JP3011123B2 - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JP3011123B2
JP3011123B2 JP9052441A JP5244197A JP3011123B2 JP 3011123 B2 JP3011123 B2 JP 3011123B2 JP 9052441 A JP9052441 A JP 9052441A JP 5244197 A JP5244197 A JP 5244197A JP 3011123 B2 JP3011123 B2 JP 3011123B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
dielectric
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9052441A
Other languages
Japanese (ja)
Other versions
JPH1072258A (en
Inventor
リー ヒョージョング
Original Assignee
エイメックス シーオー., エルティーディー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイメックス シーオー., エルティーディー. filed Critical エイメックス シーオー., エルティーディー.
Priority to JP9052441A priority Critical patent/JP3011123B2/en
Publication of JPH1072258A publication Critical patent/JPH1072258A/en
Application granted granted Critical
Publication of JP3011123B2 publication Critical patent/JP3011123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマイクロ波用誘電体
セラミック組成物に関し、より詳しくは、例えば、マイ
クロ波帯域で作動する誘電体共振器のようなマイクロ波
デバイス用誘電体セラミック組成物に関する。
The present invention relates to a dielectric ceramic composition for microwaves, and more particularly, to a dielectric ceramic composition for a microwave device such as a dielectric resonator operating in a microwave band.

【0002】[0002]

【従来の技術】最近、移動通信や衛生放送などの情報通
信機器の利用拡大によってマイクロ波を用いる誘電体セ
ラミック素子に対する関心が高調している。特に、移動
通信媒体としては自動車電話、無線電話、フェーザ、G
PS(Global PositioningSystem)などを挙げることがで
きるが、マイクロ波用誘電体セラミックはこれらのシス
テムで誘電体共振器として用いられる。誘電体共振器を
マイクロ波領域で使用するためにはデバイスの小型化を
図る高誘電率、高Q値、低共振周波数温度係数などと共
に焼結特性に優れていなければならない。
2. Description of the Related Art In recent years, interest in dielectric ceramic elements using microwaves has increased due to the expansion of use of information communication equipment such as mobile communication and satellite broadcasting. In particular, mobile communication media include car phones, wireless phones, phasors, G
PS (Global Positioning System) and the like can be mentioned, and dielectric ceramics for microwaves are used as dielectric resonators in these systems. In order to use a dielectric resonator in the microwave region, it must be excellent in sintering characteristics as well as a high dielectric constant, a high Q value, a low resonance frequency temperature coefficient, etc. for miniaturizing the device.

【0003】このような特性を満足させる誘電体セラミ
ック組成物に対する研究はTiO2に対して最初始まっ
て以来、多くのTiO2系に対して行われた。その結
果、現在用いられているマイクロ波誘電体組成はBa2
Ti920、(Zr、Sn)TiO4、BaO-Re23-
TiO2(Re:Rare earth)、BaO-Nd23-TiO
2 System(BNT系)などの多くのTiO2系であり、
一方、最近は Ba(Mg1/3Ta2/3)O3、Ba(Zn1/3Ta2/3
3、 Ba(Mg1/3Nb2/3)O3、Sr(Mg1/3Ta2/3
3、 Sr(Zn1/3Ta2/3)O3などの複合ペロブスカイト
構造を有する誘電体がたくさん発見されており、且つ2
種類のペロブスカイトの固溶体を用いて新しい誘電体材
料を開発しようとする試みが行われている。
[0003] Since the first began in research is TiO 2 with respect to the dielectric ceramic composition which satisfies such properties, was made to a number of TiO 2 system. As a result, the microwave dielectric composition currently used is Ba 2
Ti 9 O 20 , (Zr, Sn) TiO 4 , BaO—Re 2 O 3
TiO 2 (Re: Rare earth), BaO-Nd 2 O 3 -TiO
Many TiO 2 systems such as 2 System (BNT system)
On the other hand, recently, Ba (Mg 1/3 Ta 2/3 ) O 3 and Ba (Zn 1/3 Ta 2/3 )
O 3 , Ba (Mg 1/3 Nb 2/3 ) O 3 , Sr (Mg 1/3 Ta 2/3 )
Many dielectrics having a complex perovskite structure, such as O 3 and Sr (Zn 1/3 Ta 2/3 ) O 3 , have been discovered.
Attempts have been made to develop new dielectric materials using solid solutions of different types of perovskites.

【0004】しかし、BNT系は他のマイクロ波用誘電
体に比べてQ値(Quality-factor、Q×f)が2000(1G
Hz)程度に小さいという短所があり、且つ共振周波数
が1GHz以下に制限されるという問題点がある。そし
て、Nd23は希土類金属であって、他の元素に比べて
高価な元素である。
However, the BNT type has a Q value (Quality-factor, Q × f) of 2000 (1 G) as compared with other microwave dielectrics.
Hz), and the resonance frequency is limited to 1 GHz or less. Nd 2 O 3 is a rare earth metal, and is an expensive element compared to other elements.

【0005】一方、(Zr、Sn)TiO4系は高いQ
値と安定な温度特性によって一番広く常用化された材料
であって、誘電率の範囲は30〜40であり、Q値は4
GHzで8000程度であり、共振周波数温度係数(τf)
の範囲は−30〜+30ppm/℃である。しかし、この
系は一般的な固相反応を経て製造される場合、仮焼温度
が1100℃以上であり、焼結調剤の添加無しでは1600℃以
下で焼結し難い難焼結性物質として知られている。従っ
て、焼結温度を低くするためにCuO、Co23、Zn
Oなどの焼結調剤を使用するが、焼結調剤の添加が組成
物自体の物性を低下させることが知られている。このた
め、一番経済的な固相法に代えて、Sol−Gelまた
はアルコキシド法や共沈法などのような液相法を用いた
粉末合成が試みられている。しかし、このような方法は
工程が複雑であるばかりでなく、製造コストの上昇を招
くという問題点がある。
On the other hand, the (Zr, Sn) TiO 4 system has a high Q
It is the most widely used material due to its value and stable temperature characteristics. The dielectric constant ranges from 30 to 40 and the Q value is 4
It is about 8000 at GHz and the resonance frequency temperature coefficient (τf)
Ranges from -30 to +30 ppm / ° C. However, when this system is manufactured through a general solid-state reaction, the calcination temperature is 1100 ° C or higher, and it is known as a hardly sinterable substance that is difficult to sinter at 1600 ° C or lower without the addition of a sintering preparation. Have been. Therefore, in order to lower the sintering temperature, CuO, Co 2 O 3 , Zn
Although a sintering preparation such as O is used, it is known that the addition of the sintering preparation lowers the physical properties of the composition itself. Therefore, instead of the most economical solid phase method, powder synthesis using a liquid phase method such as Sol-Gel or alkoxide method or coprecipitation method has been attempted. However, such a method has problems that not only the steps are complicated, but also the production cost is increased.

【0006】[0006]

【発明が解決しようとする課題】Ba(Zn1/3
2/3)O3で代表される複合ペロブスカイト系誘電体も
やはり焼結温度が1550℃を越える難焼結性物質であって
焼結が難しいという短所を有しており、よって、焼結温
度を低くするために添加される元素や化合物(BaZr
3、Mnなど)まで勘案すると、6〜8種類以上の成
分が含まれるので、工程因子を制御し難いという問題点
を抱えている。
SUMMARY OF THE INVENTION Ba (Zn 1/3 T
a 2/3 ) Composite perovskite-based dielectrics represented by O 3 are also difficult to sinter because they are difficult-to-sinter materials having a sintering temperature exceeding 1550 ° C. Elements or compounds added to lower the temperature (BaZr
Taking into account O 3 , Mn, etc., there is a problem that it is difficult to control the process factors because it contains 6 to 8 or more types of components.

【0007】さらに、最近は電子機器の小型化に伴っ
て、例えば移動通信に用いられる誘電体フィルターなど
の誘電体デバイスを小型化するために素子の積層化が試
みられている。積層化のためには電極との同時焼成が必
要であり、この場合、廉価のAgやCu電極を使用する
ためには焼結特性に優れた誘電体が要求される。従っ
て、現在まで開発されたマイクロ波用誘電特性を少なく
ともほとんどそのまま保持しながら焼結特性に優れてお
り且つ簡単な組成を有する、新しい誘電体セラミック組
成物の開発に対する必要性は依然として要求されてい
る。
Further, recently, with the miniaturization of electronic equipment, an attempt has been made to stack elements in order to miniaturize a dielectric device such as a dielectric filter used for mobile communication. Simultaneous firing with electrodes is necessary for lamination, and in this case, a dielectric material having excellent sintering characteristics is required to use inexpensive Ag or Cu electrodes. Accordingly, there is still a need for the development of a new dielectric ceramic composition which has excellent sintering characteristics and has a simple composition while maintaining at least the dielectric characteristics for microwaves developed to date at least as it is. .

【0008】本発明者はこのような点に着眼して、現在
広く常用されているABO3形の立方(Cubic)の複合ペロ
ブスカイト構造を有する化合物のBサイト(site)のイオ
ンからなる2元系材料に対して研究を重ねた結果、誘電
率やQ値などの誘電特性は複合ペロブスカイト構造の化
合物とほぼ同一の水準を保持しながら、焼結はこれより
低い温度で可能であるという事実を発見して本発明を完
成した。
In view of such a point, the present inventor has considered a binary system composed of B site ions of a compound having a complex perovskite structure of the cubic (Cubic) form of ABO 3 which is widely used at present. As a result of repeated research on materials, we found that sintering can be performed at lower temperatures while maintaining dielectric properties such as dielectric constant and Q value at almost the same level as compounds with complex perovskite structure Thus, the present invention has been completed.

【0009】従って、本発明の目的は、今まで開発され
た誘電体の誘電特性を少なくともそのまま保持しなが
ら、優れた焼結特性と簡単な組成をもって製造工程上の
利点があるマイクロ波誘電体セラミック組成物を提供す
ることにある。
Accordingly, an object of the present invention is to provide a microwave dielectric ceramic which has excellent sintering characteristics and a simple composition and has an advantage in a manufacturing process while maintaining at least the dielectric characteristics of a dielectric material developed so far. It is to provide a composition.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する本発
明のマイクロ波用誘電体セラミック組成物は、一般式
B′B″26(B′はCo、Mn、Niの中から選ばれ
た少なくともいずれか一種の金属、B″はNb、Taの
中から選ばれたいずれか一種の金属)で表わされること
を特徴とする。
Microwave dielectric ceramic composition of the present invention to achieve the above object, according to an aspect of the general formula B'B "2 O 6 (B 'is selected Co, Mn, from among Ni In addition, at least one kind of metal, and B ″ is any kind of metal selected from Nb and Ta).

【0011】また、上記目的を達成する本発明のマイク
ロ波用誘電体セラミック組成物は、B′Nb26とB′
Ta26(B′はCo、Mn、Niの中から選ばれた少
なくともいずれか一種の金属)が所定のモル比で混合さ
れた固溶体からなることを特徴とする。
Further, the dielectric ceramic composition for microwaves of the present invention, which achieves the above object, comprises B′Nb 2 O 6 and B ′
It is characterized by comprising a solid solution in which Ta 2 O 6 (B ′ is at least one metal selected from Co, Mn and Ni ) is mixed at a predetermined molar ratio.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明はこれに限定されない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited thereto.

【0013】誘電体材料を実際に応用するためには、誘
電率εが大きければ大きいほど、そして共振周波数温度
係数が0に近い値を持ちながら正、負(+、−)で調節
できれば良いと知られている。しかし、大部分の場合、
単一の誘電体セラミック組成物のみでは共振周波数温度
係数が0に近い値を持たないために、これら相互間の固
溶体(Solid solution)を形成することにより、その値を
調節しようとするのが一般的である。
In order to actually apply the dielectric material, the larger the permittivity ε is, the better it can be, if the resonance temperature coefficient has a value close to 0, and it can be adjusted in positive and negative (+, −). Are known. But in most cases,
Since the resonance frequency temperature coefficient does not have a value close to 0 with only a single dielectric ceramic composition, it is generally attempted to adjust the value by forming a solid solution between them (Solid solution). It is a target.

【0014】本発明によるB′B″26誘電体セラミッ
ク組成物もやはり後述の表1及び2から分かるように、
B′Ta26系の場合には共振周波数温度係数が(+)
値を有するが、B′Nb26系の場合には(−)値を有
すると確認された。従って、B′Nb26系とB′Ta
26系の誘電体セラミック組成物を適当なモル比で互い
に固溶させて固溶体を形成することにより、共振周波数
温度係数を0に近い値で(+)(−)によって調節可能
であるという事実を発見した。
The B'B " 2 O 6 dielectric ceramic composition according to the present invention also has the following characteristics, as can be seen from Tables 1 and 2 below.
In the case of B'Ta 2 O 6 system, the temperature coefficient of resonance frequency is (+)
It was confirmed that the B′Nb 2 O 6 system had a (−) value. Therefore, B'Nb 2 O 6 system and B'Ta
It is said that the resonance frequency temperature coefficient can be adjusted by (+) (-) at a value close to 0 by forming a solid solution by solid-solving the 2 O 6 -based dielectric ceramic compositions with each other at an appropriate molar ratio. Found the fact.

【0015】一方、誘電体セラミック組成物の誘電特性
を向上させるか、或いは焼結温度を低くする目的でいろ
んな酸化物を燃焼調剤として添加するのが一般的であ
る。例えば、誘電体組成物の誘電特性を向上させるため
にはMnCO3、MgO、SrCO3、またはZnOなど
の酸化物を添加し、焼結温度を低くするためにはガラス
やPb、Bi又はV系酸化物のような低融点の物質を添
加して、液相で焼結がなされるようにしている。
On the other hand, it is common to add various oxides as combustion modifiers for the purpose of improving the dielectric properties of the dielectric ceramic composition or lowering the sintering temperature. For example, an oxide such as MnCO 3 , MgO, SrCO 3 , or ZnO is added to improve the dielectric properties of the dielectric composition, and glass, Pb, Bi, or V-based is used to lower the sintering temperature. A low-melting substance such as an oxide is added so that sintering is performed in the liquid phase.

【0016】本発明で添加される酸化物添加剤の適切な
含量は誘電体セラミック組成物の全体重量の0.05〜2.0
重量%であるが、添加剤の含量が0.05重量%未満の場合
には添加剤の添加効果を期待することができなく、2.0
重量%を超過する場合には第2相(Second Phase)の出現
で誘電特性が低下する虞がある。
A suitable content of the oxide additive added in the present invention is 0.05 to 2.0% of the total weight of the dielectric ceramic composition.
However, if the content of the additive is less than 0.05% by weight, the effect of adding the additive cannot be expected, and 2.0% by weight.
If the content exceeds the weight percentage, the dielectric properties may be reduced due to the appearance of the second phase.

【0017】本発明者は前記の様々な燃焼調剤を本発明
の誘電体セラミック組成物に添加して誘電特性の向上及
び焼結温度の低下を図ろうとするものである。
The present inventor has attempted to improve the dielectric properties and lower the sintering temperature by adding the various combustion preparations to the dielectric ceramic composition of the present invention.

【0018】[0018]

【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0019】(第1実施例) 高純度のNb25またはTa25と、B′O(B′=
o、Niの中のいずれか一種)Mn34またはCaCO
3粉末を定量に秤量(Weighing)し、これらを蒸留水でジ
ルコニアボール(ZrO2 Ball)を用いて24時間混合し
た。その後、比重差による分級を抑制するためにスプレ
ーを用いてホットプレート(Hot Plate)上に噴射して急
速乾燥を行った。乾燥された粉末を900〜1050℃の温度
で2時間アルミナ炉で仮焼(Calcination)してB′Nb2
6またはB′Ta26粉末を合成した。仮焼粉末を粉
砕してジルコニアボール(ZrO2 Ball)及び蒸留水と一緒
に24時間ボールミル(ball mill)した。粉砕粉末を100
℃のオーブンで適切な水分量に乾燥した後、1000Kg/cm2
の圧力で直径10mm×厚さ約3〜4mmの円周形状に圧縮
加圧成形した。前記試片を1150〜1600℃の温度で2時間
焼結した。仮焼または焼結時の昇温速度は5℃/minで
あり、その後炉冷した。このようにして得た焼結試片の
Q値、共振周波数温度係数(τf)、誘電率εを10G
Hzでネットワーク分析器(HP8510)を用いてハ
キー−コルマン(Hakki-Coleman)のポストレゾナイト法
(Post resonator method)で測定し、更にQ値が高い試
片は空洞共振器法(Cavity法)で測定した。
(First Embodiment) High purity Nb 2 O 5 or Ta 2 O 5 and B′O (B ′ = C
o, one of Ni ) Mn 3 O 4 or CaCO
The three powders were weighed and weighed (Weighing) and mixed with distilled water using zirconia balls (ZrO 2 Ball) for 24 hours. Thereafter, in order to suppress classification due to a difference in specific gravity, rapid drying was performed by spraying onto a hot plate using a spray. The dried powder is calcined in an alumina furnace at a temperature of 900 to 1050 ° C. for 2 hours to obtain B′Nb 2
O 6 or B′Ta 2 O 6 powder was synthesized. The calcined powder was pulverized and ball milled with zirconia balls (ZrO 2 Ball) and distilled water for 24 hours. 100 ground powder
After drying to an appropriate amount of water in an oven at ℃, 1000Kg / cm 2
Under pressure to form a circular shape having a diameter of 10 mm and a thickness of about 3 to 4 mm. The specimen was sintered at a temperature of 1150-1600 ° C. for 2 hours. The rate of temperature rise during calcination or sintering was 5 ° C./min, followed by furnace cooling. The Q value, the resonance frequency temperature coefficient (τf) and the dielectric constant ε of the sintered specimen thus obtained were 10 G
Hakki-Coleman post-resonite method using a network analyzer (HP8510) in Hz
(Post resonator method), and a sample having a higher Q value was measured by a cavity resonator method.

【0020】一方、Q値は焼結温度によって異なるの
で、相違した焼結温度でQ値を繰り返し測定して一番優
秀な値を示す温度を焼結温度とし、誘電率εは焼結温度
による差があまり無いので、一つの焼結温度で測定し
た。
On the other hand, since the Q value varies depending on the sintering temperature, the Q value is repeatedly measured at different sintering temperatures, and the temperature showing the best value is defined as the sintering temperature, and the dielectric constant ε depends on the sintering temperature. Since there is not much difference, the measurement was performed at one sintering temperature.

【0021】以上の結果を表1及び表2に示した。The above results are shown in Tables 1 and 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】以上の結果からB′Nb26系の誘電率は
20〜25程度と低い。また、複合ペロブスカイトの場
合、焼結温度が1400〜1500℃であるのに比べて、この場
合には1100〜1300℃と一層低い値を示している。
From the above results, the dielectric constant of B'Nb 2 O 6 is as low as about 20 to 25 . Further, in the case of the composite perovskite, the sintering temperature is 1400 to 1500 ° C., but in this case, the value is 1100 to 1300 ° C., which is lower.

【0025】また、B′Ta26系はB′Nb26系に
比べて焼結温度が高く、Q値がやや小さいが、誘電率が
少し高い。そして、(Zr、Sn)TiO4の場合には
他の焼結調剤の添加やSol-Gelなどの複雑な工程
を経た場合の焼結温度なので、(Zr、Sn)TiO4
を充分代替し得る組成を有する。
The B'Ta 2 O 6 system has a higher sintering temperature and a slightly lower Q value than the B'Nb 2 O 6 system, but has a slightly higher dielectric constant . In the case of (Zr, Sn) TiO 4 , since it is the sintering temperature after the addition of other sintering preparations or through a complicated process such as Sol-Gel, (Zr, Sn) TiO 4
Has a composition that can sufficiently substitute for

【0026】(第2実施例) 第1実施例と同様の方法でB′Nb26系とB′Ta2
6系の粉末を合成してから、それぞれの仮焼粉末を粉
砕した後、これらを適切なモル比で秤量してジルコニア
ボール(ZrO2 Ball)及び蒸留水と共に24時間ボールミ
ルした。粉砕粉末を100℃のオーブンで適切な水分量に
乾燥した後、1000Kg/cm2の圧力で直径10mm×厚さ約3
〜4mmの円周形状に圧縮加圧成形した。前記試片を1200
〜1400℃の温度で2時間焼結した。仮焼または焼結時の
昇温速度は5℃/minであり、その後炉冷した。
(Second Embodiment) In the same manner as in the first embodiment, B'Nb 2 O 6 and B'Ta 2
After synthesizing the O 6 -based powder, each calcined powder was pulverized, weighed at an appropriate molar ratio, and ball-milled with zirconia balls (ZrO 2 Ball) and distilled water for 24 hours. After drying the pulverized powder to an appropriate amount of water in an oven at 100 ° C., at a pressure of 1000 kg / cm 2 , the diameter is 10 mm × the thickness is about 3 mm.
It was compression-molded into a circular shape of about 4 mm. 1200
Sintered at a temperature of 11400 ° C. for 2 hours. The rate of temperature rise during calcination or sintering was 5 ° C./min, followed by furnace cooling.

【0027】このようにして得た焼結試片のQ値、共振
周波数温度係数(τf)、誘電率εを10GHzのネッ
トワーク分析器(HP8510)を用いてハキー−コル
マン(Hakki-Coleman)のポストレゾナイト法(Post reso
nator method)で測定し、更にQ値の高い試片は空洞共
振器法(Cavity法)で測定した。
The Q value, the resonance frequency temperature coefficient (τf) and the dielectric constant ε of the sintered sample thus obtained were measured using a network analyzer (HP8510) having a frequency of 10 GHz and a post of Hakki-Coleman was used. Resonite method (Post reso
The sample with a higher Q value was measured by the cavity resonator method (Cavity method).

【0028】一方、Q値は焼結温度によって異なるの
で、相異した焼結温度でQ値を繰り返し測定して一番優
秀な値を示す温度を焼結温度として設定し、その範囲は
1250〜1350℃であり、Ta量に応じて焼結温度が増加し
た。
On the other hand, since the Q value varies depending on the sintering temperature, the Q value is repeatedly measured at different sintering temperatures, and the temperature showing the best value is set as the sintering temperature.
The temperature was 1250 to 1350 ° C, and the sintering temperature increased according to the amount of Ta.

【0029】以上の結果を表3に示した。 Table 3 shows the above results .

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【0032】[0032]

【0033】以上の結果からNiNbTa系の固溶体の
場合、共振周波数温度係数が±10の範囲内に収まるこ
とが分かる。
From the above results , it can be seen that in the case of a NiNbTa-based solid solution, the temperature coefficient of resonance frequency falls within the range of ± 10.

【0034】[0034]

【0035】[0035]

【0036】[0036]

【0037】[0037]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【発明の効果】本発明による誘電体セラミック組成物
は、複合ペロブスカイト構造の誘電体を始めとした従来
のマイクロ波用誘電体セラミック組成物に比べて、品質
係数(Q値)などの誘電特性はほぼ同一の水準を示しな
がら、比較的低温でも焼結が容易に行われ、そして組成
も簡単であって製造工程上の経済的利点がある。
Industrial Applicability The dielectric ceramic composition according to the present invention has better dielectric characteristics such as a quality factor (Q value) than conventional dielectric ceramic compositions for microwaves including a composite perovskite structure dielectric. While exhibiting almost the same level, sintering is easily performed even at a relatively low temperature, and the composition is simple, which has economic advantages in the production process.

フロントページの続き (51)Int.Cl.7 識別記号 FI H01P 7/10 H01P 7/10 (56)参考文献 特開 平7−114822(JP,A) 特開 平7−114823(JP,A) 特開 平7−169330(JP,A) 特開 昭58−135508(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 - 35/22 C04B 35/453 C04B 35/495 - 35/499 Continuation of the front page (51) Int.Cl. 7 identification code FI H01P 7/10 H01P 7/10 (56) References JP-A-7-114822 (JP, A) JP-A-7-114823 (JP, A) JP-A-7-169330 (JP, A) JP-A-58-135508 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/00-35/22 C04B 35/453 C04B 35/495-35/499

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式B′B″26(B′はCo、Mn、
Niの中から選ばれた少なくともいずれか一種の金属、
B″はNb、Taの中から選ばれたいずれか一種の金
属)で表わされることを特徴とするマイクロ波用誘電体
セラミック組成物。
A compound of the general formula B'B " 2 O 6 (B 'is Co, Mn,
At least one kind of metal selected from Ni ,
B "is represented by any one metal selected from Nb and Ta).
【請求項2】前記誘電体セラミック組成物にCuO、V
25、La23、Sb25、WO3、MnCO3、Mg
O、SrCO3、ZnO、Bi23の中から選ばれる少
なくとも一種の添加剤を添加することを特徴とする請求
項1記載のマイクロ波用誘電体セラミック組成物。
2. The method according to claim 2, wherein said dielectric ceramic composition comprises CuO, V
2 O 5 , La 2 O 3 , Sb 2 O 5 , WO 3 , MnCO 3 , Mg
O, SrCO 3, ZnO, Bi 2 O at least one is characterized by the addition of additives according to claim 1 microwave dielectric ceramic composition according selected from the three.
【請求項3】前記添加剤の添加量が誘電体セラミック組
成物の全体重量の0.05〜2.0重量%であることを特徴と
する請求項2記載のマイクロ波用誘電体セラミック組成
物。
3. The dielectric ceramic composition for microwave according to claim 2, wherein the amount of the additive is 0.05 to 2.0% by weight based on the total weight of the dielectric ceramic composition.
【請求項4】B′Nb26とB′Ta26(B′は
o、Mn、Niの中から選ばれた少なくともいずれか一
種の金属)が所定のモル比で混合された固溶体からなる
ことを特徴とするマイクロ波用誘電体セラミック組成
物。
4. B'Nb 2 O 6 and B'Ta 2 O 6 (B 'is C
a dielectric ceramic composition for microwaves, comprising a solid solution in which at least one metal selected from o, Mn, and Ni ) is mixed at a predetermined molar ratio.
【請求項5】前記誘電体セラミック組成物にCuO、V
25、La23、Sb25、WO3、MnCO3、Mg
O、SrCO3、ZnO、Bi23の中から選ばれる少
なくとも一種の添加剤を添加することを特徴とする請求
項4記載のマイクロ波用誘電体セラミック組成物。
5. The method according to claim 1, wherein the dielectric ceramic composition comprises CuO, V
2 O 5 , La 2 O 3 , Sb 2 O 5 , WO 3 , MnCO 3 , Mg
O, SrCO 3, ZnO, Bi 2 O at least one is characterized by the addition of additives according to claim 4 microwave dielectric ceramic composition according selected from the three.
【請求項6】前記添加剤の添加量が誘電体セラミック組
成物の全体重量の0.05〜2.0重量%であることを特徴と
する請求項5記載のマイクロ波用誘電体セラミック組成
物。
6. The dielectric ceramic composition for microwave according to claim 5, wherein the amount of the additive is 0.05 to 2.0% by weight based on the total weight of the dielectric ceramic composition.
JP9052441A 1996-06-28 1997-02-20 Dielectric ceramic composition Expired - Fee Related JP3011123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9052441A JP3011123B2 (en) 1996-06-28 1997-02-20 Dielectric ceramic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-169337 1996-06-28
JP16933796 1996-06-28
JP9052441A JP3011123B2 (en) 1996-06-28 1997-02-20 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH1072258A JPH1072258A (en) 1998-03-17
JP3011123B2 true JP3011123B2 (en) 2000-02-21

Family

ID=26393052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9052441A Expired - Fee Related JP3011123B2 (en) 1996-06-28 1997-02-20 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3011123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113141B (en) * 2009-10-22 2013-02-13 松下电器产业株式会社 Thermoelectric conversion material and thermoelectric conversion element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100372689B1 (en) * 2000-06-28 2003-02-17 삼성전기주식회사 A method for manufacturing microwave dielectrics
US6680269B2 (en) * 2000-06-29 2004-01-20 The Penn State Research Foundation Bismuth pyrochlore microwave dielectric materials
KR100488769B1 (en) * 2002-06-26 2005-05-12 순천향대학교 산학협력단 Microwave Dielectric Ceramic Compositions
CN107382313B (en) * 2017-06-02 2020-06-12 中国科学院上海硅酸盐研究所 Microwave dielectric ceramic with ultrahigh quality factor, medium-low dielectric constant and near-zero temperature coefficient and preparation method thereof
CN112851346B (en) * 2021-02-25 2023-05-26 电子科技大学 Ultralow-loss zirconium magnesium niobate system microwave dielectric ceramic material and preparation method thereof
CN113072373A (en) * 2021-04-12 2021-07-06 合肥工业大学 Temperature-stable low-dielectric ceramic material suitable for 5G millimeter wave communication application and preparation method thereof
CN116789448B (en) * 2022-03-14 2024-05-10 中国科学院上海硅酸盐研究所 Medium-temperature sintering high-Q-value microwave dielectric material and preparation method and application thereof
CN114751734B (en) * 2022-04-29 2023-07-28 电子科技大学 Dielectric material for low-temperature sintered Mg-Ti-Nb multilayer ceramic capacitor and preparation method thereof
CN116477947A (en) * 2023-05-18 2023-07-25 韶关学院 Method for improving dielectric property of copper tantalate ceramic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113141B (en) * 2009-10-22 2013-02-13 松下电器产业株式会社 Thermoelectric conversion material and thermoelectric conversion element

Also Published As

Publication number Publication date
JPH1072258A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
KR100203846B1 (en) Dielectric ceramic composition
CN100386285C (en) Low temp. sintering niobate microwave dielectric ceramic and preparation process thereof
KR100292915B1 (en) Dielectric ceramic composition
JP2934639B2 (en) Dielectric ceramic composition
JP3011123B2 (en) Dielectric ceramic composition
CN103435342B (en) Titanate microwave dielectric ceramic Ba2Ti5Zn(1-x)MgxO13 and preparation method thereof
JPH04285046A (en) Dielectric porcelain composition
CN102531568A (en) Low-temperature sinterable microwave dielectric ceramic LiBa4Bi3O11 and preparation method thereof
JP2902923B2 (en) High frequency dielectric ceramic composition
JPH06338221A (en) Dielectric ceramic composition for high frequency
KR100489887B1 (en) Microwave dielectric ceramic compositions and prepartion method thereof
KR100402469B1 (en) Microwave Dielectric Ceramic Compositions
JP3006188B2 (en) High frequency dielectric ceramic composition
JP3330011B2 (en) High frequency dielectric ceramic composition
JPH09110526A (en) Composition for producing dielectric porcelain
JP3318396B2 (en) High frequency dielectric ceramic composition
JPH10330165A (en) Dielectric substance ceramic for high frequency
KR100454711B1 (en) Microwave dielectric ceramic compositions
JP2842756B2 (en) High frequency dielectric ceramic composition
KR100240006B1 (en) Dielectric ceramic composition
JP2000109363A (en) Dielectric porcelain composition
KR100234019B1 (en) Dielectric ceramic compositions
JP2917476B2 (en) Dielectric porcelain composition
KR20030097555A (en) Microwave dielectric ceramic compositions and preperation method therof
JPH1125756A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees