータ 57 給湯用熱交換器 58 追焚き用熱交換器 59 室内熱交換器 60 室外熱交換器 61 高圧ガス管 62 第2高圧ガス管 63 低圧ガス管 64 液管 65 高圧ガス連通管 66 圧縮機連通管 67 第2のバイパス管 68 第1のバイパス管 69 液レシーバー 71 熱交換部 72 第1の吐出管 73 第3の切換四方弁 74 第2の吐出管 76 第1の吸入管 78 第2の吸入管 80 第1のバイパス管 82 第2のバイパス管 83 吐出側接続管 86 吸入側接続管 89 第3のバイパス管 91 第5のバイパス管 93 第4のバイパス管 121 第1の開閉弁 123 第2の開閉弁 125 第3の開閉弁 127 第4の開閉弁 129 第5の開閉弁 131 第6の開閉弁 134 第7の開閉弁 135 第8の開閉弁 137 第9の開閉弁 138 第10の開閉弁 140 第11の開閉弁 142 第12の開閉弁 144 第13の開閉弁 150 四方弁 180 第2の吐出管 181 第1の開閉弁 182 第1の吐出管 183 第1の四方弁 184 第2の吸入管 185 第2の開閉弁 186 第1の接続管 187 第2の四方弁 188 第2の接続管 189 第3の開閉弁 190 第3の接続管 191 第4の開閉弁 192 第5の開閉弁 193 第4の接続管 194 第1の吸入管 195 第5の接続管 271 第1切換四方弁 272 第2切換四方弁 273 第3切換四方弁 DESCRIPTION OF SYMBOLS 1 1st compressor 2 2nd compressor 3 3rd compressor 4a-d On-off valve 5 1st gas pipe 6 2nd gas pipe 7 3rd gas pipe 8 4th gas pipe 11 1st accumulator 12 2nd accumulator 13th 3 Discharge pipe of compressor 14 Discharge pipe of 2nd compressor 15 Discharge pipe of 1st compressor 16 Suction pipe of 3rd compressor 17 Suction pipe of 2nd compressor 18 Suction pipe of 1st compressor 20a-d Valve 21 First on-off valve 22 Second on-off valve 23 Third on-off valve 24 Fourth on-off valve 25 Fifth on-off valve 26a-d On-off valve 27a-d On-off valve 28a-d On-off valve 29a-d On-off valve 30a Seventh on-off Valve 30b Eighth on-off valve 30d Sixth on-off valve 31a-d Expansion valve 32 Capillary tube 33 Refrigerant flow controller 41 First check valve 42 Second check valve 51a-c Heat exchanger 52 First check valve 53 First 1 open / close valve 54 second Stop valve 55 Third check valve 56 Accumulator 57 Heat exchanger for hot water supply 58 Heat exchanger for additional heating 59 Indoor heat exchanger 60 Outdoor heat exchanger 61 High-pressure gas pipe 62 Second high-pressure gas pipe 63 Low-pressure gas pipe 64 Liquid Pipe 65 High-pressure gas communication pipe 66 Compressor communication pipe 67 Second bypass pipe 68 First bypass pipe 69 Liquid receiver 71 Heat exchange section 72 First discharge pipe 73 Third switching four-way valve 74 Second discharge pipe 76 First suction pipe 78 Second suction pipe 80 First bypass pipe 82 Second bypass pipe 83 Discharge side connection pipe 86 Suction side connection pipe 89 Third bypass pipe 91 Fifth bypass pipe 93 Fourth bypass Pipe 121 first on-off valve 123 second on-off valve 125 third on-off valve 127 fourth on-off valve 129 fifth on-off valve 131 sixth on-off valve 134 seventh on-off valve 135 eighth On-off valve 137 Ninth on-off valve 138 Tenth on-off valve 140 Eleventh on-off valve 142 12th on-off valve 144 13th on-off valve 150 Four-way valve 180 Second discharge pipe 181 First on-off valve 182 First Discharge pipe 183 first four-way valve 184 second suction pipe 185 second on-off valve 186 first connection pipe 187 second four-way valve 188 second connection pipe 189 third on-off valve 190 third connection Pipe 191 Fourth on-off valve 192 Fifth on-off valve 193 Fourth connection pipe 194 First suction pipe 195 Fifth connection pipe 271 First switching four-way valve 272 Second switching four-way valve 273 Third switching four-way valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七種 哲二 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 岡田 哲治 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 湯山 ▲ひろし▼ 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (72)発明者 松岡 文雄 鎌倉市大船二丁目14番40号 三菱電機株 式会社 生活システム研究所内 (72)発明者 井上 誠司 鎌倉市大船二丁目14番40号 三菱電機株 式会社 生活システム研究所内 (72)発明者 隅田 嘉裕 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (72)発明者 田中 直樹 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (56)参考文献 特開 平3−105175(JP,A) 特開 平3−122466(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 29/00 361 F25B 13/00 104 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuji Shichido 3-181-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Shizuoka Works (72) Inventor Tetsuji Okada 3-181, Oka, Shizuoka-shi Mitsubishi Electric Inside Shizuoka Works (72) Inventor Yuyama ▲ Hiroshi 3-18-1, Oka, Shizuoka-shi Mitsubishi Electric Corporation Inside Shizuoka Works (72) Inventor Fumio Matsuoka 2--14-40 Ofuna, Kamakura-shi Mitsubishi Electric Inside Life Systems Research Institute, Inc. (72) Inventor Seiji Inoue 2-14-40, Ofuna, Kamakura City Inside Mitsubishi Electric Corporation Life Systems Research Institute, Inc. (72) Inventor Yoshihiro Sumida 8-1-1, Tsukaguchi Honcho, Amagasaki City Mitsubishi (72) Naoki Tanaka, Inventor, 8-1-1 Honcho Tsukaguchi, Amagasaki City, Central Research Laboratory, Mitsubishi Electric Corporation (72) 56) References JP-A-3-105175 (JP, A) JP-A-3-122466 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 29/00 361 F25B 13 / 00 104

