JP3029889B2 - Manganese dioxide for lithium secondary battery and method for producing the same - Google Patents

Manganese dioxide for lithium secondary battery and method for producing the same

Info

Publication number
JP3029889B2
JP3029889B2 JP3198209A JP19820991A JP3029889B2 JP 3029889 B2 JP3029889 B2 JP 3029889B2 JP 3198209 A JP3198209 A JP 3198209A JP 19820991 A JP19820991 A JP 19820991A JP 3029889 B2 JP3029889 B2 JP 3029889B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
lithium
secondary battery
ammonia
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3198209A
Other languages
Japanese (ja)
Other versions
JPH0521062A (en
Inventor
宗利 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3198209A priority Critical patent/JP3029889B2/en
Publication of JPH0521062A publication Critical patent/JPH0521062A/en
Application granted granted Critical
Publication of JP3029889B2 publication Critical patent/JP3029889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池の陽極
活物質として用いられるα型二酸化マンガンおよびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an .alpha.-type manganese dioxide used as an anode active material of a lithium secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム合金を陰極活物
質とするリチウム一次電池の陽極活物質としては二酸化
マンガン、フッ化炭素等が代表的なものとして知られて
おり、これらは既に実用化されている。
2. Description of the Related Art As a positive electrode active material of a lithium primary battery using lithium or a lithium alloy as a negative electrode active material, manganese dioxide, carbon fluoride and the like are known as typical ones, and these have already been put to practical use. .

【0003】このような陽極活物質の中で特に二酸化マ
ンガンは、保存性に優れ、かつ安価であるという利点を
有する。
[0003] Among such anode active materials, manganese dioxide, in particular, has the advantage of being excellent in preservability and inexpensive.

【0004】しかし、このような現在リチウム一次電池
の陽極活物質に用いられている二酸化マンガンをリチウ
ム二次電池の陽極活物質に用いた場合、充放電サイクル
の再現性が悪く、充分な特性を有する二次電池が得られ
ていないのが現状である。
However, when manganese dioxide, which is currently used as an anode active material of a lithium primary battery, is used as an anode active material of a lithium secondary battery, reproducibility of charge / discharge cycles is poor and sufficient characteristics are not obtained. At present, there is no secondary battery available.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる従来技
術の課題に鑑みなされたもので、リチウム二次電池の陽
極活物質に用いられる高性能化を可能とした二酸化マン
ガンおよびその製造方法を提供することを目的とし、リ
チウム二次電池の大幅な放電容量の拡大を図ることを最
終的な目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and provides a manganese dioxide which can be used for an anode active material of a lithium secondary battery and has high performance, and a method for producing the same. The ultimate purpose is to significantly increase the discharge capacity of the lithium secondary battery.

【0006】[0006]

【課題を解決するための手段】かかる本発明の目的は、
一定量のアンモニアおよびリチウム含有したα型二酸化
マンガンを得、これをさらに加熱処理してリチウム二次
電池の陽極活物質として用いることによって達成され
る。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
This is achieved by obtaining a certain amount of ammonia and lithium-containing α-type manganese dioxide which is further heat-treated and used as an anode active material of a lithium secondary battery.

【0007】すなわち、本発明は、アンモニアを0.2
〜0.6重量%、リチウムを1.0〜3.5重量%含有
することを特徴とするリチウム二次電池用α型二酸化マ
ンガンにある。
That is, according to the present invention, ammonia is added at a concentration of 0.2%.
Α-manganese dioxide for a lithium secondary battery, characterized in that the α-manganese dioxide contains 1.0 to 3.5% by weight of lithium and 1.0 to 3.5% by weight of lithium.

【0008】本発明のα型二酸化マンガンには、上述の
ようにアンモニアが0.2〜0.6重量%含有される。
アンモニアの含有量が0.2重量%未満ではリチウム二
次電池の放電性能に対する含有効果が小さく、また0.
6重量%を超えるとリチウム二次電池に用いたときに二
酸化マンガンが有する放電特性が損なわれる傾向にあ
る。
[0008] The α-type manganese dioxide of the present invention contains 0.2 to 0.6% by weight of ammonia as described above.
When the content of ammonia is less than 0.2% by weight, the effect of the content on the discharge performance of the lithium secondary battery is small,
If it exceeds 6% by weight, the discharge characteristics of manganese dioxide when used in a lithium secondary battery tend to be impaired.

