JP3005688B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3005688B2
JP3005688B2 JP63311908A JP31190888A JP3005688B2 JP 3005688 B2 JP3005688 B2 JP 3005688B2 JP 63311908 A JP63311908 A JP 63311908A JP 31190888 A JP31190888 A JP 31190888A JP 3005688 B2 JP3005688 B2 JP 3005688B2
Authority
JP
Japan
Prior art keywords
active material
lithium
electrode active
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63311908A
Other languages
Japanese (ja)
Other versions
JPH02158056A (en
Inventor
重人 岡田
準一 山木
敏郎 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63311908A priority Critical patent/JP3005688B2/en
Publication of JPH02158056A publication Critical patent/JPH02158056A/en
Application granted granted Critical
Publication of JP3005688B2 publication Critical patent/JP3005688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は充放電可能なリチウム電池に関し、特に大き
な充放電容量を与える物質を正極活物質としたリチウム
電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a chargeable / dischargeable lithium battery, and more particularly to a lithium battery in which a substance giving a large charge / discharge capacity is used as a positive electrode active material.

[従来の技術] 近年の電子機器の急速な発展に伴い、それに内蔵され
る電池も小型、軽量でしかも高エネルギ密度を有するも
のが、要求されるようになった。このような背景の下
で、負極活物質としてリチウムを用いる電池は、リチウ
ムが亜鉛など一般の電池に用いられる活物質に比べ、還
元作用が強く起電力の大きい電池が作られること、重量
基準の電気化学当量が水素に次いで小さく、活物質の単
位重量当たり取り出しうる電気量が大きいことの2つの
理由から、期待されている。
[Related Art] With the rapid development of electronic devices in recent years, there has been a demand for small and lightweight batteries having high energy density. Against this background, batteries that use lithium as the negative electrode active material can produce batteries with a strong reduction effect and a large electromotive force, compared to active materials used in general batteries such as lithium, and are based on weight. This is expected for two reasons: the electrochemical equivalent is the second smallest after hydrogen, and the amount of electricity that can be extracted per unit weight of the active material is large.

リチウムは水と激しく反応するので、電解質に水溶液
を用いることはできない。リチウムを負極活物質に用い
る電池では、非プロトン性の有機または無機の溶媒にリ
チウム塩を溶解させた溶液、リチウム塩を含む溶融塩、
またはリチウムイオン導電性固体を電解質に用いなくて
はならない。
Since lithium reacts violently with water, aqueous solutions cannot be used for the electrolyte. In a battery using lithium as the negative electrode active material, a solution in which a lithium salt is dissolved in an aprotic organic or inorganic solvent, a molten salt containing a lithium salt,
Alternatively, a lithium ion conductive solid must be used for the electrolyte.

リチウムをはじめとするアルカリ金属およびその合金
を負極活物質とする非水電解液電池は、負極金属イオン
の正極活物質へのインサーションもしくはインターカレ
ーション反応によって、その大放電容量と充電可逆性を
両立させている。従来から、リチウムを負極活物質とし
て用いる二次電池としては、二酸化マンガンや五酸化バ
ナジウムなどのトンネル状もしくは層状の結晶質酸化物
を正極に用いた電池が提案されているが、充放電サイク
ルに伴う構造劣化が激しくその充放電特性は充分とは言
えなかった。
Non-aqueous electrolyte batteries that use lithium or other alkali metals and their alloys as the negative electrode active material have a large discharge capacity and charge reversibility by the insertion or intercalation reaction of the negative electrode metal ions into the positive electrode active material. I have both. Conventionally, as a secondary battery using lithium as a negative electrode active material, a battery using a tunnel or layered crystalline oxide such as manganese dioxide or vanadium pentoxide as a positive electrode has been proposed. The accompanying structural deterioration was so severe that the charge / discharge characteristics were not sufficient.