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の開閉弁あるいは逆止弁を介して直
列又は並列に切り換え可能に設けられた複数台の圧縮機
と、 上記圧縮機の各吐出側もしくは各吸入側のいずれか一方
に上記開閉弁もしくは逆止弁を介して、または直接にそ
れぞれ接続された複数のガス管と、 上記圧縮機の各吐出側もしくは各吸入側のいずれか他方
に上記開閉弁もしくは逆止弁を介して、または直接に接
続された少なくとも1本の他のガス管と、 上記複数のガス管及び他のガス管に開閉弁を介してそれ
ぞれ一端が接続されるとともに、他端が減圧手段を介し
て冷媒を流す共通の冷媒管にそれぞれ接続された複数台
の熱交換器と、を備えたことを特徴とする蒸気圧縮式冷
凍サイクルによる多温度生成回路。
1. A plurality of compressors provided so as to be switchable in series or in parallel via a plurality of on-off valves or check valves, and one of each of a discharge side and a suction side of the compressor. A plurality of gas pipes connected directly via an on-off valve or check valve, or directly to each of the discharge side or each suction side of the compressor via the on-off valve or check valve, Alternatively, at least one other gas pipe directly connected, one end of each of the plurality of gas pipes and the other gas pipes is connected via an on-off valve, and the other end is supplied with a refrigerant through a pressure reducing means. A multi-temperature generation circuit using a vapor compression refrigeration cycle, comprising: a plurality of heat exchangers respectively connected to a common refrigerant pipe flowing therethrough.
【請求項2】 第1圧縮機、第2圧縮機、及び複数台の
熱交換器を備え、一端部が上記第1圧縮機の吐出側もし
くは吸入側のいずれか一方に、他端部が開閉器を介して
上記複数台の熱交換器に接続する第1高圧ガス管、一端
部が第1開閉器を介して上記第2圧縮機の吐出側もしく
は吸入側のいずれか一方に、他端部が開閉器を介して上
記複数台の熱交換器に接続するとともに、途中で分岐し
て第2開閉器を介して上記第1圧縮機の吸入側もしくは
吐出側のいずれか他方に接続される第2高圧ガス管、一
端部が上記第2圧縮機の吸入側もしくは吐出側のいずれ
か他方に接続するとともに第3開閉器を介して上記第1
圧縮機の吸入側もしくは吐出側のいずれか他方に接続
し、他端部が開閉器を介して上記複数台の熱交換器に接
続する低圧ガス管、上記複数台の熱交換器に冷媒流量制
御器を介して接続する液管、及び第4開閉器を介して上
記第2圧縮機の吐出側と上記第1圧縮機の吸入側とを連
結し上記第2圧縮機の吐出ガスを上記第1圧縮機に送給
する圧縮機連通管を設けて構成したことを特徴とする
気圧縮式冷凍サイクルによる多温度生成回路。
2. A first compressor, a second compressor, and a plurality of heat exchangers, one end of which is either the discharge side or the suction side of the first compressor, and the other end of which is opened and closed. A first high-pressure gas pipe connected to the plurality of heat exchangers via a compressor, one end of which is connected to one of the discharge side and the suction side of the second compressor via a first switch, and the other end Is connected to the plurality of heat exchangers via a switch, and is branched in the middle and connected to one of the suction side and the discharge side of the first compressor via a second switch. (2) a high-pressure gas pipe, one end of which is connected to either the suction side or the discharge side of the second compressor and the first compressor is connected via a third switch;
Connected to the other of the suction side or the discharge side of the compressor, low-pressure gas pipe to connect to a plurality of heat exchangers described above through the other end switch, the refrigerant flow rate control to the plurality of heat exchanger A discharge pipe of the second compressor and a suction side of the first compressor are connected to each other through a liquid pipe connected through a compressor and a fourth switch, and the discharge gas of the second compressor is connected to the first compressor. A multi-temperature generation circuit using a steam compression refrigeration cycle, comprising a compressor communication pipe for feeding the compressor.
【請求項3】 第5開閉器を介して第2圧縮機の吐出側
と第1高圧ガス管を連結し上記第2圧縮機の吐出ガスを
上記第1高圧ガス管に送給する高圧ガス連通管が設けら
れていることを特徴とする請求項第2項記載の蒸気圧縮
式冷凍サイクルによる多温度生成回路。
3. A high-pressure gas communication for connecting a discharge side of a second compressor and a first high-pressure gas pipe via a fifth switch and supplying a discharge gas of the second compressor to the first high-pressure gas pipe. 3. The multi-temperature generating circuit according to claim 2 , wherein a pipe is provided.