【0009】また、リチウムは1.0〜3.5重量%含
有される。リチウム含有量が1.0重量%未満ではリチ
ウム二次電池の放電性能に対する含有効果が小さく、ま
た3.5重量%を超えるとリチウム二次電池の放電性能
は向上せず、逆に二酸化マンガンが有する放電特性が損
なわれる。
[0009] Lithium is contained in an amount of 1.0 to 3.5% by weight. When the lithium content is less than 1.0% by weight, the effect on the discharge performance of the lithium secondary battery is small, and when it exceeds 3.5% by weight, the discharge performance of the lithium secondary battery does not improve. The resulting discharge characteristics are impaired.

【0010】このようなアンモニアおよびリチウムを一
定量含有する本発明のα型二酸化マンガンは、次の方法
によって得られる。
[0010] The α-type manganese dioxide of the present invention containing a certain amount of ammonia and lithium is obtained by the following method.

【0011】すなわち、先ず、アンモニウム塩を添加し
た硫酸マンガンおよび硫酸溶液を電解し、アンモニアを
一定量含有するα型の二酸化マンガンを得る。
That is, first, manganese sulfate and a sulfuric acid solution to which an ammonium salt has been added are electrolyzed to obtain α-type manganese dioxide containing a certain amount of ammonia.

【0012】この電解においては、電解液として硫酸マ
ンガンおよび硫酸の溶液を用いる。この電解液中のマン
ガン濃度は20〜50g/l、硫酸濃度は30〜80g
/lが一般的である。また、電極として陽極にはチタン
等、陰極にはカーボン等が用いられる。
In this electrolysis, a solution of manganese sulfate and sulfuric acid is used as an electrolytic solution. The manganese concentration in this electrolyte is 20 to 50 g / l, and the sulfuric acid concentration is 30 to 80 g.
/ L is common. In addition, titanium or the like is used for an anode and carbon or the like is used for a cathode as an electrode.

【0013】アンモニウム塩としては、硫酸アンモニウ
ム、塩化アンモニウム等が用いられる。このアンモニウ
ム塩の添加は、例えば電解槽上部から電極板間に補給硫
酸マンガン溶液と共に均一に添加する。
As the ammonium salt, ammonium sulfate, ammonium chloride and the like are used. This ammonium salt is added uniformly, for example, together with the replenished manganese sulfate solution from above the electrolytic cell to between the electrode plates.

【0014】また、電解二酸化マンガンの電解条件とし
通常、浴温90〜100℃、電流密度50〜100A/
2で行なわれる。
The electrolytic conditions of the electrolytic manganese dioxide are usually as follows: bath temperature 90 to 100 ° C., current density 50 to 100 A /
m 2 .

【0015】この電解液中のアンモニウム塩の濃度は
0.1〜2.0モル/lとし、得られる電解二酸化マン
ガンにアンモニアが上記範囲含有されるようにアンモニ
ウム塩を添加する。
The concentration of the ammonium salt in the electrolytic solution is 0.1 to 2.0 mol / l, and the ammonium salt is added to the obtained electrolytic manganese dioxide so that the above range of ammonia is contained.

【0016】次に、このアンモニア含有α型二酸化マン
ガンを水酸化リチウムや硝酸リチウム等のリチウム塩水
溶液を用いて中和処理し、さらに濾過、乾燥して本発明
の二酸化マンガンを得るものである(以下、製造方法I
という)。
Next, the ammonia-containing α-type manganese dioxide is neutralized using an aqueous solution of a lithium salt such as lithium hydroxide or lithium nitrate, and further filtered and dried to obtain the manganese dioxide of the present invention ( Hereinafter, manufacturing method I
).

【0017】すなわち、この製造方法はアンモニア含有
α型二酸化マンガンを水酸化リチウムや硝酸リチウムの
ようなリチウム塩水溶液を用いて中和処理するものであ
る。この際のリチウム塩の濃度は0.1〜10モル/l
が望ましい。また、この中和処理時間は1〜24時間が
適当であり、温度条件は20〜80℃が望ましい。
That is, in this production method, the ammonia-containing α-type manganese dioxide is neutralized using an aqueous solution of a lithium salt such as lithium hydroxide or lithium nitrate. At this time, the concentration of the lithium salt is 0.1 to 10 mol / l.
Is desirable. The time for the neutralization treatment is appropriately 1 to 24 hours, and the temperature condition is desirably 20 to 80 ° C.

