JP3032816B2 - Method for producing styrene monomer - Google Patents

Method for producing styrene monomer

Info

Publication number
JP3032816B2
JP3032816B2 JP9218411A JP21841197A JP3032816B2 JP 3032816 B2 JP3032816 B2 JP 3032816B2 JP 9218411 A JP9218411 A JP 9218411A JP 21841197 A JP21841197 A JP 21841197A JP 3032816 B2 JP3032816 B2 JP 3032816B2
Authority
JP
Japan
Prior art keywords
catalyst
styrene monomer
reaction
weight
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9218411A
Other languages
Japanese (ja)
Other versions
JPH1160517A (en
Inventor
直樹 三村
昌弘 斉藤
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP9218411A priority Critical patent/JP3032816B2/en
Publication of JPH1160517A publication Critical patent/JPH1160517A/en
Application granted granted Critical
Publication of JP3032816B2 publication Critical patent/JP3032816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エチルベンゼンか
らスチレンモノマーを製造する方法に関するものであ
る。
The present invention relates to a method for producing a styrene monomer from ethylbenzene.

【0002】[0002]

【従来の技術】スチレンモノマーは、ポリスチレンをは
じめ各種の高分子化合物の原料となる重要な物質であ
る。現在、スチレンモノマーの工業的な製造法として
は、エチルベンゼンと水蒸気の混合気体(水蒸気/エチル
ベンゼン=7〜12)を、酸化鉄及び酸化カリウムからな
る触媒に600℃程度の温度で接触させる方法が採用さ
れている(触媒、Vol.38 No.7 (1996)
572-579)。しかし、この方法は、水蒸気の製造に
多大なエネルギーが必要であり、また触媒成分のカリウ
ムが揮散しやすいなどの問題を有している。また、エチ
ルベンゼンを二酸化炭素の存在下、鉄酸化物、アルカリ
金属及び活性炭からなる触媒と接触させることによりス
チレンモノマーを製造する方法が知られている(App
lied Catalysis A General,
121 (1995) 125−137)。しかし、こ
の方法は触媒活性の長時間の安定性に問題があった。
2. Description of the Related Art Styrene monomer is an important substance that is a raw material of various polymer compounds including polystyrene. At present, as an industrial production method of styrene monomer, a method is employed in which a mixed gas of ethylbenzene and steam (steam / ethylbenzene = 7 to 12) is brought into contact with a catalyst composed of iron oxide and potassium oxide at a temperature of about 600 ° C. (Catalyst, Vol. 38 No. 7 (1996)
572-579). However, this method has a problem that a large amount of energy is required for producing steam, and potassium as a catalyst component is easily volatilized. A method for producing a styrene monomer by contacting ethylbenzene with a catalyst comprising an iron oxide, an alkali metal and activated carbon in the presence of carbon dioxide is also known (App.
lied Catalyst A General,
121 (1995) 125-137). However, this method has a problem in long-term stability of catalyst activity.

【0003】[0003]

【発明が解決しようとする課題】本発明は、エチルベン
ゼンを二酸化炭素の存在下、触媒と接触させてスチレン
を製造する方法において、安価でかつ活性の低下が少な
い触媒を用いてスチレンモノマーを製造する方法を提供
することを課題とする。
SUMMARY OF THE INVENTION The present invention relates to a method for producing styrene by contacting ethylbenzene with a catalyst in the presence of carbon dioxide, wherein a styrene monomer is produced using an inexpensive catalyst with a small decrease in activity. It is an object to provide a method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、エチルベンゼンを二
酸化炭素の存在下、酸化鉄、酸化カルシウム及び酸化ア
ルミニウムからなる触媒に、500〜650℃の温度で
接触させることを特徴とするスチレンモノマーの製造方
法が提供される。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention. That is, according to the present invention, there is provided a method for producing a styrene monomer, comprising contacting ethylbenzene with a catalyst comprising iron oxide, calcium oxide and aluminum oxide in the presence of carbon dioxide at a temperature of 500 to 650 ° C. Is done.