【請求項4】 第2圧縮機の吐出配管は第2高圧ガス管
と高圧ガス連通管及び圧縮機連通管の共通配管に分岐
し、さらに上記高圧ガス連通管と圧縮機連通管配管に分
岐して、上記高圧ガス連通管は第1高圧ガス管に接続
し、上記圧縮機連通管は第3開閉器を構成する逆止弁と
開閉弁間の低圧ガス管と接続して第1圧縮機に連通して
いることを特徴とする請求項第3項記載の蒸気圧縮式冷
凍サイクルによる多温度生成回路。
4. A discharge pipe of the second compressor branches to a common high pressure gas pipe, a high pressure gas communication pipe, and a common pipe of the compressor communication pipe, and further branches to the high pressure gas communication pipe and a compressor communication pipe pipe. The high-pressure gas communication pipe is connected to a first high-pressure gas pipe, and the compressor communication pipe is connected to a low-pressure gas pipe between a check valve and an on-off valve constituting a third switch to connect to the first compressor. 4. The multi-temperature generating circuit according to claim 3, wherein the multi-temperature generating circuit is connected to a vapor compression refrigeration cycle.
【請求項5】 第1圧縮機及び第2圧縮機の吸入側の低
圧ガス管に第1アキュムレータが第1圧縮機の吸入側の
第2高圧ガス管に第2アキュムレータが設けられている
ことを特徴とする請求項第2項ないし第4項のいずれか
に記載の蒸気圧縮式冷凍サイクルによる多温度生成回
路。
5. A first accumulator is provided on a low-pressure gas pipe on a suction side of the first compressor and the second compressor, and a second accumulator is provided on a second high-pressure gas pipe on a suction side of the first compressor.
5. A multi-temperature generating circuit according to claim 2, wherein said multi-temperature generating circuit is a vapor compression refrigeration cycle.
【請求項6】 液管と第1アキュムレータを接続し、管
路に第6開閉器と流量制御器を有するバイパス配管、及
び上記流量制御器と第1アキュムレータ間のバイパス配
管と第1圧縮機の吸入配管との間で熱交換を行う熱交換
部を設けたことを特徴とする請求項第5項記載の蒸気圧
縮式冷凍サイクルによる多温度生成回路。
6. A bypass pipe which connects a liquid pipe and a first accumulator and has a sixth switch and a flow controller in a pipeline, and a bypass pipe between the flow controller and the first accumulator and a first compressor. 6. The multi-temperature generating circuit according to claim 5, further comprising a heat exchanging section for exchanging heat with the suction pipe.
【請求項7】 第1圧縮機または第2圧縮機は能力可変
型圧縮機であることを特徴とする請求項第2項ないし第
6項のいずれかに記載の蒸気圧縮式冷凍サイクルによる
多温度生成回路。
7. The multi-temperature refrigeration cycle according to claim 2, wherein the first compressor or the second compressor is a variable capacity compressor. Generation circuit.
【請求項8】 n個の飽和温度を同時に得ることが出来
る蒸気圧縮式冷凍サイクルにおいてn−1個の圧縮機を
備え、それぞれの圧縮機を複数の開閉弁あるいは逆止弁
を介して直列または並列に切り換え可能に接続するとと
もに、一端部が圧縮機のそれぞれの吐出あるいは吸入側
に他端部が開閉弁を介して複数台の熱交換器に接続され
る任意の飽和温度を持つn個の配管群と前記複数台の熱
交換器に冷媒流量制御弁を介して接続する1個の液配管
とを設け、nが少なくとも4であって、温度の異なる複
数の蒸発温度及び複数の凝縮温度をそれぞれ独立した熱
交換器にて同時に生成することを特徴とする蒸気圧縮式
冷凍サイクルによる多温度生成回路。
8. A vapor compression refrigeration cycle capable of simultaneously obtaining n saturation temperatures is provided with n-1 compressors, and each compressor is connected in series or through a plurality of on-off valves or check valves. N switches having an arbitrary saturation temperature and having one end connected to the respective discharge or suction sides of the compressor and the other end connected to a plurality of heat exchangers via on-off valves while being connected in a switchable manner in parallel. A pipe group and one liquid pipe connected to the plurality of heat exchangers via a refrigerant flow control valve, wherein n is at least 4 and
Several evaporation temperatures and multiple condensation temperatures are independent heat
Vapor compression type characterized by simultaneous generation in an exchanger
Multi-temperature generation circuit by refrigeration cycle.