【0018】また別の製造方法は、前記アンモニア含有
α型二酸化マンガンを水酸化リチウムや硝酸リチウム等
のリチウム塩と混合し、本発明の二酸化マンガンを得る
ものである(以下、製造方法IIという)。
In another production method, the ammonia-containing α-manganese dioxide is mixed with a lithium salt such as lithium hydroxide or lithium nitrate to obtain the manganese dioxide of the present invention (hereinafter referred to as production method II). .

【0019】すなわち、この製造方法は、アンモニア含
有α型二酸化マンガンを水酸化リチウムや硝酸リチウム
等のようなリチウム塩と充分混合するものである。
That is, in this production method, ammonia-containing α-type manganese dioxide is sufficiently mixed with a lithium salt such as lithium hydroxide or lithium nitrate.

【0020】このようにして得られた本発明のα型二酸
化マンガンは、上述のように一定量のアンモニアとリチ
ウムを含有する。
The α-type manganese dioxide of the present invention thus obtained contains a certain amount of ammonia and lithium as described above.

【0021】このα型二酸化マンガンはさらに加熱処理
した後、リチウム二次電池の陽極活物質として用いられ
る。その際の加熱処理条件は、上記製造方法Iでは30
0〜450℃、3〜6時間、また上記製造方法IIでは
300〜450℃、3〜24時間がそれぞれ望ましい。
This α-type manganese dioxide is used as an anode active material of a lithium secondary battery after further heat treatment. The heat treatment conditions at that time are 30 in the above-mentioned production method I.
0 to 450 ° C. for 3 to 6 hours, and 300 to 450 ° C. for 3 to 24 hours in the above production method II.

【0022】本発明において、処理原料としてアンモニ
アを含有するα型二酸化マンガンを用いることによっ
て、通常のγ型二酸化マンガンを用いた場合よりも顕著
な効果を有するのは、アンモニアを含有するα型二酸化
マンガンは、大きいトンネル構造を有し、トンネル内の
アンモニアがリチウムイオンと熱処理時に置換しやす
く、リチウム二次電池ノ陽極活物質とした時の充放電の
際、リチウムをドープおよび脱ドープしやすいと考えら
れる。
In the present invention, the use of α-type manganese dioxide containing ammonia as a processing raw material has a more remarkable effect than the case where ordinary γ-type manganese dioxide is used. Manganese has a large tunnel structure, the ammonia in the tunnel is easily replaced with lithium ions during heat treatment, and it is easy to dope and undope lithium during charge and discharge when used as a positive electrode active material for lithium secondary batteries. Conceivable.

【0023】また、トンネル構造内にリチウムを存在さ
せることにより、熱処理による構造の崩壊が防止され、
陽極活物質に用いた時に、リチウム二次電池のサイクル
特性が向上したものと考えられる。
In addition, the presence of lithium in the tunnel structure prevents collapse of the structure due to heat treatment,
It is considered that when used as the anode active material, the cycle characteristics of the lithium secondary battery were improved.

【0024】[0024]

【実施例】以下、本発明を実施例および比較例に基づき
具体的に説明する。
The present invention will be specifically described below based on examples and comparative examples.

【0025】実施例1 加温装置を設けた内容積3リットルの電解槽に陽極とし
てチタン板、陰極として黒鉛板をそれぞれ交互に懸吊せ
しめ、電解槽の底部に硫酸マンガンおよびアンモニウム
塩溶液からなる電解補給液の添加管を設けたものを使用
した。
Example 1 A titanium plate as an anode and a graphite plate as a cathode were alternately suspended in a 3-liter electrolytic cell provided with a heating device, and a manganese sulfate and ammonium salt solution was formed at the bottom of the electrolytic cell. The one provided with an addition tube for the electrolytic replenisher was used.

【0026】電解補給液は、硫酸マンガン溶液に硫酸ア
ンモニウムを40g/lとなるように調整した。
The electrolytic replenisher was prepared by adding ammonium sulfate to the manganese sulfate solution at 40 g / l.

【0027】この補給液を前記電解槽に注入しながら、
電解するに際して、電解液の組成をマンガン50g/
l、硫酸30g/lとなるように調整し、電解は電解浴
の温度を95±1℃に保ち、電流密度100A/m2
行なった。
While injecting this replenisher into the electrolytic cell,
At the time of electrolysis, the composition of the electrolytic solution was changed to manganese 50 g /
1 and sulfuric acid 30 g / l, and the electrolysis was performed at a current density of 100 A / m 2 while maintaining the temperature of the electrolytic bath at 95 ± 1 ° C.