【0005】[0005]

【発明の実施の形態】以下本発明について詳細に説明す
る。本発明において使用する触媒は、酸化鉄、酸化カル
シウム及び酸化アルミニウムからなる触媒である。な
お、酸化鉄は2価及び3価の鉄の酸化物のいずれでもよ
い。この触媒中の各金属酸化物の組成は、酸化鉄:0.
5〜50重量%、好ましくは3〜20重量%、酸化カル
シウム:0.5〜30重量%、好ましくは5〜15重量
%、そして酸化アルミニウム:20〜99重量%、好ま
しくは65〜92重量%である。本発明において、触媒
成分となる酸化鉄、酸化カルシウム及び酸化アルミニウ
ムは、その原料としてそれぞれの金属の硝酸塩、塩酸
塩、硫酸塩、有機酸塩、水酸化物等を用い、共沈法、含
浸法、混合法、逐次沈殿法、アルコキシド法等の公知の
方法により、あるいはこれらの方法を組み合わせること
によって製造できる。なお触媒製造後、空気中で焼成す
ることにより触媒成分を安定な酸化物の状態にすること
が望ましい。この場合、焼成温度は特に限定しないが、
300〜1000℃の範囲が好ましく、600〜800
℃の範囲が特に好ましい。本発明に用いる触媒は、必ず
しも酸化鉄、酸化カルシウム及び酸化アルミニウムの3
成分のみに限定されず、適宜他の成分、例えばコロイダ
ルシリカ等を加えてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The catalyst used in the present invention is a catalyst comprising iron oxide, calcium oxide and aluminum oxide. The iron oxide may be any of divalent and trivalent iron oxides. The composition of each metal oxide in the catalyst was iron oxide: 0.1.
5 to 50% by weight, preferably 3 to 20% by weight, calcium oxide: 0.5 to 30% by weight, preferably 5 to 15% by weight, and aluminum oxide: 20 to 99% by weight, preferably 65 to 92% by weight It is. In the present invention, iron oxide, calcium oxide and aluminum oxide serving as catalyst components are prepared by coprecipitation method, impregnation method using nitrate, hydrochloride, sulfate, organic acid salt, hydroxide, etc. of each metal as a raw material. It can be produced by a known method such as a mixing method, a sequential precipitation method, an alkoxide method, or a combination of these methods. It is desirable that the catalyst component be converted into a stable oxide state by calcining in air after the production of the catalyst. In this case, the firing temperature is not particularly limited,
The range of 300 to 1000 ° C. is preferable, and the range of 600 to 800
The range of ° C. is particularly preferred. The catalyst used in the present invention is not limited to iron oxide, calcium oxide and aluminum oxide.
It is not limited only to the components, and other components such as colloidal silica may be added as appropriate.

【0006】本発明において反応原料として用いるエチ
ルベンゼンは、特に高純度である必要はなく、触媒毒に
ならない成分であれば少量の不純物を含んでいてもよ
い。また、本発明の反応において使用される二酸化炭素
についても、特に高純度である必要はなく、不活性ガ
ス、例えば窒素等を含んでいてもよい。二酸化炭素の使
用割合は、エチルベンゼン1モル当り、0.1〜100
モル、好ましくは1〜50モルの割合である。本発明に
おいて、反応温度は500〜650℃の範囲、好ましく
は530〜630℃である。500℃を下回るとエチル
ベンゼンの十分な転化率が得られず、また650℃を上
回ると副生成物であるベンゼン、トルエン等の生成や、
触媒表面上における炭素析出あるいは生成物の重合が顕
著になり、触媒の活性や選択性が大きく低下する。
[0006] Ethylbenzene used as a reaction raw material in the present invention does not need to be particularly high in purity, and may contain a small amount of impurities as long as it does not poison the catalyst. The carbon dioxide used in the reaction of the present invention does not need to be particularly high-purity, and may contain an inert gas such as nitrogen. The use ratio of carbon dioxide is 0.1 to 100 per mole of ethylbenzene.
Moles, preferably 1 to 50 moles. In the present invention, the reaction temperature is in the range of 500 to 650 ° C, preferably 530 to 630 ° C. If the temperature is lower than 500 ° C., a sufficient conversion of ethylbenzene cannot be obtained, and if the temperature is higher than 650 ° C., benzene and toluene as by-products are formed,
Precipitation of carbon or polymerization of the product on the catalyst surface becomes remarkable, and the activity and selectivity of the catalyst are greatly reduced.

【0007】本発明の接触反応は、固定床、流動床等い
ずれの方式でも行なうことができる。触媒の粒子径、形
状は反応器の形式に応じて任意に選択できる。また、反
応圧力は、加圧、常圧、減圧いずれでも実施できるが、
0.2〜1.5気圧(絶対圧力)の範囲が特に好まし
い。反応圧が0.2気圧未満では減圧状態を維持するた
めにエネルギー消費量が大きくなり、1.5気圧を超え
ると熱力学的制約からスチレンモノマーの収率が低下す
る。なお、本発明の触媒は、一定時間使用後に活性が低
下した場合、空気中で再度焼成することにより活性を回
復させることができる。
[0007] The contact reaction of the present invention can be carried out by any method such as a fixed bed and a fluidized bed. The particle size and shape of the catalyst can be arbitrarily selected according to the type of the reactor. In addition, the reaction pressure can be carried out under any of pressurized, normal pressure, and reduced pressure.
A range from 0.2 to 1.5 atmospheres (absolute pressure) is particularly preferred. If the reaction pressure is less than 0.2 atm, the energy consumption increases to maintain the reduced pressure state, and if it exceeds 1.5 atm, the yield of styrene monomer decreases due to thermodynamic restrictions. When the activity of the catalyst of the present invention decreases after a certain period of use, the activity can be recovered by calcining again in air.

【0008】[0008]

【実施例】以下本発明を実施例により更に詳細に説明す
る。 実施例1 硝酸鉄9水和物11.5g、硝酸カルシウム4水和物
6.9g、硝酸アルミニウム6水和物91.0gを溶解
した水溶液300mlと、炭酸ナトリウム52.5gを
溶解した水溶液300mlを調製した。蒸留水750m
lを激しく攪拌しながら前出の二種の水溶液を等量ずつ
ゆっくりと滴下した。得られた沈殿をイオン交換水で十
分洗浄、ろ過した後、110℃で乾燥後、空気中750
℃で焼成した。次に、焼成後の酸化物を200kg/m2
の圧力で圧縮後、粉砕し180〜300μmに粒度を調
節した。焼成後の触媒はFe3214重量%、CaO1
0重量%、Al2376重量%であった。前記触媒1.
4gを、ステンレス製反応管に充填し、エチルベンゼン
蒸気:二酸化炭素=1:11の混合ガスを流速毎分13
0ml、温度550℃で接触させた。反応後のガスを、
−5℃の冷却器および1℃の吸収液(ノルマルヘプタン)
に通じ、得られた液体成分をガスクロマトグラフで分析
した。その結果を、表1に示す。この結果は、この触媒
が長時間にわたって活性を保っていることを示してい
る。
The present invention will be described in more detail with reference to the following examples. Example 1 300 ml of an aqueous solution in which 11.5 g of iron nitrate nonahydrate, 6.9 g of calcium nitrate tetrahydrate, and 91.0 g of aluminum nitrate hexahydrate were dissolved, and 300 ml of an aqueous solution in which 52.5 g of sodium carbonate was dissolved Prepared. 750m of distilled water
While stirring vigorously, the above two aqueous solutions were slowly dropped in equal amounts. The obtained precipitate is sufficiently washed with ion-exchanged water, filtered, dried at 110 ° C., and then dried in air at 750.
Fired at ℃. Next, the calcined oxide was reduced to 200 kg / m 2.
After compression at a pressure of, the powder was pulverized and the particle size was adjusted to 180 to 300 µm. The catalyst after calcination was Fe 3 O 2 14% by weight, CaO 1
0% by weight and 76% by weight of Al 2 O 3 . The catalyst 1.
4 g was charged into a stainless steel reaction tube, and a mixed gas of ethylbenzene vapor: carbon dioxide = 1: 11 was supplied at a flow rate of 13 / min.
0 ml was contacted at a temperature of 550 ° C. The gas after the reaction is
Cooler at -5 ° C and absorbing solution at 1 ° C (normal heptane)
, And the obtained liquid component was analyzed by gas chromatography. Table 1 shows the results. This result indicates that the catalyst has been active for a long time.

【0009】[0009]

【表1】 [Table 1]

【0010】比較例1 実施例1で使用した触媒1.4gを、ステンレス製反応
管に充填し、エチルベンゼン蒸気:ヘリウム=1:11
の混合ガスを流速毎分130ml、温度550℃で接触
させ、実施例1と同様に分析を行なった。その結果を表
2に示す。
Comparative Example 1 1.4 g of the catalyst used in Example 1 was charged into a stainless steel reaction tube, and ethylbenzene vapor: helium = 1: 11.
Was contacted at a flow rate of 130 ml / min at a temperature of 550 ° C., and analysis was carried out in the same manner as in Example 1. Table 2 shows the results.

【0011】[0011]

【表2】 [Table 2]

【0012】比較例2 実施例1で使用した触媒1.4gを、ステンレス製反応
管に充填し、エチルベンゼン蒸気:ヘリウム:水蒸気=
1:3.7:7.3の混合ガスを流速毎分130ml、
温度550℃で接触させ、実施例1と同様に分析を行な
った。その結果を表3に示す。
Comparative Example 2 1.4 g of the catalyst used in Example 1 was charged into a stainless steel reaction tube, and ethylbenzene vapor: helium: water vapor =
1: 3.7: 7.3 mixed gas at a flow rate of 130 ml / min,
The contact was performed at a temperature of 550 ° C., and the analysis was performed in the same manner as in Example 1. Table 3 shows the results.