【請求項9】第1圧縮機、第2圧縮機、及び複数台の熱交
換器を備え、一端部が第1の逆止弁を介して上記第1圧
縮機の吐出側に、他端部が開閉器を介して上記複数台の
熱交換器に接続する第1ガス管、一端部が上記第2圧縮機
の吐出側に、他端部が開閉器を介して上記複数台の熱交
換器に接続する第2ガス管、一端部がアキュムレータの
吸入側に、他端部が開閉器を介して上記複数台の熱交換
器に接続する第3ガス管、上記複数台の熱交換器に冷媒
流量制御器を介して接続する液管を設けるとともに、上
記アキュムレータの吐出側と第1、第2の圧縮機の吸入側
とをそれぞれ、第2、第3の逆止弁を介して個々に接続
し、上記第1ガス管の第1の逆止弁出口側の配管と第2ガ
ス管とを第1の開閉弁を介して連通させたことを特徴と
する蒸気圧縮式冷凍サイクルによる多温度生成回路。
9. A first compressor, a second compressor, and a plurality of heat exchangers, one end of which is connected to a discharge side of the first compressor via a first check valve, and the other end of which is connected to a first check valve. A first gas pipe connected to the plurality of heat exchangers via a switch, one end of the first gas pipe on the discharge side of the second compressor , and the other end of the plurality of heat exchangers via a switch. A third gas pipe having one end connected to the suction side of the accumulator and the other end connected to the plurality of heat exchangers via a switch, and a refrigerant connected to the plurality of heat exchangers. A liquid pipe connected via a flow controller is provided, and the discharge side of the accumulator and the suction sides of the first and second compressors are individually connected via second and third check valves, respectively. A vapor compression refrigeration cycle characterized in that the first gas pipe has a first check valve outlet-side pipe and a second gas pipe communicated via a first on-off valve. Multi temperature generating circuit.
【請求項10】第1圧縮機、第2圧縮機、及び給湯熱交換
器、風呂の追焚き熱交換器、室内熱交換器、室外熱交換
器の複数台の熱交換器を備え、一端部が第1の逆止弁を
介して上記第1圧縮機の吐出側に、他端部が開閉弁を介
して給湯熱交換器、追焚き熱交換器、室外熱交換器にそ
れぞれ接続する第1ガス管、一端部が上記第2圧縮機の吐
出側に、他端部が開閉器を介して室内熱交換器、室外熱
交換器にそれぞれ接続する第2ガス管、一端部がアキュ
ムレータの吸入側に、他端部が開閉弁を介して上記複数
台の熱交換器のそれぞれに接続する第3ガス管、上記複
数台の熱交換器のそれぞれに冷媒流量制御器を介して接
続する液管を設けるとともに、上記アキュムレータの吐
出側と第1、第2の圧縮機の吸入側とをそれぞれ、第2、
第3の逆止弁を介して個々に接続し、上記第1ガス管の第
1の逆止弁出口側の配管と第2ガス管とを第1の開閉弁を
介して連通させたことを特徴とする蒸気圧縮式冷凍サイ
クルによる多温度生成回路。
10. A heat exchanger comprising a first compressor, a second compressor, and a plurality of heat exchangers including a hot water supply heat exchanger, a bath reheating furnace, an indoor heat exchanger, and an outdoor heat exchanger. Are connected to a discharge side of the first compressor via a first check valve, and the other end is connected to a hot water heat exchanger, a reheating heat exchanger, and an outdoor heat exchanger via an on-off valve, respectively. A gas pipe, one end of which is connected to the discharge side of the second compressor , the other end of which is connected to an indoor heat exchanger and an outdoor heat exchanger via a switch, respectively, and one end of which is the suction side of the accumulator. A third gas pipe having the other end connected to each of the plurality of heat exchangers via an on-off valve, and a liquid pipe connected to each of the plurality of heat exchangers via a refrigerant flow controller. And the discharge side of the accumulator and the suction sides of the first and second compressors
Individually connected via a third check valve, and
A multi-temperature generation circuit using a vapor compression refrigeration cycle, wherein the pipe on the outlet side of the check valve and the second gas pipe are communicated via a first on-off valve.
【請求項11】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して上記第2圧縮機の
吐出側に、他端が開閉弁を介して上記複数台の熱交換器
に接続するとともに、上記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して上記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が上記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して上記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して上記複数台の熱交換器に接続
する低圧ガス管と、上記複数台の熱交換器に冷媒流量制
御器を介して接続する液管と、上記第1圧縮機の吐出側
と上記第2圧縮機の吐出側を第3開閉弁を介して連結す
る高圧ガス連通管と、上記第2圧縮機の吐出側と上記第
1逆止弁と第2開閉弁の間を第4開閉弁を介して連結す
る圧縮機連通管と、上記中圧ガス管から第7開閉弁を介
して上記液管に至る第1のバイパス路と、上記液管から
第8開閉弁を介して上記第1圧縮機への吸入側に至る第
2バイパス路と、を備えたことを特徴とする蒸気圧縮式
冷凍サイクルによる多温度生成回路。
11. A first compressor, a second compressor, a plurality of heat exchangers, one end of which is on the discharge side of the first compressor, and the other end of which is provided with an on-off valve. A high-pressure gas pipe connected to an exchanger, one end connected to the discharge side of the second compressor via a first on-off valve, and the other end connected to the plurality of heat exchangers via an on-off valve; A medium-pressure gas pipe branched from between the first on-off valve and the on-off valve and connected to the suction side of the first compressor via a fifth on-off valve and a second check valve;
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe having an on-off valve connected to the suction side of the first compressor via this order and the other end connected to the plurality of heat exchangers via the on-off valve, and the plurality of heat exchangers; A liquid pipe connected through a refrigerant flow controller, a high-pressure gas communication pipe connecting a discharge side of the first compressor and a discharge side of the second compressor through a third on-off valve, A compressor communication pipe connecting the discharge side of the compressor with the first check valve and the second on-off valve via a fourth on-off valve; and the liquid pipe from the medium-pressure gas pipe via a seventh on-off valve. the first bypass passage and the vapor compression refrigeration cycle in which the second bypass passage, comprising the leading to the suction side of the said first compressor via the eighth on-off valve from the liquid tube leading to Multi temperature generating circuit.