【0028】電解終了後、電解二酸化マンガンが電着し
た陽極板を取り出し、常法の後処理を実施した。
After completion of the electrolysis, the anode plate on which the electrolytic manganese dioxide was electrodeposited was taken out and subjected to a usual post-treatment.

【0029】次に、このようにして得られたアンモニア
含有α型二酸化マンガン100gを加温装置を設けた内
容積2リットルの処理槽中に満たした2モル/lの水酸
化リチウム中に投入し、撹拌しながら反応温度70℃で
2時間反応させた後、常法の濾過、乾燥処理を施し、二
酸化マンガンを調製した(製造方法I)。得られた二酸
化マンガンのリチウムおよびアンモニア含有量を表1に
示した。
Next, 100 g of the ammonia-containing α-type manganese dioxide obtained in this way was poured into 2 mol / l lithium hydroxide filled in a 2 liter internal treatment tank provided with a heating device. After reacting at a reaction temperature of 70 ° C. for 2 hours with stirring, manganese dioxide was prepared by performing conventional filtration and drying treatments (Production Method I). Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0030】その後、400℃で3時間加熱処理を行な
い、陽極活物質用二酸化マンガンとした。
Thereafter, a heat treatment was performed at 400 ° C. for 3 hours to obtain manganese dioxide for an anode active material.

【0031】この加熱処理した二酸化マンガンを陽極活
物質として以下に示すリチウム二次電池を構成した(図
1)。なお、リチウム二次電池には内径10.8mmφ
の放電用電池を用い、構成作業はアルゴン雰囲気下のド
ライボックス中で行なった。
Using the heat-treated manganese dioxide as the anode active material, the following lithium secondary battery was constructed (FIG. 1). Note that the lithium secondary battery has an inner diameter of 10.8 mmφ.
The discharging operation was performed in a dry box under an argon atmosphere.

【0032】図1中、1は負極端子、2は絶縁物(テフ
ロン材)、3は負極集電板、4は負極材、5はセパレー
タ、6は陽極合剤、7は陽極端子を示す。
In FIG. 1, 1 denotes a negative electrode terminal, 2 denotes an insulator (Teflon material), 3 denotes a negative electrode current collector plate, 4 denotes a negative electrode material, 5 denotes a separator, 6 denotes an anode mixture, and 7 denotes an anode terminal.

【0033】陽極合剤6としては、得られた二酸化マン
ガン90mgに対して黒鉛6mgおよび四フッ化エチレ
ン樹脂4mgを混合し、加重2tで加圧成型して直径1
0.6mmφのペレットとしたものを用いた。
As the anode mixture 6, 6 mg of graphite and 4 mg of tetrafluoroethylene resin were mixed with 90 mg of the obtained manganese dioxide, and the mixture was molded under pressure with a load of 2 tons to form a mixture having a diameter of 1 mm.
A pellet having a diameter of 0.6 mm was used.

【0034】電解液としては、プロピレンカーボネート
および1,2−ジメトキシエタンの1:1混合溶媒に過
塩素酸リチウム(LiClO4)を溶解したものを用
い、セパレータ5中に含ませて使用した。
As the electrolytic solution, a solution prepared by dissolving lithium perchlorate (LiClO 4 ) in a 1: 1 mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used in the separator 5.

【0035】負極材4としては、リチウム−アルミニウ
ム合金(Al含有量15重量%)電極を用い、陽極合剤
6に対して充分量(約2倍当量)となるように設計し
た。
As the negative electrode material 4, a lithium-aluminum alloy (Al content: 15% by weight) electrode was used, and was designed to have a sufficient amount (about twice equivalent) with respect to the anode mixture 6.

【0036】得られたリチウム二次電池を用いて、1m
Aの電流で3.8〜2.0Vの範囲の電圧で充放電を繰
り返し、1サイクル、10サイクルおよび50サイクル
毎の二次電池放電容量を測定し、結果を併せて表1に示
す。
Using the obtained lithium secondary battery, 1 m
The charge / discharge was repeated at a current of A at a voltage in the range of 3.8 to 2.0 V, and the discharge capacity of the secondary battery was measured every 1 cycle, 10 cycles, and 50 cycles, and the results are also shown in Table 1.