【0013】[0013]

【表3】 [Table 3]

【0014】比較例3 硝酸鉄、硝酸アルミニウムを溶解した水溶液を原料に用
い、実施例1と同様の操作を行ない触媒を調製した。触
媒の組成は、Fe2314重量%、Al2386重量%
であった。この触媒を1.0g用いたほかは、実施例1
と同様の条件で反応を行なった。この結果を、表4に示
す。
Comparative Example 3 An aqueous solution in which iron nitrate and aluminum nitrate were dissolved was used as a raw material, and the same operation as in Example 1 was performed to prepare a catalyst. The composition of the catalyst, Fe 2 O 3 14 wt%, Al 2 O 3 86 wt%
Met. Example 1 was repeated except that 1.0 g of this catalyst was used.
The reaction was carried out under the same conditions as described above. Table 4 shows the results.

【0015】[0015]

【表4】 [Table 4]

【0016】比較例4 硝酸カルシウム硝酸アルミニウムを溶解した水溶液を原
料に用い、実施例1と同様の操作を行ない触媒を調製し
た。触媒の組成は、CaO10重量%、Al2390重
量%であった。この触媒を用いて実施例1と同様に反応
を行なった。この結果を、表5に示す。
Comparative Example 4 A catalyst was prepared in the same manner as in Example 1 except that an aqueous solution in which calcium aluminum nitrate was dissolved was used as a raw material. The composition of the catalyst was 10% by weight of CaO and 90% by weight of Al 2 O 3 . A reaction was carried out in the same manner as in Example 1 using this catalyst. Table 5 shows the results.

【0017】[0017]

【表5】 [Table 5]

【0018】比較例5 硝酸鉄、硝酸カルシウムを溶解した水溶液を原料に用
い、実施例1と同様の操作を行ない触媒を調製した。触
媒の組成は、Fe2314重量%、CaO86重量%で
あった。この触媒を用いて実施例1と同様に反応を行な
った。この結果を、表6に示す。
Comparative Example 5 A catalyst was prepared in the same manner as in Example 1 except that an aqueous solution in which iron nitrate and calcium nitrate were dissolved was used as a raw material. The composition of the catalyst was 14% by weight of Fe 2 O 3 and 86% by weight of CaO. A reaction was carried out in the same manner as in Example 1 using this catalyst. Table 6 shows the results.

【0019】[0019]

【表6】 [Table 6]

【0020】実施例2 実施例1と同様に、触媒を調製した。触媒の組成はFe
235重量%、CaO10重量%、Al2385重量%
であった。調製した触媒を1.4g用い、実施例1と同
様の条件で反応を行なった。結果を表7に示す。この結
果は、触媒組成を変更することにより、初期活性はあま
り高くないが、安定性の非常に高い触媒を得ることがで
きることを示す。
Example 2 A catalyst was prepared in the same manner as in Example 1. The composition of the catalyst is Fe
2 O 3 5% by weight, CaO 10% by weight, Al 2 O 3 85% by weight
Met. A reaction was carried out under the same conditions as in Example 1 using 1.4 g of the prepared catalyst. Table 7 shows the results. This result indicates that by changing the catalyst composition, it is possible to obtain a catalyst whose initial activity is not so high but whose stability is very high.

【0021】[0021]

【表7】 [Table 7]

【0022】実施例3 実施例2に用いた触媒を用い、反応温度580℃で反応
を行なった。その他の条件は、実施例2と同じになるよ
うにした。結果を表8に示す。
Example 3 Using the catalyst used in Example 2, a reaction was carried out at a reaction temperature of 580 ° C. Other conditions were the same as in Example 2. Table 8 shows the results.

【0023】[0023]

【表8】 [Table 8]

【0024】実施例4 実施例1と同様の触媒を調製する際、金属硝酸塩の水溶
液にコロイダルシリカ(日産化学スノーテックスO)1.
0gを分散させ、その他の触媒調製操作は実施例1と同
様に行なった。この触媒を1.4g用い、実施例1と同
様の条件で反応を行った。結果を、表9に示す。
Example 4 To prepare the same catalyst as in Example 1, colloidal silica (Nissan Chemical Snowtex O) was added to an aqueous solution of metal nitrate.
0 g was dispersed, and other catalyst preparation operations were performed in the same manner as in Example 1. Using 1.4 g of this catalyst, a reaction was carried out under the same conditions as in Example 1. Table 9 shows the results.

【0025】[0025]

【表9】 [Table 9]

【0026】実施例5 実施例4で8.5時間反応に用いた触媒1.4gを、空
気中600℃の温度で2時間再焼成した後、再度実施例
1と同様の条件で反応に用いた。結果を表10に示す。
この結果は、触媒の再生後でも、長時間にわたって活性
が保たれていることを示している。
Example 5 1.4 g of the catalyst used for the reaction for 8.5 hours in Example 4 was recalcined in air at a temperature of 600 ° C. for 2 hours, and then used again for the reaction under the same conditions as in Example 1. Was. Table 10 shows the results.
This result indicates that the activity is maintained for a long time even after regeneration of the catalyst.

【0027】[0027]

【表10】 [Table 10]

【0028】[0028]

【発明の効果】本発明によれば、エチルベンゼンを二酸
化炭素の存在下触媒と接触させてスチレンモノマーを製
造するに当り、前記した安価でかつ長時間その活性の低
下が少ない触媒を用いたことにより、スチレンモノマー
を工業的有利に製造することができる。しかも、従来行
なわれているような水蒸気を使用する方法ではないの
で、水蒸気製造のための多大なエネルギー消費を必要と
しない。
According to the present invention, when ethylbenzene is brought into contact with a catalyst in the presence of carbon dioxide to produce a styrene monomer, the catalyst is used which is inexpensive and has a small decrease in its activity for a long time. And styrene monomer can be produced industrially advantageously. Moreover, since the method does not use steam as conventionally performed, a large amount of energy is not required for producing steam.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C07C 5/00 - 5/56 C07C 15/46 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C07C 5/00-5/56 C07C 15/46

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エチルベンゼンを二酸化炭素の存在下、
酸化鉄、酸化カルシウム及び酸化アルミニウムからなる
触媒に、500〜650℃の温度で接触させることを特
徴とするスチレンモノマーの製造方法。
1. The method according to claim 1, wherein ethylbenzene is dissolved in the presence of carbon dioxide.
A method for producing a styrene monomer, comprising contacting a catalyst comprising iron oxide, calcium oxide and aluminum oxide at a temperature of 500 to 650 ° C.
JP9218411A 1997-08-13 1997-08-13 Method for producing styrene monomer Expired - Lifetime JP3032816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218411A JP3032816B2 (en) 1997-08-13 1997-08-13 Method for producing styrene monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218411A JP3032816B2 (en) 1997-08-13 1997-08-13 Method for producing styrene monomer

Publications (2)

Publication Number Publication Date
JPH1160517A JPH1160517A (en) 1999-03-02
JP3032816B2 true JP3032816B2 (en) 2000-04-17

Family

ID=16719500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218411A Expired - Lifetime JP3032816B2 (en) 1997-08-13 1997-08-13 Method for producing styrene monomer

Country Status (1)

Country Link
JP (1) JP3032816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910784B2 (en) * 2008-06-14 2011-03-22 Lummus Technology Inc. Process for the production of styrene monomer by improving energy efficiency and injecting a recycle gas into the EB vaporizer

Also Published As

Publication number Publication date
JPH1160517A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US3933883A (en) Methanation catalyst and process of use
JPH0470946B2 (en)
US5389689A (en) Method of producing dimethyl ether
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
US2960518A (en) Ethylene production process
CA2085315A1 (en) Process for the preparation of synthetic gases
US4749674A (en) Catalyst for the non-oxidative dehydrogenation of alkylbenzene to alkenylbenzene
JP2811424B2 (en) Method for producing ammoxidation catalyst
CA2283137A1 (en) Use of ce/zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
JPH05154383A (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
US4092372A (en) Catalyst for the production of isoprene
JP3032816B2 (en) Method for producing styrene monomer
JPS647974B2 (en)
EP0365181B1 (en) Chemical process and catalyst to be used therein
JP3950952B2 (en) Method for producing styrene monomer
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
US6635794B2 (en) Catalysts for oxidative dehydrogenation of alkanes and a process for producing olefins
EP0703889B1 (en) Process for the production of styrene
EP0452695B1 (en) Production of a catalyst and its use for producing phenol
JP2958994B2 (en) Methanol dehydrogenation catalyst
JP3047040B2 (en) Method for producing methyl formate and catalyst for producing methyl formate
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
JP3837512B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP3882071B2 (en) Method for producing styrene monomer
JPH06277510A (en) Catalyst for synthesizing methyl chloride

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term