【請求項12】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端部が上記第1圧縮機の吐出側に、他
端が開閉弁を介して上記複数台の熱交換器に接続する高
圧ガス管と、一端が第1開閉弁を介して上記第2圧縮機
の吐出側に、他端が開閉弁を介して上記複数台の熱交換
器に接続するとともに、上記第1開閉弁と開閉弁の間か
ら分岐して第5開閉弁及び第2逆止弁を介して上記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が上記第
2圧縮機の吸入側に接続するとともに第1逆止弁及び第
2開閉弁をこの順に介して上記第1圧縮機の吸入側に接
続し、他端が開閉弁を介して上記複数台の熱交換器に接
続する低圧ガス管と、上記複数台の熱交換器に冷媒流量
制御器を介して接続する液管と、上記第1圧縮機の吐出
側と上記第2圧縮機の吐出側を第3開閉弁を介して連結
する高圧ガス連通管と、上記第2圧縮機の吐出側と上記
第1逆止弁と第2開閉弁の間を第4開閉弁を介して連結
する圧縮機連通管と、上記中圧ガス管から冷媒流量制御
器を介して上記液管に至る第1のバイパス路と、上記液
管から第8開閉弁を介して上記第1圧縮機の吸入側に至
る第2バイパス路と、を備えたことを特徴とする蒸気圧
縮式冷凍サイクルによる多温度生成回路。
12. A first compressor, a second compressor, a plurality of heat exchangers, one end of which is connected to a discharge side of the first compressor, and the other end of which is connected to an open / close valve of the plurality of heat exchangers. A high-pressure gas pipe connected to the heat exchanger, one end of which is connected to the discharge side of the second compressor via a first on-off valve, and the other end of which is connected to the plurality of heat exchangers via an on-off valve; The first branch valve is branched from between the first on-off valve and the first on-off valve.
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve. Side, and the other end is connected to the plurality of heat exchangers via an on-off valve to a low-pressure gas pipe; a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller; A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor through a third on-off valve; a discharge side of the second compressor; the first check valve; a compressor communicating pipe for connecting the on-off valve via the fourth on-off valve, a first bypass passage leading to said liquid pipe through the refrigerant flow rate controller from the intermediate pressure gas pipe, a from the liquid pipe vapor compression refrigeration cycle, characterized in that and a second bypass passage leading to the suction side of the first compressor via the 8-off valve Multi-temperature generating circuit due.
【請求項13】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第1開閉弁を介して上記第2圧縮機の
吐出側に、他端が開閉弁を介して上記複数台の熱交換器
に接続するとともに、上記第1開閉弁と開閉弁の間から
分岐して第5開閉弁及び第2逆止弁を介して上記第1圧
縮機の吸入側に接続する中圧ガス管と、一端が上記第2
圧縮機の吸入側に接続するとともに第1逆止弁及び第2
開閉弁をこの順に介して上記第1圧縮機の吸入側に接続
し、他端が開閉弁を介して上記複数台の熱交換器に接続
する低圧ガス管と、上記複数台の熱交換器に冷媒流量制
御器を介して接続する液レシーバーと、上記第1圧縮機
の吐出側と上記第2圧縮機の吐出側を第3開閉弁を介し
て連結する高圧ガス連通管と、上記第2圧縮機の吐出側
と上記第1逆止弁と第2開閉弁の間を第4開閉弁を介し
て連結する圧縮機連通管と、上記中圧ガス管から第7開
閉弁を介して上記液レシーバーに至る第1のバイパス路
と、上記液レシーバーから第8開閉弁を介して上記第1
圧縮機の吸入側に至る第2バイパス路と、を備えたこと
を特徴とする蒸気圧縮式冷凍サイクルによる多温度生成
回路。
13. A first compressor, a second compressor, a plurality of heat exchangers, one end on the discharge side of the first compressor, and the other end via an on-off valve. A high-pressure gas pipe connected to an exchanger, one end connected to the discharge side of the second compressor via a first on-off valve, and the other end connected to the plurality of heat exchangers via an on-off valve; A medium-pressure gas pipe branched from between the first on-off valve and the on-off valve and connected to the suction side of the first compressor via a fifth on-off valve and a second check valve;
The first check valve and the second check valve are connected to the suction side of the compressor.
A low-pressure gas pipe having an on-off valve connected to the suction side of the first compressor via this order and the other end connected to the plurality of heat exchangers via the on-off valve, and the plurality of heat exchangers; A liquid receiver connected through a refrigerant flow controller, a high-pressure gas communication pipe connecting a discharge side of the first compressor and a discharge side of the second compressor through a third on-off valve, A compressor communication pipe connecting the discharge side of the compressor with the first check valve and the second on-off valve via a fourth on-off valve; and the liquid receiver from the medium-pressure gas pipe via a seventh on-off valve. A first bypass path leading to the first liquid and the first liquid from the liquid receiver via the eighth on-off valve.
Further comprising a second bypass path to the suction side of the compressor, the
A multi-temperature generation circuit using a vapor compression refrigeration cycle characterized by the following.
【請求項14】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、一端が第1の開閉弁を有する第1の吐出
管を介して上記第1圧縮機の吐出側に、他端が開閉弁を
介して上記複数台の熱交換器に接続する高圧ガス管と、
一端が第2の開閉弁を有する第2の吐出管を介して上記
第2圧縮機の吐出側に、他端が開閉弁を介して上記複数
台の熱交換器に接続する中圧ガス管と、一端が第4の開
閉弁を有する第2の吸入管を介して上記第2圧縮機の吸
入側に、他端が開閉弁を介して上記複数台の熱交換器に
接続する低圧ガス管と、上記複数台の熱交換器に冷媒流
量制御器を介して接続する液管と、上記中圧ガス管と上
記第1圧縮機の吸入側とを第3の開閉弁を介して接続す
る第1の吸入管と、上記第1の吐出管と上記第2の吐出
管を第7の開閉弁及び第8の開閉弁を介して接続する吐
出側接続管と、上記第1の吸入管と上記第2の吸入管を
第9の開閉弁及び第10の開閉弁を介して接続する吸入
側接続管と、上記中圧ガス管と上記第2の吸入管とを第
5開閉弁を介して接続する第1のバイパス管と、上記低
圧管と上記第1の吸入管を第6開閉弁を介して接続する
第2のバイパス管と、上記第7の開閉弁、第8の開閉弁
の間と第9の開閉弁、第10の開閉弁の間を第11の開
閉弁を介して接続する第3のバイパス管と、上記第2の
吐出管と上記高圧ガス管とを第13の開閉弁を介して接
続する第5のバイパス管と、上記第1の吐出管と上記中
圧ガス管とを第12の開閉弁を介して接続する第5のバ
イパス管と、を備えたことを特徴とする蒸気圧縮式冷凍
サイクルによる多温度生成回路。
14. A discharge side of the first compressor via a first compressor, a second compressor, a plurality of heat exchangers, and a first discharge pipe having one end having a first on-off valve. A high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve;
A medium-pressure gas pipe having one end connected to a discharge side of the second compressor via a second discharge pipe having a second on-off valve and the other end connected to the plurality of heat exchangers via an on-off valve; A low-pressure gas pipe having one end connected to the suction side of the second compressor via a second suction pipe having a fourth on-off valve and the other end connected to the plurality of heat exchangers via an on-off valve; A liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller, and a first pipe connecting the medium-pressure gas pipe and a suction side of the first compressor via a third on-off valve. A discharge-side connecting pipe connecting the first discharge pipe and the second discharge pipe via a seventh on-off valve and an eighth on-off valve; The second connection pipe connects the second suction pipe via a ninth on-off valve and a tenth on-off valve, and connects the intermediate-pressure gas pipe and the second suction pipe via a fifth on-off valve. A first bypass pipe, a second bypass pipe connecting the low-pressure pipe and the first suction pipe through a sixth on-off valve, and a connection between the seventh on-off valve and the eighth on-off valve. A third bypass pipe connecting the first discharge pipe and the ninth open / close valve to the tenth open / close valve via an eleventh open / close valve; and a thirteenth open / close valve connecting the second discharge pipe and the high-pressure gas pipe to each other. a fifth bypass pipe that connects via a further comprising a, a fifth bypass pipe that connects via the said first discharge pipe and the intermediate pressure gas pipe 12 off valve multi temperature generator by vapor compression refrigeration cycle.
【請求項15】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、四方弁と、一端が第1の開閉弁を有する
第1の吐出管を介して上記第1圧縮機の吐出側に、他端
が開閉弁を介して上記複数台の熱交換器に接続する高圧
ガス管と、一端が第2の開閉弁を有する第2の吐出管を
介して上記第2圧縮機の吐出側に、他端が開閉弁を介し
て上記複数台の熱交換器に接続するとともに、途中から
分岐して上記四方弁に接続する中圧ガス管と、一端が上
記四方弁に、他端が開閉弁を介して上記複数台の熱交換
器に接続する低圧ガス管と、上記複数台の熱交換器に冷
媒流量制御器を介して接続する液管と、上記四方弁と上
記第1圧縮機の吸入側とを第3の開閉弁を介して接続す
る第1の吸入管と、上記四方弁と上記第2圧縮機の吸入
側とを第4の開閉弁を介して接続する第2の吸入管と、
上記第1の吐出管と上記第2の吐出管を第7の開閉弁及
び第8の開閉弁を介して接続する吐出側接続管と、上記
第1の吸入管と上記第2の吸入管を第9の開閉弁及び第
10の開閉弁を介して接続する吸入側接続管と、上記第
7の開閉弁、第8の開閉弁の間と第9の開閉弁、第10
の開閉弁の間を第11の開閉弁を介して接続する第3の
バイパス管と、上記第2の吐出管と上記高圧ガス管とを
第13の開閉弁を介して接続する第4のバイパス管と、
上記第1の吐出管と上記中圧ガス管とを第12の開閉弁
を介して接続する第5のバイパス管と、を備えたことを
特徴とする蒸気圧縮式冷凍サイクルによる多温度生成回
路。
15. The first compressor through a first compressor, a second compressor, a plurality of heat exchangers, a four-way valve, and a first discharge pipe having one end with a first on-off valve. On the discharge side of the machine, a high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve and a second discharge pipe having one end having a second on-off valve. On the discharge side of the machine, the other end is connected to the plurality of heat exchangers via an on-off valve, and a medium-pressure gas pipe branched from the middle and connected to the four-way valve, and one end is connected to the four-way valve, A low-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve; a liquid pipe connected to the plurality of heat exchangers via a refrigerant flow controller; the four-way valve; A first suction pipe connecting the suction side of one compressor via a third on-off valve, and a fourth on-off valve connecting the four-way valve and the suction side of the second compressor to each other A second suction pipe connected through
A discharge-side connecting pipe for connecting the first discharge pipe and the second discharge pipe via a seventh on-off valve and an eighth on-off valve, the first suction pipe and the second suction pipe, A suction-side connecting pipe connected via a ninth on-off valve and a tenth on-off valve, and a connection between the seventh on-off valve and the eighth on-off valve, a ninth on-off valve, and a tenth on-off valve;
A third bypass pipe connecting between the on-off valves via an eleventh on-off valve, and a fourth bypass connecting the second discharge pipe and the high-pressure gas pipe via a thirteenth on-off valve Tubes and
A fifth bypass pipe for connecting the first discharge pipe and the intermediate pressure gas pipe through the first 12 opening and closing valve, further comprising a
A multi-temperature generation circuit using a vapor compression refrigeration cycle.
【請求項16】 第1圧縮機と、第2圧縮機と、複数台
の熱交換器と、第1の四方弁と、第2の四方弁と、一端
が上記第1の四方弁が接続された第1の吐出管を介して
上記第1圧縮機の吐出側に、他端が開閉弁を介して上記
複数台の熱交換器に接続する高圧ガス管と、他端が開閉
弁を介して上記複数台の熱交換器に接続する中圧ガス管
と、一端が上記第2圧縮機の吸入側に第2の開閉弁を介
して接続する第2の吸入管に、他端が開閉弁を介して上
記複数台の熱交換器に接続する低圧ガス管と、上記複数
台の熱交換器に冷媒流量制御器を介して接続する液管
と、上記低圧ガス管と上記第1圧縮機とを上記第2の四
方弁を介して接続する第1の吸入管と、上記第2圧縮機
の吐出側と上記第1の開閉弁の間と上記第1の四方弁と
を接続する第1の接続管と、上記第2の圧縮機の吸入側
と上記第2の開閉弁との間に上記第2の四方弁を接続す
る第2の接続管と、上記第1の四方弁と第2の四方弁を
第3の開閉弁を介して接続する第3の接続管と、上記第
3の開閉弁の両側から分岐し、第4の開閉弁、第5の開
閉弁を介してそれぞれ上記中圧ガス管の一端に接続する
第4の接続管及び第5の接続管と、を備えたことを特徴
とする蒸気圧縮式冷凍サイクルによる多温度生成回路。
16. A first compressor, a second compressor, a plurality of heat exchangers, a first four-way valve, a second four-way valve, and one end of which is connected to the first four-way valve. To the discharge side of the first compressor through a first discharge pipe, a high-pressure gas pipe having the other end connected to the plurality of heat exchangers via an on-off valve, and the other end via an on-off valve. An intermediate pressure gas pipe connected to the plurality of heat exchangers, a second suction pipe connected at one end to a suction side of the second compressor via a second opening / closing valve, and the other end connected to an opening / closing valve. A low-pressure gas pipe connected to the plurality of heat exchangers through a liquid flow pipe connected to the plurality of heat exchangers via a refrigerant flow controller; and the low-pressure gas pipe and the first compressor. A first suction pipe connected via the second four-way valve, and a first connection connecting the discharge port of the second compressor and the first on-off valve to the first four-way valve. A pipe, a second connection pipe connecting the second four-way valve between the suction side of the second compressor and the second on-off valve, a first four-way valve and a second four-way valve A third connection pipe for connecting the valve via a third on-off valve, and a medium-pressure gas branched from both sides of the third on-off valve via a fourth on-off valve and a fifth on-off valve, respectively. characterized by comprising a fourth connection pipe and fifth connecting tube connected to one end of the tube, the
Multi-temperature generation circuit using a vapor compression refrigeration cycle.
【請求項17】 第1圧縮機と、第2圧縮機と、給湯用
熱交換器及び複数台の熱交換器と、第1の四方弁と、第
2の四方弁と、第3の四方弁と、一端が上記第1圧縮機
の吐出側に、他端が上記給湯用熱交換器及び上記第1の
四方弁、第3の四方弁を介して上記複数台の熱交換器に
接続する高圧ガス管と、一端が上記第1開閉弁を介して
上記第2圧縮機の吐出側に、他端が上記第2の四方弁、
第3の四方弁を介して上記複数台の熱交換器に接続する
とともに、途中で分岐して第5開閉弁を介して上記第1
圧縮機の吸入側に接続する中圧ガス管と、一端が上記第
2圧縮機の吸入側に接続するとともに第1の逆止弁と第
2開閉弁をこの順に介して第1圧縮機の吸入側に接続
し、他端が第1の四方弁、第2の四方弁を介して上記複
数台の熱交換器に接続する低圧ガス管と、上記給湯用熱
交換器及び複数台の熱交換器に冷媒流量制御器を介して
接続する液管と、上記第1圧縮機の吐出側と上記第2圧
縮機の吐出側を第3開閉弁を介して連結する高圧ガス連
通管と、上記第2の圧縮機の吐出側と上記第1逆止弁と
第2開閉弁の間を第4開閉弁を介して連結する圧縮機連
通管と、を備えたことを特徴とする蒸気圧縮式冷凍サイ
クルによる多温度生成回路。
17. A first compressor, a second compressor, a heat exchanger for hot water supply and a plurality of heat exchangers, a first four-way valve, a second four-way valve, and a third four-way valve. One end is connected to the discharge side of the first compressor, and the other end is connected to the plurality of heat exchangers via the hot water supply heat exchanger, the first four-way valve, and the third four-way valve. A gas pipe, one end of which is on the discharge side of the second compressor via the first on-off valve, and the other end of which is the second four-way valve;
The heat exchanger is connected to the plurality of heat exchangers via a third four-way valve, and is branched on the way to the first heat exchanger via a fifth on-off valve.
A medium-pressure gas pipe connected to the suction side of the compressor, one end of which is connected to the suction side of the second compressor, and a first check valve and a second on-off valve, which are connected in this order to the suction of the first compressor. Side, the other end of which is connected to the plurality of heat exchangers via the first four-way valve and the second four-way valve, the hot water supply heat exchanger and the plurality of heat exchangers A high-pressure gas communication pipe connecting the discharge side of the first compressor and the discharge side of the second compressor via a third on-off valve; by the discharge side of the compressor and the said first check valve vapor compression refrigeration cycle, characterized by comprising a compressor communicating pipe, a which between the second on-off valve is connected via a fourth on-off valve Multi-temperature generation circuit.
JP5190319A 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle Expired - Lifetime JP3036310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190319A JP3036310B2 (en) 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP22502192 1992-08-01
JP246393 1993-01-11
JP5-2463 1993-01-11
JP4-225021 1993-01-11
JP5190319A JP3036310B2 (en) 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH06257889A JPH06257889A (en) 1994-09-16
JP3036310B2 true JP3036310B2 (en) 2000-04-24

Family

ID=27275361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190319A Expired - Lifetime JP3036310B2 (en) 1992-08-01 1993-07-30 Multi-temperature generation circuit by vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3036310B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60239430D1 (en) * 2001-06-26 2011-04-21 Daikin Ind Ltd cooler
JP3603848B2 (en) 2001-10-23 2004-12-22 ダイキン工業株式会社 Refrigeration equipment
WO2005033593A1 (en) * 2003-10-06 2005-04-14 Daikin Industries, Ltd. Freezer
WO2010085593A2 (en) * 2009-01-23 2010-07-29 Bitzer Kuhlmaschinenbau Gmbh Scroll compressors with different volume indexes and systems and methods for same
JP5465491B2 (en) * 2009-08-31 2014-04-09 三洋電機株式会社 Air conditioner
EP3273184A1 (en) * 2009-08-28 2018-01-24 Sanyo Electric Co., Ltd. Air conditioner
JP6373469B1 (en) * 2017-11-08 2018-08-15 三菱重工サーマルシステムズ株式会社 heat pump
JP6916716B2 (en) * 2017-11-08 2021-08-11 三菱重工サーマルシステムズ株式会社 heat pump

Also Published As

Publication number Publication date
JPH06257889A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
US7185506B2 (en) Reversible vapor compression system
CN203249455U (en) Air conditioning device
US20230184471A1 (en) Air conditioning system with capacity control and controlled hot water generation
US6883342B2 (en) Multiform gas heat pump type air conditioning system
AU2001286334A1 (en) Reversible vapor compression system
WO2008018867A1 (en) Tandem compressors with pulse width modulation suction valve
JP2001056159A (en) Air conditioner
CN112752933B (en) Air conditioning system
JP3036310B2 (en) Multi-temperature generation circuit by vapor compression refrigeration cycle
JP2001263848A (en) Air conditioner
JPH10220893A (en) Heat pump device
JPH03294754A (en) Air conditioner
JPH06241582A (en) Heat accumulative type cooling device
JPH02178575A (en) Heat pump for cooling or heating and supplying hot water system
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
KR100857564B1 (en) Multi-heat pump
JP2007163011A (en) Refrigeration unit
JP2997598B2 (en) Multifunctional heat pump system
JPH04257661A (en) Two stage compression refrigerating cycle device
JP2005308375A (en) Refrigeration air conditioning device
JP2800573B2 (en) Air conditioner
CN115682202A (en) Energy storage air conditioning system
CN112797658A (en) Air conditioner
JPH03122466A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term