さらにまた、五酸化バナジウムに五酸化リンを加え、
溶融後急冷することにより得られる非晶質物質について
は、特開昭61−116758号公報および特開昭61−200667号
公報に提案されているが、この物質には (1)溶融急冷による非晶質化工程のコストが大きい。
Furthermore, phosphorus pentoxide is added to vanadium pentoxide,
An amorphous substance obtained by quenching after melting is proposed in JP-A-61-116758 and JP-A-61-200667. The cost of the crystallization process is large.

(2)初期開放電位が3.7V以上あり電解液を分解してし
まう。
(2) The initial open potential is 3.7 V or more, and the electrolytic solution is decomposed.

(3)初期充放電サイクル時に生じる正極内のLi残留現
象によりセル内圧力が低下する等の問題点があった。
(3) There was a problem that the pressure in the cell was lowered due to the Li remaining phenomenon in the positive electrode which occurred during the initial charge / discharge cycle.

[発明が解決しようとする課題] そこで、本発明の目的は、上述した問題点を解消し、
廉価で充放電特性に優れた電池特性を有するリチウム電
池を提供することにある。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to solve the above-described problems,
An object of the present invention is to provide an inexpensive lithium battery having battery characteristics excellent in charge and discharge characteristics.

[課題を解決するための手段] このような目的を達成するために、本発明は、V2O
5に、添加剤として、P2O5、TeO2、GeO2、Sb2O3、Bi
2O3、SiO2、NbO2、Ag2O、PbO、SnO2、MoO2、MoO3、W
O3、CuO、BaO、TiO2およびB2O3よりなる群から選択した
少なくとも1種の酸化物を加え、混合溶融後徐冷して得
られる結晶質複合酸化物を正極活物質として含み、リチ
ウムまたはリチウム合金を負極活物質として含み、正極
活物質および、負極活物質に対して化学的に安定であ
り、かつリチウムイオンが正極活物質あるいは負極活物
質と電気化学反応をするための移動を行い得る物質を電
解質物質としたことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides V 2 O
5 , P 2 O 5 , TeO 2 , GeO 2 , Sb 2 O 3 , Bi
2 O 3 , SiO 2 , NbO 2 , Ag 2 O, PbO, SnO 2 , MoO 2 , MoO 3 , W
O 3 , CuO, BaO, TiO 2 and at least one oxide selected from the group consisting of B 2 O 3 is added, and a crystalline composite oxide obtained by slow cooling after mixing and melting is included as a positive electrode active material, It contains lithium or a lithium alloy as the negative electrode active material, is chemically stable to the positive electrode active material and the negative electrode active material, and transfers lithium ions to perform an electrochemical reaction with the positive electrode active material or the negative electrode active material. It is characterized in that the substance that can be performed is an electrolyte substance.

この正極活物質を用いて正極を形成するには、上述し
た酸化物を混合溶融後、徐冷して得られる結晶質複合酸
化物(以下、混合溶融物という)の粉末とポリテトラフ
ルオロエチレンのような結着剤粉末との混合物をニッケ
ル、ステンレス鋼等の支持体上に圧着成形するか、ある
いは、このような混合物質粉末に導電性を付与するため
アセチレンブラックのような導電性粉末を混合し、これ
にさらにポリテトラフルオロエチレンのような結着剤粉
末を所望に応じて加え、この混合物を金属容器に入れ、
あるいは前述の混合物をニッケル、ステンレス鋼等の支
持体に圧着成形する等の手段によって形成する。
In order to form a positive electrode using this positive electrode active material, a powder of a crystalline composite oxide (hereinafter, referred to as a “mixed melt”) obtained by mixing and melting the above-described oxides and then slowly cooling, and polytetrafluoroethylene are used. A mixture with such a binder powder is compression-molded on a support such as nickel or stainless steel, or a conductive powder such as acetylene black is mixed with the mixed substance powder to impart conductivity. Then, if necessary, a binder powder such as polytetrafluoroethylene is further added thereto, and the mixture is placed in a metal container.
Alternatively, the mixture is formed by means such as press-molding the above-mentioned mixture on a support such as nickel or stainless steel.

負極物質であるリチウムは一般のリチウム電池のそれ
と同様にシート状として、またはそのシートをニッケ
ル、ステンレス鋼等の導電体網に圧着して負極として形
成する。
Lithium, which is a negative electrode material, is formed as a negative electrode by forming a sheet in the same manner as that of a general lithium battery, or by pressing the sheet to a conductive net made of nickel, stainless steel, or the like.

また負極活物質としては、リチウム以外にはリチウム
合金が使用できる。
As the negative electrode active material, a lithium alloy other than lithium can be used.

電解質溶媒には、強い酸化還元雰囲気で安定で、誘電
率が大きく粘度が小さく広い温度範囲で液体であるもの
が選ばれる。誘電率が大きいとイオンの溶媒和作用が強
く、リチウム塩の溶解度が大きく、しかもイオンへの解
離を促進する。粘度が小さいとイオンの易動度が大とな
る。すなわち誘電率か大で粘度が小の液体は高いイオン
導電性電解質を作ることができる。このような点から、
ジメトキシエタン、2−メチルテトラヒドロフラン、エ
チレンカーボネート、メチルホルメート、ジメチルスル
ホキシド、プロピレンカーバイド、アセトニトリル、ブ
チロラクトン、ジメチルフォルムアミドが電解質溶媒と
して選ばれる。
As the electrolyte solvent, one that is stable in a strong redox atmosphere, has a large dielectric constant, a small viscosity, and is liquid in a wide temperature range is selected. When the dielectric constant is large, the solvation action of the ions is strong, the solubility of the lithium salt is large, and the dissociation into ions is promoted. If the viscosity is small, the mobility of ions increases. That is, a liquid having a large dielectric constant and a small viscosity can produce a high ionic conductive electrolyte. From these points,
Dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbide, acetonitrile, butyrolactone, dimethylformamide are selected as the electrolyte solvent.

溶解させるリチウム塩には陰イオンが溶媒和しやす
く、溶媒に対し溶解度が高い点と難酸化還元性の点よ
り、LiClO,LiBF4,LiPF6,LiAlCl4,LiClO4などイオン半径
の大きい安定なルイス酸を含む塩が選ばれる。
Anions are easily solvated in the lithium salt to be dissolved, and from the points of high solubility in the solvent and poor oxidation-reduction properties, stable ionic radius such as LiClO, LiBF 4 , LiPF 6 , LiAlCl 4 , LiClO 4 is large. Salts containing Lewis acids are selected.

両極活物質の接触を避けしかも電解質を保持させるた
めの、適度の機械的強度をもつ多孔の薄い絶縁体をセパ
レータに用いる。耐有機溶媒性で、しかも耐有機溶媒に
対するぬれのよい材料として、ポリプロピレンなどの不
織布が一般に用いられる。
A porous thin insulator having appropriate mechanical strength is used for the separator to avoid contact between the bipolar active materials and retain the electrolyte. A nonwoven fabric such as polypropylene is generally used as a material that is resistant to organic solvents and has good wettability to organic solvents.

[作 用] 本発明によれば、従来のリチウム電池より充放電が大
きく、サイクル性に優れたリチウム電池を構成すること
ができる。
[Operation] According to the present invention, it is possible to configure a lithium battery which has higher charge / discharge than conventional lithium batteries and is excellent in cyclability.

[実施例] 以下、図面を参照して本発明の実施例をより詳細に説
明する。なお各実施例において電池の作製および測定は
アルゴン雰囲気下のアイスボックス中で行なった。
[Example] Hereinafter, an example of the present invention will be described in more detail with reference to the drawings. In each example, the production and measurement of the battery were performed in an ice box under an argon atmosphere.

実施例1 第1図は本発明による電池の一具体例であるコイン型
電池の断面図である。図中1はステンレス製封口板、2
はポリプロピレン製ガスケット、3はステンレス製正極
ケース、4はリチウム負極、5はポリプロピレン製微孔
製セパレータ、6は正極合剤ペレットを示す。
Example 1 FIG. 1 is a sectional view of a coin-type battery which is a specific example of the battery according to the present invention. In the drawing, 1 is a stainless steel sealing plate, 2
Denotes a polypropylene gasket, 3 denotes a stainless steel positive electrode case, 4 denotes a lithium negative electrode, 5 denotes a polypropylene microporous separator, and 6 denotes a positive electrode mixture pellet.

正極活物質には、V2O5をネットワークフォーマーであ
るP2O5と共に95:5のモル組成で混合し、白金るつぼ内で
800内で溶融後徐冷して得られた結晶質複合酸化物を用
いた。得られたV2O5+P2O5の混合溶融物を導電剤(アセ
チレンブラック粉末)、結着剤(ポリテトラフルオロエ
チレン)と共に、70:25:5の重量比で混合の上、ロール
成形し、正極合剤ペレット6(厚さ0.5mm、直径17mm、2
00mg/Cell)とした。まず、封口板1上に金属リチウム
負極4を加圧配置したものをガスケット2の凹部に挿入
し、金属リチウム負極4の上にセパレータ5、正極合剤
ペレット6をこの順序に配置し、電解液としてエチレン
カーボネイトと2−メチルテトラヒドロフランの等容積
混合溶媒にLiAsF6を溶解させた1.5規定溶液をそれぞれ
適量注入して含浸させた後に、正極ケース3をかぶせて
かしめることにより、厚さ2mm、直径23mmのコイン型電
池を作製した。
The positive electrode active material, a V 2 O 5 with P 2 O 5 is a network former 95 were mixed in a molar composition 5, in a platinum crucible
A crystalline composite oxide obtained by melting in 800 and then gradually cooling was used. The obtained V 2 O 5 + P 2 O 5 mixed melt is mixed with a conductive agent (acetylene black powder) and a binder (polytetrafluoroethylene) in a weight ratio of 70: 25: 5, and then roll-formed. And positive electrode mixture pellet 6 (thickness 0.5 mm, diameter 17 mm, 2
00 mg / Cell). First, a metal lithium negative electrode 4 placed under pressure on the sealing plate 1 is inserted into the recess of the gasket 2, and a separator 5 and a positive electrode mixture pellet 6 are placed on the metal lithium negative electrode 4 in this order, After injecting and impregnating a 1.5 N solution of LiAsF 6 in an equal volume mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran in an appropriate volume, and impregnating the mixture, the positive electrode case 3 is covered and swaged to obtain a thickness of 2 mm and a diameter of 2 mm. A 23 mm coin-type battery was produced.

このようにして作製した電池の0.5mA/cm2放電電流密
度での1サイクル目、50サイクル目の充放電プロファイ
ルをそれぞれ第2図、第3図に実線で示す。図中、比較
のためにV2O5結晶質材料の充放電プロファイルを破線
で、仕込み組成(V2O50.95(P2O50.05の急冷非晶質
材料を点線でそれぞれ示している。実線の仕込み組成
(V2O50.95(P2O50.05の混合溶融物は放電初期では
明確なX線反射ピークを持つ結晶質で、1サイクル目の
放電プロファイル上にも3.2V付近に明確なステップが認
められるが、50サイクル目では3.2V付近の放電ステップ
が消滅し、非晶質材料と極めて類似した単調減少プロフ
ァイルに変化していく。
The charge and discharge profiles at the first cycle and the 50th cycle at a discharge current density of 0.5 mA / cm 2 of the battery thus manufactured are shown by solid lines in FIGS. 2 and 3, respectively. In the figure, by a dashed line the charge and discharge profiles of V 2 O 5 crystalline material for comparison, charge composition (V 2 O 5) 0.95 shows (P 2 O 5), respectively 0.05 quenched amorphous material by a dotted line I have. The mixed melt of solid charge composition (V 2 O 5 ) 0.95 (P 2 O 5 ) 0.05 is crystalline with a clear X-ray reflection peak at the beginning of discharge, and is around 3.2 V on the discharge profile of the first cycle. However, at the 50th cycle, the discharge step near 3.2 V disappears and changes to a monotonically decreasing profile very similar to the amorphous material.

V2O5結晶質材料ではV2O5分子当り1原子Li(140Ah/K
g)を越える深さの充放電が続くとV…Oのウィークボ
ンドの破壊が生じ、サイクル容量の急激な低下が起こる
が、(V2O50.95(P2O50.05の混合溶融物では結晶質
であるにもかかわらず充放電を繰り返すうちにネットワ
ークフォーマーであるP2O5の存在により非晶質化が進行
し、V…Oのウィークボンドの破壊を防いでいると考え
られる。さらにこの非晶質化過程で正極活物質の容積が
増加し、これに伴って電池内部の圧力が高まることがLi
の析出形態改善に効果的であると思われ、V2O5結晶質材
料のみならず、(V2O50.95(P2O50.05急冷非晶質材
料よりもサイクル寿命が優れていることがわかる。
In a V 2 O 5 crystalline material, one atom of Li per V 2 O 5 molecule (140 Ah / K
If the charge / discharge at a depth exceeding g) continues, the weak bond of V ... O will be broken and the cycle capacity will drop sharply, but the mixed melting of (V 2 O 5 ) 0.95 (P 2 O 5 ) 0.05 will occur. It is thought that while the charge / discharge cycle is repeated despite the fact that the material is crystalline, the presence of P 2 O 5 , which is a network former, promotes amorphization and prevents the weak bond of V… O from breaking. Can be In addition, the volume of the positive electrode active material increases during the amorphization process, and accordingly, the pressure inside the battery increases.
It is thought to be effective in improving the precipitation morphology of, and the cycle life is superior not only to V 2 O 5 crystalline material but also to (V 2 O 5 ) 0.95 (P 2 O 5 ) 0.05 quenched amorphous material. You can see that there is.

実施例2 電解液としてエチレンカーボネイトと2−メチルテト
ラヒドロフランの等容積混合溶液にLiPF6を溶融させた
1.5規定溶液を用い、それ以外は実施例1と同様にして
(V2O5)と(V2O51-X(P2O5(X:0.1、0.2、0.3、
0.4)の5種の混合溶融物のコイン型リチウム電池を作
製した。この5種のコイン型電池について、0.5mA/cm2
の充放電電流密度で各々2〜3.5Vの電圧規制充放電試験
を行った。第1表に各々の50サイクル目のサイクル容量
を示す。この表から明かなようにネットワークフォーマ
ーであるP2O5の添加量は0<X≦0.3のものが好適でサ
イクル容量の安定性に優れていることがわかる。
Example 2 LiPF 6 was melted in an equal volume mixed solution of ethylene carbonate and 2-methyltetrahydrofuran as an electrolytic solution.
(V 2 O 5 ) and (V 2 O 5 ) 1-X (P 2 O 5 ) X (X: 0.1, 0.2, 0.3,
0.4) A coin-type lithium battery of five kinds of mixed melts was prepared. 0.5 mA / cm 2 for these five types of coin batteries
A voltage-regulated charge / discharge test of 2 to 3.5 V was carried out at a charge / discharge current density of, respectively. Table 1 shows the cycle capacity of each 50th cycle. As is clear from this table, the addition amount of P 2 O 5 as a network former is preferably 0 <X ≦ 0.3, and the stability of cycle capacity is excellent.

実施例3 V2O5にP2O5、TeO2、GeO2、Sb2O3、Bi2O3、SiO2、Nb
O2、Ag2O、PbO、SnO2、MoO2、MoO3、WO3、CuO、BaO、Ti
O2およびB2O3のうち1種の酸化物をV2O5の割合が90モル
%となるように秤量し、実施例1と同様にして正極電池
を作製した。混合溶融物のコイン型リチウム電池を作製
した。この18種のコイン型電池について、0.5mA/cm2
充放電電流密度で各々2〜3.5Vの電圧規制充放電試験を
行った。第2表に各々の50サイクル目のサイクル容量を
示す。この表から明らかなように添加剤としてはP2O5
ものが好適でサイクル容量の安定性に優れていることが
わかる。
Example 3 P 2 O 5 , TeO 2 , GeO 2 , Sb 2 O 3 , Bi 2 O 3 , SiO 2 , Nb were added to V 2 O 5
O 2 , Ag 2 O, PbO, SnO 2 , MoO 2 , MoO 3 , WO 3 , CuO, BaO, Ti
One of O 2 and B 2 O 3 was weighed so that the proportion of V 2 O 5 was 90 mol%, and a positive electrode battery was produced in the same manner as in Example 1. A coin-type lithium battery of the mixed melt was produced. These 18 types of coin-type batteries were subjected to a voltage regulation charge / discharge test of 2 to 3.5 V at a charge / discharge current density of 0.5 mA / cm 2 . Table 2 shows the cycle capacity at the 50th cycle. As is clear from this table, P 2 O 5 is preferable as an additive, and the stability of cycle capacity is excellent.

実施例4 TeO2、GeO2、Sb2O3、Bi2O3、SiO2、NbO2、Ag2O、Pb
O、SnO2、MoO2、MoO3、WO3、CuO、BaO、TiO2およびB2O3
のうち1種の酸化物を第2種添加剤としてV2O5の割合が
90モル%、P2O5が5モル%となるように秤量し、実施例
1と同様にして正極電池を作製した。この17種のコイン
型電池について、0.5mA/cm2の充放電電流密度で各々2
〜3.5Vの電圧規制充放電試験を行った。第3表に各々の
50サイクル目のサイクル容量を示す。この表から明かな
ように添加剤としてはP2O5のものが好適でサイクル容量
の安定性に優れていることがわかる。
Example 4 TeO 2 , GeO 2 , Sb 2 O 3 , Bi 2 O 3 , SiO 2 , NbO 2 , Ag 2 O, Pb
O, SnO 2, MoO 2, MoO 3, WO 3, CuO, BaO, TiO 2 and B 2 O 3
Among them, one oxide is used as a second additive and the proportion of V 2 O 5 is
The weight was weighed so that 90 mol% and P 2 O 5 became 5 mol%, and a positive electrode battery was produced in the same manner as in Example 1. For each of these 17 types of coin-type batteries, a charge / discharge current density of 0.5 mA / cm 2 was 2 for each.
A voltage regulation charge / discharge test of ~ 3.5V was performed. Table 3 shows each
The cycle capacity at the 50th cycle is shown. As is clear from this table, it is understood that P 2 O 5 is preferable as an additive and has excellent cycle capacity stability.

[発明の効果] 以上説明したように、本発明によれば、可逆容量の大
きな小型高エネルギ密度のリチウム電池を構成すること
ができ、本発明の電池はコイン型電池など種々の分野に
利用できるという利点を有する。
[Effects of the Invention] As described above, according to the present invention, a small high-density lithium battery having a large reversible capacity can be formed, and the battery of the present invention can be used in various fields such as a coin-type battery. It has the advantage that.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例であるコイン型電池の構成例
を示す断面図、 第2図は本発明の一実施例における電池の1サイクル目
の充放電特性を示す特性図、 第3図は本発明の一実施例における電池の50サイクル目
の充放電特性を示す特性図である。 1……ステンレス製封口板、 2……ポリプロピレン製ガスケット、 3……ステンレス製正極ケース、 4……リチウム負極、 5……ポリプロピレン製セパレータ、 6……正極合剤ペレット。
FIG. 1 is a sectional view showing a configuration example of a coin-type battery according to one embodiment of the present invention, FIG. 2 is a characteristic diagram showing charge / discharge characteristics in a first cycle of the battery according to one embodiment of the present invention, The figure is a characteristic diagram showing the charge / discharge characteristics of the battery at the 50th cycle in one example of the present invention. DESCRIPTION OF SYMBOLS 1 ... Stainless steel sealing plate, 2 ... Polypropylene gasket, 3 ... Stainless steel positive electrode case, 4 ... Lithium negative electrode, 5 ... Polypropylene separator, 6 ... Positive electrode mixture pellet.

フロントページの続き (56)参考文献 特開 昭61−116756(JP,A) 特開 昭61−116757(JP,A) 特開 昭61−116758(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/48 - 4/58 H01M 10/40 Continuation of the front page (56) References JP-A-61-116756 (JP, A) JP-A-61-116757 (JP, A) JP-A-61-116758 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01M 4/48-4/58 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】V2O5に、添加剤として、P2O5、TeO2、Ge
O2、Sb2O3、Bi2O3、SiO2、NbO2、Ag2O、PbO、SnO2、MoO
2、MoO3、WO3、CuO、BaO、TiO2、およびB2O3よりなる群
から選択した少なくとも1種の酸化物を加え、混合溶融
後徐冷して得られる結晶質複合酸化物を正極活物質とし
て含み、リチウムまたはリチウム合金を負極活物質とし
て含み、前記正極活物質および、前記負極活物質に対し
て化学的に安定であり、かつリチウムイオンが前記正極
活物質あるいは前記負極活物質と電気化学反応をするた
めの移動を行い得る物質を電解質物質としたことを特徴
とするリチウム電池。
To 1. A V 2 O 5, as an additive, P 2 O 5, TeO 2 , Ge
O 2 , Sb 2 O 3 , Bi 2 O 3 , SiO 2 , NbO 2 , Ag 2 O, PbO, SnO 2 , MoO
2 , MoO 3 , WO 3 , CuO, BaO, TiO 2 , and at least one oxide selected from the group consisting of B 2 O 3 are added, mixed and melted. Included as a positive electrode active material, including lithium or a lithium alloy as a negative electrode active material, the positive electrode active material, and chemically stable with respect to the negative electrode active material, and lithium ion is the positive electrode active material or the negative electrode active material A lithium battery characterized in that a substance which can move to cause an electrochemical reaction with the electrolyte is an electrolyte substance.
JP63311908A 1988-12-12 1988-12-12 Lithium battery Expired - Lifetime JP3005688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311908A JP3005688B2 (en) 1988-12-12 1988-12-12 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311908A JP3005688B2 (en) 1988-12-12 1988-12-12 Lithium battery

Publications (2)

Publication Number Publication Date
JPH02158056A JPH02158056A (en) 1990-06-18
JP3005688B2 true JP3005688B2 (en) 2000-01-31

Family

ID=18022865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311908A Expired - Lifetime JP3005688B2 (en) 1988-12-12 1988-12-12 Lithium battery

Country Status (1)

Country Link
JP (1) JP3005688B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142067A (en) * 1993-07-12 1995-06-02 Wilson Greatbatch Ltd Cathode for electrochemical battery and its preparation and electrochemical battery
KR20130018435A (en) * 2011-07-19 2013-02-22 가부시키가이샤 히타치세이사쿠쇼 Ionic rechargeable battery electrode, method for manufacturing thereof, and lithium and magnesium ion rechargeable batteries

Also Published As

Publication number Publication date
JPH02158056A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
EP1995817B1 (en) Lithium rechargeable battery using ionic liquid
JP3769291B2 (en) Non-aqueous electrolyte battery
EP0803924B1 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
EP0567149B1 (en) Nonaqueous secondary battery
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06325765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JPH07176322A (en) Electrolytic solution for li secondary battery
CN104078646A (en) Anode, battery, and methods of manufacturing them
KR100426095B1 (en) Non-aqueous electrolyte secondary cell
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3005688B2 (en) Lithium battery
JP2724350B2 (en) Lithium battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP2965674B2 (en) Lithium secondary battery
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JP3202880B2 (en) Crystalline lithium metal, method for producing the same, and lithium secondary battery
JPS62176054A (en) Lithium battery
WO1996029750A1 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
JP2559055B2 (en) Lithium battery
JPH0424828B2 (en)
JPH0456428B2 (en)
JPH0714608A (en) Battery
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JPH0350385B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10