【0037】実施例2〜3 実施例1の電解時の硫酸アンモニウム添加量40g/l
を、20g/l(実施例2)、60g/l(実施例3)
に変えた以外は実施例1と同様の操作を行なった。得ら
れた二酸化マンガンのリチウムおよびアンモニア含有量
を表1に示した。これらの二酸化マンガンを実施例1と
同様の条件でさらに加熱処理し、陽極活物質用二酸化マ
ンガンとし、この二酸化マンガンを用いて実施例1と同
様の電池評価を行ない、結果を表1に示す。
Examples 2-3 The amount of ammonium sulfate added during electrolysis of Example 1 was 40 g / l.
20 g / l (Example 2), 60 g / l (Example 3)
The same operation as in Example 1 was performed, except that the procedure was changed to. Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide. These manganese dioxides were further heat-treated under the same conditions as in Example 1 to obtain manganese dioxide for an anode active material. Using this manganese dioxide, the same battery evaluation as in Example 1 was performed. The results are shown in Table 1.

【0038】実施例4〜5 実施例1のリチウム含有処理時の水酸化リチウム2モル
/lを、水酸化リチウム1.0モル/l(実施例4)、
硝酸リチウム3モル/l、水酸化リチウム1モル/l
(実施例5)に変えた以外は実施例1と同様の操作を行
なった。得られた二酸化マンガンのリチウムおよびアン
モニア含有量を表1に示した。
Examples 4 and 5 2 mol / l of lithium hydroxide during the lithium-containing treatment of Example 1 was replaced with 1.0 mol / l of lithium hydroxide (Example 4).
Lithium nitrate 3 mol / l, lithium hydroxide 1 mol / l
The same operation as in Example 1 was performed except that the operation was changed to (Example 5). Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0039】これらの二酸化マンガンを実施例1と同様
の条件でさらに加熱処理し、陽極活物質用二酸化マンガ
ンとし、この二酸化マンガンを用いて実施例1と同様の
電池評価を行ない、結果を表1に示す。
These manganese dioxides were further heat-treated under the same conditions as in Example 1 to obtain manganese dioxide for the anode active material. Using this manganese dioxide, the same battery evaluation as in Example 1 was performed. Shown in

【0040】実施例6 実施例1の電解で得られたアンモニア含有α型二酸化マ
ンガン100gに硝酸リチウム20gを加え充分に混合
し、二酸化マンガンを得た。得られた二酸化マンガンの
リチウムおよびアンモニア含有量を表1に示した。
Example 6 20 g of lithium nitrate was added to 100 g of the ammonia-containing α-type manganese dioxide obtained by the electrolysis of Example 1, and mixed well to obtain manganese dioxide. Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0041】その後、400℃で5時間加熱処理を行な
い、陽極活物質用二酸化マンガンとした。
Thereafter, a heat treatment was performed at 400 ° C. for 5 hours to obtain manganese dioxide for an anode active material.

【0042】この二酸化マンガンを用いて実施例1と同
様の電池評価を行ない、結果を表1に示す。
Using this manganese dioxide, the same battery evaluation as in Example 1 was performed, and the results are shown in Table 1.

【0043】実施例7 実施例6の硝酸リチウム20gを、水酸化リチウム7g
に変えた以外は実施例6と同様の操作を行なった。得ら
れた二酸化マンガンのリチウムおよびアンモニア含有量
を表1に示した。
Example 7 20 g of lithium nitrate of Example 6 was replaced with 7 g of lithium hydroxide.
The same operation as in Example 6 was performed, except that the procedure was changed to. Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0044】これらの二酸化マンガンを実施例6と同様
の条件でさらに加熱処理し、陽極活物質用二酸化マンガ
ンとし、この二酸化マンガンを用いて実施例1と同様の
電池評価を行ない、結果を表1に示す。
These manganese dioxides were further heat-treated under the same conditions as in Example 6 to obtain manganese dioxide for the anode active material. Using this manganese dioxide, the same battery evaluation as in Example 1 was performed. Shown in

【0045】比較例1 実施例1の電解時に硫酸アンモニウムを添加しない以外
は、実施例1と同様の操作を行なった。得られた二酸化
マンガンのリチウムおよびアンモニア含有量を表1に示
した。
Comparative Example 1 The same operation as in Example 1 was performed except that ammonium sulfate was not added during the electrolysis of Example 1. Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0046】この二酸化マンガンを実施例1と同様の条
件でさらに加熱処理し、陽極活物質用二酸化マンガンと
し、この二酸化マンガンを用いて実施例1と同様の電池
評価を行ない、結果を表1に示す。
The manganese dioxide was further heated under the same conditions as in Example 1 to obtain manganese dioxide for an anode active material. Using this manganese dioxide, the same battery evaluation as in Example 1 was performed. The results are shown in Table 1. Show.

【0047】比較例2 比較例1の電解で得られた二酸化マンガン100gに硝
酸リチウム20gを加え充分に混合した。得られた二酸
化マンガンのリチウムおよびアンモニア含有量を表1に
示した。
Comparative Example 2 20 g of lithium nitrate was added to 100 g of the manganese dioxide obtained by the electrolysis of Comparative Example 1, and mixed well. Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0048】この二酸化マンガンを実施例6と同様の条
件でさらに加熱処理し、陽極活物質用二酸化マンガンと
し、この二酸化マンガンを用いて実施例1と同様の電池
評価を行ない、結果を表1に示す。
This manganese dioxide was further heated under the same conditions as in Example 6 to obtain manganese dioxide for an anode active material. Using this manganese dioxide, the same battery evaluation as in Example 1 was performed. The results are shown in Table 1. Show.

【0049】比較例3 実施例1の水酸化リチウムによる処理を行なわない以外
は、実施例1と同様の操作を行なった。得られた二酸化
マンガンのリチウムおよびアンモニア含有量を表1に示
した。
Comparative Example 3 The same operation as in Example 1 was performed except that the treatment with lithium hydroxide in Example 1 was not performed. Table 1 shows the lithium and ammonia contents of the obtained manganese dioxide.

【0050】この二酸化マンガンを実施例1と同様の条
件でさらに加熱処理し、陽極活物質用二酸化マンガンと
し、この二酸化マンガンを用いて実施例1と同様の電池
評価を行ない、結果を表1に示す。
This manganese dioxide was further heated under the same conditions as in Example 1 to obtain manganese dioxide for an anode active material. Using this manganese dioxide, the same battery evaluation as in Example 1 was performed. The results are shown in Table 1. Show.

【0051】[0051]

【表1】 [Table 1]

【0052】表1から明らかなように、電解法によって
得られたアンモニア含有α型二酸化マンガンを出発原料
として用い、これを水酸化リチウムや硝酸リチウム等の
リチウム塩溶液で浸漬処理する前記製造方法Iによる実
施例1〜5のα型二酸化マンガンを、さらに加熱処理し
た二酸化マンガンを陽極活物質に用いたリチウム二次電
池は、各サイクルの放電容量が大きいことから電池性能
に優れていることが判る。
As is clear from Table 1, the above-mentioned production method I was carried out by using an ammonia-containing α-type manganese dioxide obtained by an electrolytic method as a starting material and immersing it in a lithium salt solution such as lithium hydroxide or lithium nitrate. The lithium secondary batteries using the α-type manganese dioxides of Examples 1 to 5 and the manganese dioxide obtained by further heat treatment as the anode active material have excellent discharge performance in each cycle, and thus have excellent battery performance. .

【0053】これに対して通常の二酸化マンガンを出発
原料として用い、アンモニアを含有しない比較例1の二
酸化マンガン、リチウムを含有しない比較例3の二酸化
マンガンをそれぞれ加熱処理して陽極活物質に用いたリ
チウム二次電池は電池性能に劣る。
On the other hand, ordinary manganese dioxide was used as a starting material, and manganese dioxide of Comparative Example 1 containing no ammonia and manganese dioxide of Comparative Example 3 containing no lithium were each heat-treated and used as an anode active material. Lithium secondary batteries have poor battery performance.

【0054】さらに、前記製造方法IIにより得られる実
施例6〜7とアンモニアを含有しない比較例2により得
られた二酸化マンガンをそれぞれ加熱処理してリチウム
二次電池の陽極活物質とした場合においても上記した実
施例1〜5と比較例1,3とほぼ同様の結果が得られ
た。
Further, the manganese dioxides obtained in Examples 6 and 7 obtained by the above-mentioned production method II and Comparative Example 2 containing no ammonia were each heat-treated to obtain an anode active material of a lithium secondary battery. Almost the same results as those of Examples 1 to 5 and Comparative Examples 1 and 3 were obtained.

【0055】[0055]

【発明の効果】以上説明したように、出発原料としてア
ンモニア含有α型二酸化マンガンを用い、リチウム塩水
溶液による浸漬処理またはリチウム塩と混合する本発明
の製造方法によって、アンモニアおよびリチウムを一定
量含有するα型二酸化マンガンが得られる。また、この
α型二酸化マンガンを加熱処理してリチウム二次電池の
陽極活物質として用いることによって、電池性能を著し
く向上することができる。
As described above, a certain amount of ammonia and lithium are contained by the immersion treatment with an aqueous solution of lithium salt or the production method of the present invention in which the mixture is mixed with lithium salt using ammonia-containing α-manganese dioxide as a starting material. α-type manganese dioxide is obtained. Further, the battery performance can be significantly improved by heating this α-type manganese dioxide and using it as an anode active material of a lithium secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わるリチウム二次電池の側断面
図。
FIG. 1 is a side sectional view of a lithium secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 負極端子、2 絶縁物、 3 負極集電板、4 負
極材、5 セパレータ、6 陽極合剤、7 陽極端子。
1 negative electrode terminal, 2 insulators, 3 negative electrode current collector plate, 4 negative electrode material, 5 separator, 6 anode mix, 7 anode terminal.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アンモニアを0.2〜0.6重量%、リ
チウムを1.0〜3.5重量%含有することを特徴とす
るリチウム二次電池用α型二酸化マンガン。
An α-type manganese dioxide for a lithium secondary battery, comprising 0.2 to 0.6% by weight of ammonia and 1.0 to 3.5% by weight of lithium.
【請求項2】 アンモニアを含有するα型二酸化マンガ
ンをリチウム水溶液中に浸漬するか、またはリチウム塩
と混合することを特徴とするリチウム二次電池用α型二
酸化マンガンの製造方法。
2. A method for producing α-type manganese dioxide for a lithium secondary battery, comprising immersing ammonia-containing α-type manganese dioxide in a lithium aqueous solution or mixing it with a lithium salt.
JP3198209A 1991-07-15 1991-07-15 Manganese dioxide for lithium secondary battery and method for producing the same Expired - Fee Related JP3029889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3198209A JP3029889B2 (en) 1991-07-15 1991-07-15 Manganese dioxide for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3198209A JP3029889B2 (en) 1991-07-15 1991-07-15 Manganese dioxide for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0521062A JPH0521062A (en) 1993-01-29
JP3029889B2 true JP3029889B2 (en) 2000-04-10

Family

ID=16387303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3198209A Expired - Fee Related JP3029889B2 (en) 1991-07-15 1991-07-15 Manganese dioxide for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3029889B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640613B2 (en) * 1993-06-08 1997-08-13 工業技術院長 Lithium secondary battery
JP4185191B2 (en) 1998-07-31 2008-11-26 松下電器産業株式会社 Method for producing spinel type lithium manganate
JP3983779B2 (en) * 2004-09-09 2007-09-26 三井金属鉱業株式会社 Manganese oxide for cathode active material

Also Published As

Publication number Publication date
JPH0521062A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JPH0349178B2 (en)
JPH01200557A (en) Nonaqueous electrolytic battery
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
JP3029889B2 (en) Manganese dioxide for lithium secondary battery and method for producing the same
JPH061698B2 (en) Lithium primary battery, anode active material thereof, and method for producing manganese dioxide used in the anode active material
JP3553541B2 (en) Method for producing positive electrode active material for battery and electrolytic manganese dioxide, and battery
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
JPH0521063A (en) Manufacture of manganese dioxide for lithium secondary battery
JP3065630B2 (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JPS6164082A (en) Nonaqueous electrolyte battery
JPH06150914A (en) Manganese dioxide for lithium battery and manufacture thereof
JP2599975B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPH03122968A (en) Manufacture of manganese dioxide for lithium primary battery
JP3344638B2 (en) Method for producing lithium manganate for lithium secondary battery
JPH03194865A (en) Lithium secondary battery, its positive electrode active material and manufacture of manganese dioxide used in same positive electrode active material
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JP2707340B2 (en) Manufacturing method of electrolytic manganese dioxide
KR20050054870A (en) Active substance of positive electrode for battery, process for producing the same and battery therefrom
JPH0336910B2 (en)
JPH0380121A (en) Production of manganese dioxide for lithium secondary cell
JPH02168559A (en) Lithium primary battery and its positive electrode active substance
JP2553920B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JPS6352747B2 (en)
JP2646689B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees