JP3005474B2 - 2次元映像を3次元映像に変換する装置および方法 - Google Patents

2次元映像を3次元映像に変換する装置および方法

Info

Publication number
JP3005474B2
JP3005474B2 JP8208173A JP20817396A JP3005474B2 JP 3005474 B2 JP3005474 B2 JP 3005474B2 JP 8208173 A JP8208173 A JP 8208173A JP 20817396 A JP20817396 A JP 20817396A JP 3005474 B2 JP3005474 B2 JP 3005474B2
Authority
JP
Japan
Prior art keywords
parallax
information
signal
parallax calculation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8208173A
Other languages
English (en)
Other versions
JPH1051812A (ja
Inventor
幸夫 森
章弘 前中
幹二 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8208173A priority Critical patent/JP3005474B2/ja
Priority to DE69739179T priority patent/DE69739179D1/de
Priority to PCT/JP1997/002471 priority patent/WO1998004087A1/ja
Priority to EP97930812A priority patent/EP0918439B1/en
Priority to KR10-1999-7000337A priority patent/KR100445619B1/ko
Priority to US09/147,518 priority patent/US6445833B1/en
Publication of JPH1051812A publication Critical patent/JPH1051812A/ja
Application granted granted Critical
Publication of JP3005474B2 publication Critical patent/JP3005474B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、2次元映像を3
次元映像に変換する装置および方法に関する。
【0002】
【従来の技術】2次元映像を3次元映像に変換する方法
として、フィールドメモリを用いて、元の2次元映像信
号に対して、時間的に遅延された映像信号(以下、遅延
映像信号という)を生成し、元の2次元映像信号と遅延
映像信号のうち、一方を左目用映像信号として出力し、
他方を右目用映像信号として出力する方法が知られてい
る。しかしながら、この方法では、元の2次元映像信号
に対して時間的に遅延された映像信号を生成するために
フィールドメモリが必要となるため、コストが高いとい
う問題がある。また、この方法では、動きのある2次元
映像のみしか3次元映像に変換することができない。
【0003】
【発明が解決しようとする課題】この発明は、元の2次
元映像信号に対して時間的に遅延された映像信号を生成
するためのフィールドメモリが不要となり、コストの低
廉化が図れる2次元映像を3次元映像に変換する装置お
よび方法を提供することを目的とする。
【0004】また、この発明は、元の2次元映像信号に
よって表される映像が静止映像であっても立体映像が得
られる、2次元映像を3次元映像に変換する装置および
方法を提供することを目的とする。
【0005】
【課題を解決するための手段】この発明による2次元映
像を3次元映像に変換する装置は、2次元映像信号の各
フィールド画面内に、あらかじめ複数の視差算出領域を
設定し、該視差算出領域毎に各視差算出領域内の2次元
映像信号から画像の特徴を抽出する特徴抽出手段と、該
特徴抽出手段で抽出した画像の特徴に基づいて各視差算
出領域毎に視差情報を生成する視差情報生成手段と、
画素毎に、その画素が含まれる前記視差算出領域または
その画素が含まれる前記視差算出領域に近接する前記視
差算出領域の視差情報より単位視差情報を生成する単位
視差情報生成手段と、該単位視差生成情報手段で生成し
た単位視差情報に基づいて3次元映像のための水平視差
を有する第1映像信号と第2映像信号とを前記2次元映
像信号から生成する映像信号生成手段と、を備えること
を特徴とする。
【0006】また、前記視差情報生成手段は、前記画像
の特徴より前記視差算出領域毎の遠近情報を生成する手
段と、画面の高さ位置のうち、前記遠近情報によってあ
らわされる遠近位置が最も近い高さ位置より下側の各視
差算出領域のうち、その視差算出領域に対する前記遠近
情報によって表される遠近位置が、その直上の視差算出
領域に対する前記遠近情報によって表される遠近位置よ
り所定値以上遠い位置である視差算出領域については、
その直上の視差算出領域に対する前記遠近情報によって
表される遠近位置に近接するように、その視差算出領域
に対する前記遠近情報を補正する手段と、補正後の各視
差算出領域毎の前記遠近情報を、各視差算出領域毎の視
差情報に変換する手段と、を備えたことを特徴とする。
【0007】また、2次元映像信号の各フィールド画面
内に、あらかじめ複数の視差算出領域を設定し、該視差
算出領域毎に各視差算出領域内の2次元映像信号から画
像の特徴を抽出する第1ステップと、該第1ステップで
抽出した画像の特徴に基づいて各視差算出領域毎に視差
情報を生成する第2ステップと、1画素毎に、その画素
含まれる前記視差算出領域またはその画素が含まれる
前記視差算出領域に近接する前記視差算出領域の視差情
報より単位視差情報を生成する第3ステップと、該第3
ステップで生成した単位視差情報に基づいて3次元映像
のための水平視差を有する第1映像信号と第2映像信号
とを2次元映像信号から生成する第4ステップと、を備
えることを特徴とする。
【0008】また、前記第2ステップは、前記画像の特
徴より前記視差算出領域毎の遠近情報を生成するステッ
プと、画面の高さ位置のうち、前記遠近情報によってあ
らわされる遠近位置が最も近い高さ位置より下側の各視
差算出領域のうち、その視差算出領域に対する前記遠近
情報によって表される遠近位置が、その直上の視差算出
領域に対する前記遠近情報によって表される遠近位置よ
り所定値以上遠い位置である視差算出領域については、
その直上の視差算出領域に対する前記遠近情報によって
表される遠近位置に近接するように、前記遠近情報を補
正するステップと、補正後の各視差算出領域毎の前記遠
近情報を、各視差算出領域毎の視差情報に変換するステ
ップと、を備えたことを特徴とする。
【0009】
【発明の実施の形態】以下、図面を参照して、この発明
の実施の形態について説明する。
【0010】図1は、2次元映像を3次元映像に変換す
るための2D/3D映像変換装置の全体的な構成を示し
ている。
【0011】2次元映像信号を構成する輝度信号Y、色
差信号R−Yおよび色差信号B−Yは、AD変換回路1
(ADC)によってそれぞれディジタルのY信号、R−
Y信号およびB−Y信号に変換される。
【0012】Y信号は、輝度積算回路7、高周波成分積
算回路8および輝度コントラスト算出回路9に送られる
とともに、第1の左映像用任意画素遅延FIFO11お
よび第1の右映像用任意画素遅延FIFO21に送られ
る。なお、輝度積算回路7、高周波成分積算回路8およ
び輝度コントラスト算出回路9は、本発明の特徴抽出手
段に相当する。
【0013】R−Y信号は、彩度積算回路10に送られ
るとともに、第2の左映像用任意画素遅延FIFO12
および第2の右映像用任意画素遅延FIFO22に送ら
れる。B−Y信号は、彩度積算回路10に送られるとと
もに、第3の左映像用任意画素遅延FIFO13および
第3の右映像用任意画素遅延FIFO23に送られる。
【0014】輝度積算回路7は、1フィールド毎に、図
2に示すように、1フィールド画面内に予め設定された
複数個の視差算出領域E1〜E12それぞれに対する輝
度積算値を算出する。高周波成分積算回路8は、1フィ
ールド毎に、各視差算出領域E1〜E12それぞれに対
する高周波成分の積算値を算出する。輝度コントラスト
算出回路9は、1フィールド毎に、各視差算出領域E1
〜E12それぞれに対する輝度コントラストを算出す
る。彩度積算回路10は、1フィールド毎に、各視差算
出領域E1〜E12それぞれに対する彩度の積算値を算
出する。
【0015】視差算出領域E1〜E12それぞれに対す
る輝度積算値、各視差算出領域E1〜E12それぞれに
対する高周波成分の積算値、各視差算出領域E1〜E1
2それぞれに対する輝度コントラストおよび各視差算出
領域E1〜E12それぞれに対する彩度の積算値が、視
差算出領域E1〜E12ごとの映像の遠近に関する画像
の特徴である。
【0016】なお、1フィールド画面内には、実際に
は、図15に示すように6行10列の計60個の視差算
出領域が設定されているが、説明の便宜上、図2に示す
ように、1フィールド画面内に、3行4列の計12個の
視差算出領域E1〜E12が設定されているものとす
る。
【0017】CPU3は、輝度積算回路7、高周波成分
積算回路8、輝度コントラスト算出回路9および彩度積
算回路10から送られてきた情報に基づいて、各視差算
出領域E1〜E12に対する視差情報を生成する。CP
U3は本発明の視差情報生成手段に相当する。この例で
は、被写体のように前側にある物体ほど視差量が少な
く、背景のように後ろ側にある物体ほど視差量が大きく
なるように視差情報が生成される。この視差情報の生成
方法の詳細については、後述する。
【0018】CPU3によって算出された各視差算出領
域E1〜E12に対する視差情報は、視差制御回路4に
送られる。視差制御回路4は、各視差算出領域E1〜E
12に対する視差情報に基づいて、各フィールドの各画
素位置ごとの視差情報を生成する。視差制御回路3は本
発明の単位視差情報生成手段に相当する。そして、得ら
れた各画素位置ごとの視差情報に基づいて、各FIFO
11〜13、21〜23から映像信号(Y信号、R−Y
信号、B−Y信号)を読み出す際の読み出しアドレスが
左映像用任意画素遅延FIFO11〜13と右映像用任
意画素遅延FIFO21〜23との間でずれるように、
各FIFO11〜13、21〜23の読み出しアドレス
を制御する。したがって、左映像用任意画素遅延FIF
O11〜13から読み出された左映像信号の水平位相
と、右映像用任意画素遅延FIFO21〜23から読み
出された右映像信号の水平位相が異なるようになる。
【0019】左映像用任意画素遅延FIFO11〜13
から読み出された左映像信号(YL信号、(R−Y)L
信号、(B−Y)L信号)は、DA変換回路(DAC)
5によってアナログ信号に変換された後、図示しない立
体表示装置に送られる。右映像用任意画素遅延FIFO
21〜23から読み出された右映像信号(YR信号、
(R−Y)R信号、(B−Y)R信号)は、DA変換回
路(DAC)6によってアナログ信号に変換された後、
図示しない立体表示装置に送られる。
【0020】左映像信号の水平位相と、右映像信号の水
平位相は異なっているので、左映像と右映像との間に視
差が発生する。この結果、左映像を左目のみで観察し、
右映像を右目のみで観察すると、被写体が背景に対して
前方位置にあるような立体映像が得られる。
【0021】図3は、輝度積算回路7の構成を示してい
る。
【0022】図2においては、各視差算出領域E1〜E
12の水平方向の画素数をm、各視差算出領域E1〜E
12の垂直方向の画素数をn、第1の視差算出領域E1
の左上の座標を(a,b)として、水平位置(HAD)
および垂直位置(VAD)が表されている。
【0023】輝度積算回路7は、タイミング信号発生回
路201、加算回路202および輝度積算レジスタ群2
03および選択回路(SEL)204を備えている。輝
度積算レジスタ群203は、各視差算出領域E1〜E1
2にそれぞれ対応した第1〜第12の輝度積算レジスタ
211〜222を備えている。
【0024】タイミング信号発生回路201には、入力
映像信号の水平同期信号Hsyncおよび垂直同期信号
Vsyncならびに各水平期間の水平アドレスを検出す
るためのクロック信号CLKが入力している。
【0025】タイミング信号発生回路201は、水平同
期信号Hsync、垂直同期信号Vsyncおよびクロ
ック信号CLKに基づいて、第1〜第12のイネーブル
信号EN1〜EN12、リセット信号RSTおよび出力
タイミング信号DOUTを出力する。
【0026】各イネーブル信号EN1〜EN12は、そ
れぞれ各視差算出領域E1〜E12に対応しており、常
時はLレベルであり、入力映像信号の水平垂直位置が対
応する領域内にあるときに、Hレベルとなる。第1〜第
12のイネーブル信号EN1〜EN12は、それぞれ第
1〜第12の輝度積算レジスタ211〜222に、書き
込み信号として入力している。また、第1〜第12のイ
ネーブル信号EN1〜EN12は、選択回路204にも
送られる。選択回路204は、Hレベルのイネーブル信
号に対応する入力データを選択して出力する。
【0027】リセット信号RSTは、入力映像信号にお
ける各フィールドの有効映像開始タイミングで出力さ
れ、各輝度積算レジスタ211〜222に送られる。各
輝度積算レジスタ211〜222にリセット信号RST
が入力されると、その内容が0にされる。
【0028】出力タイミング信号DOUTは、図2に示
すように、入力映像信号の垂直位置が、最下段の視差算
出領域E12の下端の垂直位置を越えた時点から一定期
間だけ、Hレベルとなる。出力タイミング信号DOUT
は、CPU3に送られる。
【0029】入力映像信号における有効映像開始タイミ
ングにリセット信号が出力され、各輝度積算レジスタ2
11〜222の内容が0にされる。入力映像信号の水平
垂直位置が第1の視差算出領域E1内である場合には、
第1のイネーブル信号EN1がHレベルとなるので、第
1の輝度積算レジスタ211に保持されている輝度値が
選択回路204を介して加算回路202に送られるとと
もに、入力映像信号におけるY信号が加算回路202に
入力する。
【0030】したがって、第1の輝度積算レジスタ21
1に保持されていた輝度値と、入力映像信号におけるY
信号とが加算回路202によって加算され、その加算結
果が第1の輝度積算レジスタ211に格納される。つま
り、入力映像信号の水平垂直位置が第1の視差算出領域
E1内である場合においては、第1の視差算出領域E1
内の画素の輝度値が積算されていき、その積算結果が第
1の輝度積算レジスタ211に蓄積される。
【0031】このようにして、各視差算出領域E1〜E
12ごとの輝度積算値が、対応する輝度積算レジスタ2
11〜222に蓄積される。そして、出力タイミング信
号DOUTがHレベルとなると、各輝度積算レジスタ2
11〜222に蓄積されている各視差算出領域E1〜E
12ごとの輝度積算値が、CPU3にデータバス(DA
TA−BUS)を介して送られる。
【0032】図4は、高周波成分積算回路8の構成を示
している。
【0033】高周波成分積算回路8は、タイミング信号
発生回路231、ハイパスフィルタ(HPF)232、
絶対値化回路233、スライス処理回路234、加算回
路235および高周波成分積算レジスタ群236および
選択回路237を備えている。高周波成分積算レジスタ
群236は、各視差算出領域E1〜E12にそれぞれ対
応した第1〜第12の高周波成分積算レジスタ241〜
252を備えている。
【0034】タイミング信号発生回路231の入力信号
および出力信号は、図3のタイミング信号発生回路20
1の入力信号および出力信号と同じである。
【0035】ハイパスフィルタ232としては、たとえ
ば、図5に示すように、5つのDフリップフロップ26
1〜265、入力値の2倍の出力を得るためのビットシ
フト回路266、加算器267および減算器268から
なる、−1、0、2、0および−1のタップ係数を持つ
ハイパスフィルタが用いられる。
【0036】また、スライス処理回路234としては、
図6に示すような入出力特性を有する回路が用いられ
る。0〜Iaまでの入力に対しては、出力を0としてい
るのは、ノイズが高周波成分として抽出されないように
するためである。
【0037】したがって、入力映像信号におけるY信号
の高周波成分がハイパスフィルタ232によって抽出さ
れ、その絶対値が絶対値化回路233により得られ、ス
ライス処理回路234によって高周波成分の絶対値から
ノイズが除去される。
【0038】入力映像信号における有効映像開始タイミ
ングにリセット信号が出力され、各高周波成分積算レジ
スタ241〜252の内容が0にされる。入力映像信号
の水平垂直位置が第1の視差算出領域E1内である場合
には、第1のイネーブル信号EN1がHレベルとなるの
で、第1の高周波成分積算レジスタ241に保持されて
いる高周波成分が選択回路237を介して加算回路23
5に送られるとともに、入力映像信号におけるY信号の
高周波成分(スライス処理回路234の出力)が加算回
路235に入力する。
【0039】したがって、第1の高周波成分積算レジス
タ241に保持されていた高周波成分と、入力映像信号
におけるY信号の高周波成分とが加算回路235によっ
て加算され、その加算結果が第1の高周波成分積算レジ
スタ241に格納される。つまり、入力映像信号の水平
垂直位置が第1の視差算出領域E1内である場合におい
ては、第1の視差算出領域E1内の画素の高周波成分が
積算されていき、その積算結果が第1の高周波成分積算
レジスタ241に蓄積される。
【0040】このようにして、各視差算出領域E1〜E
12ごとの高周波成分の積算値が、対応する高周波成分
積算レジスタ241に蓄積される。そして、出力タイミ
ング信号DOUTがHレベルとなると、各高周波成分積
算レジスタ241〜252に蓄積されている各視差算出
領域E1〜E12ごとの高周波成分の積算値が、CPU
3にデータバスを介して送られる。
【0041】図7は、高周波成分積算回路8の他の例を
示している。
【0042】この高周波成分積算回路8は、タイミング
信号発生回路238、ハイパスフィルタ232、ピーク
検出回路239、加算回路235、高周波成分積算レジ
スタ群236および選択回路237を備えている。
【0043】タイミング信号発生回路238は、図3の
タイミング信号発生回路201とほぼ同じであるが、図
2に示すように、入力映像信号の水平位置が、視差算出
領域E1、E5、E9の直前の水平位置および各視差算
出領域E1〜E12の最後尾の水平位置に達したとき
に、トリガパルス(領域境界信号RST1) が出力され
る点が、図3のタイミング信号発生回路201と異なっ
ている。領域境界信号RST1は、ピーク検出回路23
9に送られる。
【0044】ハイパスフィルタ232によって抽出され
たY信号の高周波成分は、ピーク検出回路239に送ら
れる。ピーク検出回路239は、各視差算出領域E1〜
E12内の各水平ラインごとに、高周波成分の最大値を
検出する。ピーク検出回路239としては、図8に示す
ように、比較回路271、最大値レジスタ272および
ゲート273を備えたものが用いられる。図9は、入力
映像信号の水平同期信号Hsync、領域境界信号RS
T1、ゲート273等の出力を示している。
【0045】最大値レジスタ272には、ハイパスフィ
ルタ232によって抽出されたY信号の高周波成分、領
域境界信号RST1、比較回路271の判定結果信号L
aおよびクロック信号CLKが入力される。比較回路2
71は、最大値レジスタ272の出力と入力映像信号に
おけるY信号の高周波成分とを比較し、Y信号の高周波
成分が最大値レジスタ272の出力より大きいときに、
判定結果信号LaをHレベルにする。
【0046】領域境界信号RST1がHレベルになる
と、最大値レジスタ272の内容は0にされる。領域境
界信号RST1がLレベルである状態において、比較回
路271からの判定結果信号L1がHレベルであれば、
Y信号の高周波成分が最大値レジスタ272に格納され
る。つまり、最大値レジスタ272の内容が更新され
る。したがって、最大値レジスタ272には、領域境界
信号RST1がLレベルである期間ごとに、入力映像信
号の水平垂直位置に対応する視差算出領域E1〜E12
内の1水平ラインの各画素に対するY信号の高周波成分
のうちの最大値が蓄積される。
【0047】ゲート273は、領域境界信号RST1が
Hレベルになると、最大値レジスタ272の出力値を出
力し、領域境界信号RST1がLレベルのときには0を
出力する。つまり、ゲート回路273からは、領域境界
信号RST1がHレベルになるごとに、最大値レジスタ
272に蓄積されていた所定の視差算出領域E1〜E1
2内の1水平ラインに対するY信号の高周波成分の最大
値が出力される。したがって、各高周波成分積算レジス
タ241〜252(図7参照)には、対応する視差算出
領域内の各水平ラインに対するY信号の高周波成分の最
大値の積算値が蓄積されることになる。
【0048】図10は、輝度コントラスト算出回路9の
構成を示している。
【0049】輝度コントラスト算出回路9は、タイミン
グ信号発生回路301および輝度コントラスト検出回路
群302を備えている。輝度コントラスト検出回路群3
02は、各視差算出領域E1〜E12にそれぞれ対応し
た第1〜第12の輝度コントラスト検出回路311〜3
22を備えている。
【0050】タイミング信号発生回路301の入力信号
および出力信号は、図3のタイミング信号発生回路20
1の入力信号および出力信号と同じである。
【0051】各輝度コントラスト検出回路311〜32
2は、図11に示すように、第1の比較回路331、最
大値レジスタ332、第2の比較回路333、最小値レ
ジスタ334および減算器335を備えている。
【0052】最大値レジスタ332には、入力映像信号
におけるY信号、当該輝度コントラスト検出回路に対応
する領域E1〜E12のイネーブル信号EN(N=1、
2…12)、リセット信号RST、第1の比較回路33
1から出力される判定信号Lbおよびクロック信号CL
Kが入力している。第1の比較回路331は、最大値レ
ジスタ332の出力値と入力映像信号におけるY信号と
を比較し、入力映像信号におけるY信号が最大値レジス
タ332の出力値より大きいときに判定信号LbをHレ
ベルにする。
【0053】リセット信号RSTがHレベルになると、
最大値レジスタ332の内容は0にされる。当該輝度コ
ントラスト検出回路に対応する領域E1〜E12のイネ
ーブル信号ENがHレベルでありかつ判定信号LbがH
レベルのときに、Y信号が最大値レジスタ332に格納
される。つまり、最大値レジスタ332の内容が更新さ
れる。したがって、出力タイミング信号DOUTが出力
される直前においては、最大値レジスタ332には、当
該輝度コントラスト検出回路に対応する視差算出領域E
1〜E12内の各画素の輝度値のうちの最大値が蓄積さ
れる。
【0054】最小値レジスタ334には、入力映像信号
におけるY信号、当該輝度コントラスト検出回路に対応
する領域E1〜E12のイネーブル信号EN(N=1、
2…12)、リセット信号RST、第2の比較回路33
3から出力される判定信号Lcおよびクロック信号CL
Kが入力している。第2の比較回路334は、最小値レ
ジスタ334の出力値と入力映像信号におけるY信号と
を比較し、入力映像信号におけるY信号が最小値レジス
タ334の出力値より小さいときに判定信号LcをHレ
ベルにする。
【0055】リセット信号RSTがHレベルになると、
最小値レジスタ334に、予め定められた最大値が設定
される。当該輝度コントラスト検出回路に対応する領域
E1〜E12のイネーブル信号ENがHレベルでありか
つ判定信号LcがHレベルのときに、Y信号が最小値レ
ジスタ334に格納される。つまり、最小値レジスタ3
34の内容が更新される。したがって、出力タイミング
信号DOUTが出力される直前においては、最小値レジ
スタ334には、当該輝度コントラスト検出回路に対応
する視差算出領域E1〜E12内の各画素の輝度値のう
ちの最小値が蓄積される。
【0056】この結果、出力タイミング信号DOUTが
出力される時点においては、減算器335の出力は、対
応する視差算出領域E1〜E12内の各画素の輝度値の
うちの最大値と最小値との差(輝度コントラスト)に対
応した値となる。そして、出力タイミング信号DOUT
が出力されると、減算器335の出力(輝度コントラス
ト)がCPU3に送られる。
【0057】図12は、彩度積算回路10の構成を示し
ている。
【0058】彩度積算回路10は、タイミング信号発生
回路341、彩度算出回路342、加算回路343、彩
度積算レジスタ群344および選択回路345を備えて
いる。彩度積算レジスタ群344は、各視差算出領域E
1〜E12にそれぞれ対応した第1〜第12の彩度積算
レジスタ351〜362を備えている。
【0059】タイミング信号発生回路341の入力信号
および出力信号は、図3のタイミング信号発生回路20
1の入力信号および出力信号と同じである。
【0060】彩度算出回路342は、入力映像信号にお
けるR−Y信号の値を(R−Y)とし、入力映像信号に
おけるB−Y信号の値を(B−Y)として、次の数式1
の演算を行なって、彩度に対応する値SAIを求める。
【0061】
【数1】 入力映像信号における有効映像開始タイミングにリセッ
ト信号RSTが出力され、各彩度積算レジスタ351〜
362の内容が0にされる。入力映像信号の水平垂直位
置が第1の視差算出領域E1内である場合には、第1の
イネーブル信号EN1がHレベルとなるので、第1の彩
度積算レジスタ351に保持されている彩度が選択回路
345を介して加算回路343に送られるとともに、彩
度算出回路342によって演算された彩度が加算回路3
43に入力する。
【0062】したがって、第1の彩度積算レジスタ35
1に保持されている彩度と、彩度算出回路342によっ
て演算された彩度とが加算回路343によって加算さ
れ、その加算結果が第1の彩度積算レジスタ351に格
納される。つまり、入力映像信号の水平垂直位置が第1
の視差算出領域E1内である場合においては、第1の視
差算出領域E1内の画素の彩度が積算されていき、その
積算結果が第1の彩度積算レジスタ351に蓄積され
る。
【0063】このようにして、各視差算出領域E1〜E
12ごとの彩度の積算値が、対応する彩度積算レジスタ
351〜362に蓄積される。そして、出力タイミング
信号DOUTがHレベルとなると、各彩度積算レジスタ
351〜362に蓄積されている各視差算出領域E1〜
E12ごとの彩度の積算値が、CPU3にデータバスを
介して送られる。
【0064】図13は、CPU3によって行なわれる視
差量の算出方法を示している。
【0065】第1の正規化手段401は、各視差算出領
域E1〜E12ごとの高周波成分の積算値を0〜10の
範囲の値に正規化する。第2の正規化手段402は、各
視差算出領域E1〜E12ごとの輝度コントラストを0
〜10の範囲の値に正規化する。第3の正規化手段40
3は、各視差算出領域E1〜E12ごとの輝度積算値を
0〜10の範囲の値に正規化する。第4の正規化手段4
04は、各視差算出領域E1〜E12ごとの彩度積算値
を0〜10の範囲の値に正規化する。
【0066】正規化された各視差算出領域E1〜E12
ごとの高周波成分の積算値には、乗算手段405によっ
て係数K1が積算された後、加算手段409に送られ
る。正規化された各視差算出領域E1〜E12ごとの輝
度コントラストには、乗算手段406によって係数K2
が積算された後、加算手段409に送られる。正規化さ
れた各視差算出領域E1〜E12ごとの輝度積算値に
は、乗算手段407によって係数K3が積算された後、
加算手段409に送られる。正規化された各視差算出領
域E1〜E12ごとの彩度積算値には、乗算手段408
によって係数K4が積算された後、加算手段409に送
られる。
【0067】係数K1、K2、K3、K4の具体例とし
ては、K1=0.6、K2=0.2、K3=0.1、K
4=0.1が挙げられる。また、K1=0.75、K2
=0.25、K3=0.0、K4=0.0が挙げられ
る。
【0068】これらの係数K1〜K4の設定値を制御す
ることにより、高周波成分の積算値、輝度コントラス
ト、輝度積算値および彩度積算値のうちから選択された
任意の1つまたは任意の組み合わせを、映像の遠近に関
する画像特徴量として用いることができる。
【0069】したがって、映像の遠近に関する画像特徴
量として、高周波成分の積算値のみを用いることもでき
る。映像の遠近に関する画像特徴量として、輝度コント
ラストのみを用いることもできる。映像の遠近に関する
画像特徴量として、高周波成分の積算値および輝度コン
トラストを用いることもできる。映像の遠近に関する画
像特徴量として、高周波成分の積算値、輝度コントラス
トおよび輝度積算値を用いることもできる。映像の遠近
に関する画像特徴量として、高周波成分の積算値、輝度
コントラストおよび彩度積算値を用いることもできる。
映像の遠近に関する画像特徴量として、高周波成分の積
算値、輝度コントラスト、輝度積算値および彩度積算値
を用いることもできる。
【0070】加算手段409では、各乗算手段405〜
408によって得られた各視差算出領域E1〜E12ご
との値が加算される。加算手段409によって得られた
各視差算出領域E1〜E12ごとの値は、第5の正規化
手段410によって、0〜10の範囲の値(以下、奥行
き情報という)に正規化される。図14は、加算手段4
09の出力値と第5の正規化手段410によって得られ
る奥行き情報との関係を示している。各視差算出領域E
1〜E12ごとの奥行き情報が、視差算出領域E1〜E
12ごとの映像の遠近に関する情報である。第5の正規
化手段410によって、得られた各視差算出領域E1〜
E12ごとの奥行き情報は、奥行き補正手段411に送
られる。
【0071】一般的な画像では、被写体が前方に存在
し、背景が後方に存在している。また、被写体に対して
ピントが合っている映像が多いため、近くにある物ほ
ど、高周波成分、コントラスト、輝度および彩度が高い
と考えられる。そこで、この実施の形態では、高周波成
分の積算値、輝度コントラスト、輝度積算値および彩度
積算値が大きい領域ほど、前方に存在する物体が写って
いると仮定している。
【0072】したがって、加算手段409によって得ら
れた奥行き情報が大きい領域ほど、前方に存在する物体
が写っている領域であると判断することができる。最も
前方に存在する物体が写っている領域の立体視位置を立
体表示装置の管面位置に設定すると、加算手段409に
よって得られた奥行き情報と、管面位置からの奥行き量
とは反比例する。
【0073】以下、奥行き補正手段411による奥行き
補正処理について説明する。
【0074】奥行き補正処理については、実際に設定さ
れている視差算出領域を例にとって説明したほうが理解
しやいすいので、1フィールドに対して実際に設定され
ている60個の視差算出領域を例にとって、奥行き補正
手段411による奥行き補正処理を説明する。図15
は、1フィールドに対して実際に設定されている60個
の視差算出領域F1〜F60を示している。
【0075】まず、視差算出領域F1〜F60の各行ご
とに、奥行き情報の平均値が算出される。各視差算出領
域F1〜F60ごとの奥行き情報が図16に示すような
値であった場合には、第1〜第6行目ごとの奥行き情報
の平均値は、1.2、3.6、6.0、7.2、4.
0、1.2となる。
【0076】次に、視差算出領域の各行のうち、手前位
置の物体が多く映っている領域が抽出される。つまり、
奥行き情報の平均値が最も大きい行が抽出される。図1
6の例では、第4行目の領域が抽出される。
【0077】次に、抽出された行より下段にある行の各
領域については、直上の領域に対して、急激に奥行き情
報が小さくならないように、抽出された行より下段にあ
る行の各領域の奥行き情報が調整される。具体的には、
抽出された行より下段にある行の各領域の奥行き情報が
直上の領域に対して3以上小さい領域に対しては、直上
の領域の奥行き情報より2だけ小さい値に、その領域の
奥行き情報が変更せしめられる。
【0078】図16の例では、図17に示すように、ま
ず、第5行の各領域F41〜F50のうち、その奥行き
情報が直上の領域の奥行き情報に対して3以上小さい領
域F42〜F49に対して、奥行き情報が補正される。
この後、第6行の各領域F51〜F60のうち、その奥
行き情報が直上の領域の奥行き情報(補正後の奥行き情
報)に対して3以上小さい領域F53〜F58に対し
て、奥行き情報が補正される。
【0079】つまり、任意の水平位置における画面の高
さに対する奥行き情報の関係が、図18に曲線U1で示
すような関係である場合には、奥行き補正によって、画
面の高さに対する奥行き情報の関係が、図18に曲線U
2に示すような関係となるように補正される。
【0080】このように、視差算出領域の各行のうち、
手前位置の物体が多く映っている領域より下段の領域の
奥行き情報が補正されているのは次の理由による。
【0081】一般的には、画面の下側には前方に存在す
る物体が映っていることが多い。また、画面の下側に映
っている物体は、地面等のように変化の少ない画像であ
ることが多い。地面等のように変化の少ない画像は、高
周波成分が低いため、前方にあるにも係わらず、奥行き
情報の値は小さくなる。そこで、奥行き補正により、前
方にある物体であって高周波成分が低い映像に対する奥
行き情報を、その直上の領域の奥行き情報の値より大き
くならない程度に大きくしているのである。
【0082】奥行き補正手段411によって奥行き情報
が補正された各領域(実際はF1〜F60であるが、説
明の便宜上E1〜E12とする)ごとの奥行き情報は、
再正規化手段412によって、0〜10の範囲内で正規
化される。再正規化手段412によって得られた各領域
E1〜E12ごとの奥行き情報は、視差情報決定手段4
13によって、各領域E1〜E12ごとの視差情報に変
換される。
【0083】視差情報決定手段413は、予め設定され
た奥行き情報に対する視差情報との関係に基づいて、各
領域E1〜E12ごとに、奥行き情報を視差情報に変換
する。奥行き情報に対する視差情報との関係は、図19
に直線S1またはS2で示されるように、反比例の関係
である。
【0084】図19において、直線S1で示される奥行
き情報に対する視差情報との関係は、立体感が比較的強
い立体映像を得たい場合に用いられる。直線S2で示さ
れる奥行き情報に対する視差情報との関係は、立体感が
比較的弱い立体映像を得たい場合に用いられる。奥行き
情報に対する視差情報との関係を、直線S1と直線S2
との間で調整することにより、立体感を調整することが
可能である。
【0085】このようにして得られた各領域E1〜E1
2ごとの視差情報は、視差制御回路4(図1参照)に送
られる。なお、奥行き補正手段411による奥行き補正
を省略してもよい。
【0086】図20は、主として、図1の視差制御回路
および任意画素遅延FIFOの構成を示している。
【0087】図20には、任意画素遅延FIFO11〜
13、21〜23のうち、Y信号に対する左映像用任意
画素遅延FIFO11および右映像用任意画素遅延FI
FO21しか示されていないが、他の任意画素遅延FI
FO12、13、22、23も同様な構成でありかつ同
様な制御が行なわれるので、他の任意画素遅延FIFO
12、13、22、23の構成および制御方法について
は、その説明を省略する。
【0088】ところで、CPU3によって算出された視
差情報は、各視差算出領域E1〜E12の中心位置に対
する視差情報である。視差制御回路4では、各視差算出
領域E1〜E12の中心位置に対する視差情報に基づい
て、1フィールド画面の各画素位置に対する視差情報が
求められる。そして、各画素位置に対する2次元映像信
号から、その画素位置に対する視差情報に応じた視差を
有する左映像と右映像とを生成するために、各画素位置
に対する視差情報に基づいて、左映像用任意画素遅延F
IFO11〜13および右映像用任意画素遅延FIFO
21〜23の読み出しアドレスが制御される。
【0089】1フィールド画面の各画素位置に対する視
差情報は、タイミング信号発生回路51、視差補間係数
発生回路52、視差情報記憶手段60、視差選択回路8
0、第1〜第4乗算器81〜84および加算回路85に
よって、生成される。
【0090】入力映像信号の水平同期信号Hsyncお
よび垂直同期信号Vsyncは、タイミング信号発生回
路51に入力している。また、各水平期間の水平アドレ
スを検出するためのクロック信号CLKもタイミング信
号発生回路51に入力している。
【0091】タイミング信号発生回路51は、水平同期
信号Hsync、垂直同期信号Vsyncおよびクロッ
ク信号CLKに基づいて、入力映像信号の絶対的水平位
置を表す水平アドレス信号HAD、入力映像信号の絶対
的垂直位置を表す垂直アドレス信号VAD、入力映像信
号の相対的水平位置を表す相対的水平位置信号HPOS
および入力映像信号の相対的垂直位置を表す相対的垂直
位置信号VPOSを生成して出力する。
【0092】入力映像信号の相対的水平位置および相対
的垂直位置について説明する。
【0093】図21に示すように、図2の視差算出領域
E1〜E12は、次のように設定されている。画面全体
が図21に点線で示すように、4行5列の20個の領域
(以下、第1分割領域という)に分割されている。そし
て、左上端の第1分割領域の中心、右上端の第1分割領
域の中心、左下端の第1分割領域の中心および右下端の
第1分割領域の中心を4頂点とする四角形領域が3行4
列の12個の領域(以下、第2分割領域という)に分割
され、各第2分割領域が視差算出領域E1〜E12とし
て設定されている。
【0094】第1分割領域および第2分割領域の水平方
向の画素数がmで表され、第1分割領域および第2分割
領域の垂直方向の画素数がnとして表されている。入力
映像信号の相対的水平位置は、各第1分割領域の左端を
0とし、右端をmとして、0〜(m−1)で表される。
入力映像信号の相対的垂直位置は、各第1分割領域の上
端を0とし、下端をnとして、0〜(n−1)で表され
る。
【0095】入力映像信号の相対的水平位置信号HPO
Sおよび相対的垂直位置VPOSは、視差補間係数発生
回路52に送られる。視差補間係数発生回路52は、相
対的水平位置信号HPOS、相対的垂直位置VPOSお
よび次の数式2に基づいて、第1視差補間係数KUL、
第2視差補間係数KUR、第3視差補間係数KDLおよ
び第4視差補間係数KDRを生成して出力する。
【0096】
【数2】 1フィールド画面の各画素位置に対する視差情報を生成
する方法の基本的な考え方について、図22を用いて説
明する。水平アドレス信号HADおよび垂直アドレス信
号VADによって表されている水平垂直位置(以下、注
目位置という)が図22のPxyであるとする。注目位
置Pxyに対する視差情報を求める場合について説明す
る。
【0097】(1)まず、CPU3によって算出された
各視差算出領域E1〜E12に対する視差情報のうちか
ら、注目位置Pxyが含まれる第1分割領域の4頂点、
この例ではPE1、PE2、PE5、PE6を中心とす
る視差算出領域E1、E2、E5、E6に対する視差情
報が、それぞれUL、UR、DL、DRとして抽出され
る。つまり、注目位置Pxyが含まれる第1分割領域の
4頂点のうち、左上の頂点を中心とする領域E1の視差
情報が第1視差情報ULとして、右上の頂点を中心とす
る領域E2の視差情報が第2視差情報URとして、左下
の頂点を中心とする領域E5の視差情報が第3視差情報
DLとして、右下の頂点を中心とする領域E6の視差情
報が第4視差情報DRとして抽出される。
【0098】ただし、注目位置が含まれる第1分割領域
が、左上端の第1分割領域である場合のように、注目位
置が含まれる第1分割領域の4頂点のうち1つの頂点の
みが視差検出領域の中心に該当するような場合には、そ
の視差算出領域の視差情報が、第1〜第4の視差情報U
L、UR、DL、DRとして抽出される。
【0099】また、注目位置が含まれる第1分割領域
が、左上端の第1分割領域の右隣の第1分割領域である
場合のように、注目位置が含まれる第1分割領域の4頂
点のうち下側の2つの頂点のみが視差算出領域の中心に
該当するような場合には、注目位置が含まれる第1分割
領域の4頂点のうち上側の2つの頂点に対応する視差情
報UL、URとしては、その下側の頂点を中心とする視
差算出領域の視差情報が抽出される。
【0100】また、注目位置が含まれる第1分割領域
が、左上端の第1分割領域の下隣の第1分割領域である
場合のように、注目位置が含まれる第1分割領域の4頂
点のうち右側の2つの頂点のみが視差算出領域の中心に
該当するような場合には、注目位置が含まれる第1分割
領域の4頂点のうち左側の2つの頂点に対応する視差情
報UL、DLとしては、その右側の頂点を中心とする視
差算出領域の視差情報が抽出される。
【0101】また、注目位置が含まれる第1分割領域
が、右下端の第1分割領域の左隣の第1分割領域である
場合のように、注目位置が含まれる第1分割領域の4頂
点のうち上側の2つの頂点のみが視差算出領域の中心に
該当するような場合には、注目位置が含まれる第1分割
領域の4頂点のうち下側の2つの頂点に対応する視差情
報DL、DRとしては、その上側の頂点を中心とする視
差算出領域の視差情報が抽出される。
【0102】また、注目位置が含まれる第1分割領域
が、右下端の第1分割領域の上隣の第1分割領域である
場合のように、注目位置が含まれる第1分割領域の4頂
点のうち左側の2つの頂点のみが視差算出領域の中心に
該当するような場合には、注目位置が含まれる第1分割
領域の4頂点のうち右側の2つの頂点に対応する視差情
報UR、DRとしては、その左側の頂点を中心とする視
差算出領域の視差情報が抽出される。
【0103】(2)次に、第1〜第4の視差補間係数K
UL、KUR、KDLおよびKDRが求められる。
【0104】第1の視差補間係数KULは、注目位置P
xyを含む第1分割領域eの水平方向幅mに対する、注
目位置Pxyから第1分割領域eの右辺までの距離ΔX
Rとの比{(m−HPOS)/m}と、第1分割領域e
の垂直方向幅nに対する、注目位置Pxyから第1分割
領域eの下辺までの距離ΔYDとの比{(n−VPO
S)/n}との積によって求められる。すなわち、第1
の視差補間係数KULは、注目位置Pxyを含む第1分
割領域eの左上頂点PE1と注目位置Pxyとの距離が
小さいほど大きくなる。
【0105】第2の視差補間係数KURは、注目位置P
xyを含む第1分割領域eの水平方向幅mに対する、注
目位置Pxyから第1分割領域eの左辺までの距離ΔX
Lとの比(HPOS/m}と、第1分割領域eの垂直方
向幅nに対する、注目位置Pxyから第1分割領域eの
下辺までの距離ΔYDとの比{(n−VPOS)/n}
との積によって求められる。すなわち、第2の視差補間
係数KURは、注目位置Pxyを含む第1分割領域eの
右上頂点PE2と注目位置Pxyとの距離が小さいほど
大きくなる。
【0106】第3の視差補間係数KDLは、注目位置P
xyを含む第1分割領域eの水平方向幅mに対する、注
目位置Pxyから第1分割領域eの右辺までの距離ΔX
Rとの比{(m−HPOS)/m}と、第1分割領域e
の垂直方向幅nに対する、注目位置Pxyから第1分割
領域eの上辺までの距離ΔYUとの比(VPOS/n)
との積によって求められる。すなわち、第3の視差補間
係数KDLは、注目位置Pxyを含む第1分割領域eの
左下頂点PE5と注目位置Pxyとの距離が小さいほど
大きくなる。
【0107】第4の視差補間係数KDRは、注目位置P
xyを含む第1分割領域eの水平方向幅mに対する、注
目位置Pxyから第1分割領域eの左辺までの距離ΔX
Lとの比(HPOS/m)と、第1分割領域eの垂直方
向幅nに対する、注目位置Pxyから第1分割領域eの
上辺までの距離ΔYUとの比(VPOS/n)との積に
よって求められる。すなわち、第4の視差補間係数KD
Rは、注目位置Pxyを含む第1分割領域eの右下頂点
PE6と注目位置Pxyとの距離が小さいほど大きくな
る。
【0108】(3)上記(1)で抽出された第1〜第4
の視差情報UL、UR、DL、DRに、それぞれ上記
(2)で算出された第1〜第4の視差補間係数KUL、
KUR、KDL、KDRがそれぞれ乗算される。そし
て、得られた4つの乗算値が加算されることにより、注
目位置Pxyに対する視差情報が生成される。
【0109】視差情報記憶手段60は、領域E1〜E1
2にそれぞれ対応して設けられた第1〜第12の視差レ
ジスタ61〜72を備えている。第1〜第12の視差レ
ジスタ61〜72には、CPU3によって生成された各
領域E1〜E12に対する視差情報が格納される。
【0110】視差情報記憶手段60の後段には、視差選
択回路80が設けられている。視差選択回路80には、
各視差レジスタ61〜72から視差情報がそれぞれ送ら
れる。さらに、視差選択回路80には、タイミング信号
発生回路51から水平アドレス信号HADおよび垂直ア
ドレス信号VADが送られている。
【0111】視差選択回路80は、図23(a)に示さ
れている規則にしたがって、水平アドレス信号HADお
よび垂直アドレス信号VADに対応する領域(図22の
例では、注目位置を含む第1領域の左上頂点を中心とす
る視差算出領域)に対する視差情報を、第1視差情報U
Lとして選択して出力する。さらに、視差選択回路80
は、図23(b)に示されている規則にしたがって、水
平アドレス信号HADおよび垂直アドレス信号VADに
対応する領域(図22の例では、注目位置を含む第1領
域の右上頂点を中心とする視差算出領域)に対する視差
情報を、第2視差情報URとして選択して出力する。
【0112】さらに、視差選択回路80は、図23
(c)に示されている規則にしたがって、水平アドレス
信号HADおよび垂直アドレス信号VADに対応する領
域(図22の例では、注目位置を含む第1領域の左下頂
点を中心とする視差算出領域)に対する視差情報を、第
3視差情報DLとして選択して出力する。さらに、視差
選択回路80は、図23(d)に示されている規則にし
たがって、水平アドレス信号HADおよび垂直アドレス
信号VADに対応する領域(図22の例では、注目位置
を含む第1領域の右下頂点を中心とする視差算出領域)
に対する視差情報を、第4視差情報DRとして選択して
出力する。図23において、たとえば、0〜mのよう
に、a〜bで表現されている記号”〜”は、a以上b未
満を意味する記号として用いられている。
【0113】視差選択回路80によって選択された第1
視差情報UL、第2視差情報UR、第3視差情報DLお
よび第4視差情報DRは、それぞれ第1、第2、第3お
よび第4の乗算器81、82、83、84に入力する。
【0114】第1、第2、第3および第4の乗算器8
1、82、83、84には、それぞれ視差補間係数発生
回路52からの第1視差補間係数KUL、第2視差補間
係数KUR、第3視差補間係数KDLおよび第4視差補
間係数KDRも入力している。
【0115】第1乗算器81は、第1視差情報ULに第
1視差補間係数KULを乗算する。第2乗算器82は、
第2視差情報URに第2視差補間係数KURを乗算す
る。第3乗算器83は、第3視差情報DLに第3視差補
間係数KDLを乗算する。第4乗算器84は、第4視差
情報DRに第4視差補間係数KDRを乗算する。
【0116】各乗算器81、82、83、84の出力
は、加算回路85によって加算される。これにより、注
目位置に対する視差情報PRが得られる。
【0117】各任意画素遅延FIFO11、21は、1
画素より小さい単位での水平位相制御を行なうために、
ぞれぞれ2つのラインメモリ11a、11b、21a、
21bを備えている。各任意画素遅延FIFO11、2
1内の2つのラインメモリ11a、11b、21a、2
1bには、それぞれY信号が入力されているとともにク
ロック信号CLKが入力している。
【0118】タイミング信号発生回路51から出力され
ている水平アドレス信号HADは、標準アドレス発生回
路90にも入力している。標準アドレス発生回路90
は、各任意画素遅延FIFO11、21内の2つのライ
ンメモリ11a、11b、21a、21bに対する標準
書き込みアドレスWADおよび標準読み出しアドレスR
ADを生成して出力する。また、標準アドレス発生回路
90は、2D/3D変換装置によって得られる左映像信
号および右映像信号に付加される同期信号Csyncを
も出力する。この同期信号Csyncによって表される
水平同期信号は、入力映像信号の水平同期信号Hsyn
cより、所定クロック数分遅れた信号となる。
【0119】標準読み出しアドレスRADは、標準読み
出しアドレスによって規定される基準水平位相に対し
て、各任意画素遅延FIFO11、21に入力される映
像信号の水平位相を進めたり遅らしたりできるようにす
るために、標準書き込みアドレスWADに対して、所定
クロック数分遅れている。標準アドレス発生回路90か
ら出力される標準書き込みアドレスWADは、各任意画
素遅延FIFO11、21内の2つのラインメモリ11
a、11b、21a、21bに、書き込みアドレスを示
す書き込み制御信号として入力する。
【0120】標準アドレス発生回路90から出力される
標準読み出しアドレスRADは、加算器91および減算
器92にそれぞれ入力する。加算器91および減算器9
2には、加算回路85から出力される注目位置の視差情
報PRも入力している。
【0121】加算器91では、標準読み出しアドレスR
ADに視差情報PRが加算される。これにより、左映像
用読み出しアドレスPRLが得られる。
【0122】左映像用読み出しアドレスPRLの整数部
PRL1は、左映像用任意画素遅延FIFO11内の第
1のラインメモリ11aに読み出しアドレスRADL1
として入力する。したがって、第1のラインメモリ11
aのアドレスRADL1に対応するアドレスからY信号
が読み出される。読み出されたY信号は、第1の左映像
用乗算器101に入力する。
【0123】左映像用読み出しアドレスPRLの整数部
PRL1に1が加算されたアドレス値は、左映像用任意
画素遅延FIFO11内の第2のラインメモリ11bに
読み出しアドレスRADL2として入力する。したがっ
て、第2のラインメモリ11bのアドレスRADL2に
対応するアドレスからY信号が読み出される。読み出さ
れたY信号は、第2の左映像用乗算器102に入力す
る。
【0124】第1のラインメモリ11aに対する読み出
しアドレスRADL1と、第2のラインメモリ11bに
対する読み出しアドレスRADL2とは、1だけ異なっ
ているので、第1のラインメモリ11aから読み出され
たY信号と、第2のラインメモリ11bから読み出され
たY信号とは、水平位置が1だけずれた信号となる。
【0125】左映像用読み出しアドレスPRLの小数部
PRL2は、第2の左映像補間係数として第2の左映像
用乗算器102に入力する。左映像用読み出しアドレス
PRLの小数部PRL2を1から減算した値(1−PR
L2)は、第1の左映像補間係数として第1の左映像用
乗算器101に入力する。
【0126】したがって、第1の左映像用乗算器101
では、第1のラインメモリ11aから読み出されたY信
号に第1の左映像補間係数(1−PRL2)が乗算され
る。第2の左映像用乗算器102では、第2のラインメ
モリ11bから読み出されたY信号に第2の左映像補間
係数PRL2が乗算される。そして、各乗算器101、
102によって得られたY信号は加算器103で加算さ
れた後、左映像用Y信号YL−OUTとして、出力され
る。
【0127】これにより、標準読み出しアドレスRAD
によって規定される基準水平位相に対して、水平位相量
が注目位置に対する視差情報に応じた量だけ遅れた左映
像用Y信号が得られる。
【0128】減算器92では、標準読み出しアドレスR
ADから視差情報PRが減算される。これにより、右映
像用読み出しアドレスPRRが得られる。
【0129】右映像用読み出しアドレスPRRの整数部
PRR1は、右映像用任意画素遅延FIFO21内の第
1のラインメモリ21aに読み出しアドレスRADR1
として入力する。したがって、第1のラインメモリ21
aのアドレスRADR1に対応するアドレスからY信号
が読み出される。読み出されたY信号は、第1の右映像
用乗算器111に入力する。
【0130】右映像用読み出しアドレスPRRの整数部
PRR1に1が加算されたアドレス値は、右映像用任意
画素遅延FIFO21内の第2のラインメモリ21bに
読み出しアドレスRADR2として入力する。したがっ
て、第2のラインメモリ21bのアドレスRADR2に
対応するアドレスからY信号が読み出される。読み出さ
れたY信号は、第2の右映像用乗算器112に入力す
る。
【0131】第1のラインメモリ21aに対する読み出
しアドレスRADR1と、第2のラインメモリ21bに
対する読み出しアドレスRADR2とは、1だけ異なっ
ているので、第1のラインメモリ21aから読み出され
たY信号と、第2のラインメモリ21bから読み出され
たY信号とは、水平位置が1だけずれた信号となる。
【0132】右映像用読み出しアドレスPRRの小数部
PRR2は、第2の右映像補間係数として第2の右映像
用乗算器112に入力する。右映像用読み出しアドレス
PRRの小数部PRR2を1から減算した値(1−PR
R2)は、第1の右映像補間係数として第1の右映像用
乗算器111に入力する。
【0133】したがって、第1の右映像用乗算器111
では、第1のラインメモリ21aから読み出されたY信
号に第1の右映像補間係数(1−PRR2)が乗算され
る。第2の右映像用乗算器112では、第2のラインメ
モリ21bから読み出されたY信号に第2の右映像補間
係数PRR2が乗算される。そして、各乗算器111、
112によって得られたY信号は加算器113で加算さ
れた後、右映像用Y信号YR−OUTとして、出力され
る。
【0134】これにより、標準読み出しアドレスRAD
によって規定される基準水平位相に対して、水平位相量
が注目位置に対する視差情報に応じた量だけ進んだ右映
像用Y信号が得られる。
【0135】図24は、注目位置に対する視差情報が0
の場合の、各部の信号を示している。
【0136】視差情報が0の場合には、加算器91から
出力される左映像用読み出しアドレスPRLと、減算器
92から出力される右映像用読み出しアドレスPRR
は、ともに標準読み出しアドレスRADと等しい小数部
のない整数部のみからなるアドレスとなる。
【0137】したがって、左映像用任意画素遅延FIF
O11内の第1のラインメモリ11aに対する読み出し
アドレスRADL1と、右映像用任意画素遅延FIFO
21内の第1のラインメモリ21aに対する読み出しア
ドレスRADR1は、標準読み出しアドレスRADと等
しいアドレスとなる。
【0138】また、左映像用任意画素遅延FIFO11
内の第2のラインメモリ11bに対する読み出しアドレ
スRADL2と、右映像用任意画素遅延FIFO21内
の第2のラインメモリ21bに対する読み出しアドレス
RADR2は、標準読み出しアドレスRADより1だけ
大きい値となる。
【0139】また、第1の左映像補間係数(1−PRL
2)および第1の右映像補間係数(1−PRR2)は1
となり、第2の左映像補間係数PRL2および第2の右
映像補間係数PRR2は0となる。
【0140】この結果、左映像用任意画素遅延FIFO
11内の第1のラインメモリ11aの標準アドレスRA
Dに対応するアドレスから読み出されたY信号が加算器
103から左映像用Y信号YL−OUTとして出力さ
れ、右映像用任意画素遅延FIFO21内の第1のライ
ンメモリ21aの標準アドレスRADに対応するアドレ
スから読み出されたY信号が加算器113から右映像用
Y信号YR−OUTとして出力される。つまり、水平方
向の位相ずれ量が同じ2つのY信号、すなわち視差のな
い2つのY信号が左映像用Y信号および右映像用Y信号
として出力される。
【0141】図25は、ある注目位置に対する標準書き
込みアドレスWADが20であり、上記注目位置に対す
る標準読み出しアドレスRADが10であり、上記注目
位置に対する視差情報が1.2の場合の、各アドレス値
の具体例を示している。図26は、その際の各部の信号
を示している。
【0142】この場合には、加算器91から出力される
左映像用読み出しアドレスPRLは、11.2となり、
その整数部PRL1は11となり、その小数部PRL2
は0.2となる。
【0143】したがって、左映像用任意画素遅延FIF
O11内の第1のラインメモリ11aに対する読み出し
アドレスRADL1は11となり、第2のラインメモリ
11bに対する読み出しアドレスRADL2は12とな
る。また、第1の左映像補間係数KL1{=(1−PR
L2)}は0.8となり、第2の左映像補間係数KL2
(=PRL2)は0.2となる。
【0144】したがって、左映像用任意画素遅延FIF
O11内の第1のラインメモリ11aのアドレス11か
らY信号(Y11)が読み出され、第1乗算器101か
らは読み出されたY信号(Y11)の0.8倍の信号
(0.8*Y11)が出力される。
【0145】一方、左映像用任意画素遅延FIFO11
内の第2のラインメモリ11bのアドレス12からY信
号(Y12)が読み出され、第2乗算器102からは読
み出されたY信号(Y12)の0.2倍の信号(0.2
*Y12)が出力される。そして、加算器103から
は、0.8*Y11+0.2*Y12に相当する左映像
用Y信号YL−OUTが出力される。つまり、読み出し
アドレス11.2に相当するY信号が、左映像用Y信号
YL−OUTとして出力される。
【0146】減算器92から出力される右映像用読み出
しアドレスPRRは、8.8となり、その整数部PRR
1は8となり、その小数部PRR2は0.8となる。
【0147】したがって、右映像用任意画素遅延FIF
O21内の第1のラインメモリ21aに対する読み出し
アドレスRADR1は8となり、第2のラインメモリ2
1bに対する読み出しアドレスRADR2は9となる。
また、第1の右映像補間係数KR1{=(1−PRR
2)}は0.2となり、第2の右映像補間係数KR2
(=PRR2)は0.8となる。
【0148】したがって、右映像用任意画素遅延FIF
O21内の第1のラインメモリ21aのアドレス8から
Y信号(Y8 )が読み出され、第1乗算器111から
は読み出されたY信号(Y8 )の0.2倍の信号
(0.2*Y8 )が出力される。
【0149】一方、右映像用任意画素遅延FIFO21
内の第2のラインメモリ21bのアドレス9からY信号
(Y9 )が読み出され、第2乗算器112からは読み
出されたY信号(Y9 )の0.8倍の信号(0.8*
Y9 )が出力される。そして、加算器113からは、
0.2*Y8 +0.8*Y9 に相当する右映像用Y
信号YR−OUTが出力される。つまり、読み出しアド
レス8.8に相当するY信号が、右映像用Y信号YR−
OUTとして出力される。
【0150】この結果、11.2−8.8=2.4の視
差、つまり、視差情報1.2の2倍の視差を互いに有す
る左映像および右映像が得られる。
【0151】上記実施の形態による2D/3D映像変換
装置では、元の2次元映像信号に対して時間的に遅延さ
れた映像信号を生成するためのフィールドメモリが不要
であるため、コストの低廉化が図れる。また、上記実施
の形態による2D/3D映像変換装置では、元の2次元
映像信号によって表される映像が静止映像であっても立
体映像を得ることができる。
【0152】
【発明の効果】この発明によれば、元の2次元映像信号
に対して時間的に遅延された映像信号を生成するための
フィールドメモリが不要となり、コストの低廉化が図れ
る2次元映像を3次元映像に変換する装置および方法が
実現する。
【0153】また、この発明によれば、元の2次元映像
信号によって表される映像が静止映像であっても立体映
像が得られる、2次元映像を3次元映像に変換する装置
および方法が実現する。
【図面の簡単な説明】
【図1】2D/3D映像変換装置の全体構成を示すブロ
ック図である。
【図2】視差算出領域を示す模式図である。
【図3】輝度積算回路の構成を示すブロック図である。
【図4】高周波成分積算回路の構成を示すブロック図で
ある。
【図5】図4のハイパスフィルタ232の具体例を示す
回路図である。
【図6】図4のスライス処理回路234の入出力特性を
示すグラフである。
【図7】高周波成分積算回路の他の例を示すブロック図
である。
【図8】図7のピーク検出回路239の具体例を示す回
路図である。
【図9】ピーク検出回路239の各部の信号を示すタイ
ムチャートである。
【図10】輝度コントラスト算出回路の構成を示すブロ
ック図である。
【図11】図10の輝度コントラスト検出回路の構成を
示す回路図である。
【図12】彩度積算回路の構成を示す回路図である。
【図13】CPUによる視差情報の生成方法を説明する
ための説明図である。
【図14】図13の正規化手段410の入出力関係を示
すグラフである。
【図15】実際に設定される視差算出領域を示す模式図
である。
【図16】奥行き補正前における各視差算出領域の奥行
き情報の一例を示す模式図である。
【図17】奥行き補正後における各視差算出領域の奥行
き情報を示す模式図である。
【図18】奥行き補正前における画面の高さ位置に対す
る奥行き情報との関係および奥行き補正後における画面
の高さ位置に対する奥行き情報との関係を示すグラフで
ある。
【図19】奥行き情報と視差情報との関係を示すグラフ
である。
【図20】主として、視差制御回路および任意画素遅延
FIFOの構成を示すブロック図である。
【図21】相対的水平位置および相対的垂直位置等を示
す模式図である。
【図22】注目画素に対する視差情報を生成する方法を
説明するための説明図である。
【図23】視差選択回路による選択規則を示す図であ
る。
【図24】視差情報が0の場合の各部の信号を示すタイ
ムチャートである。
【図25】視差情報が1.2の場合の各アドレス値を視
差制御回路に付記したブロック図である。
【図26】視差情報が1.2の場合の各部の信号を示す
タイムチャートである。
【符号の説明】
1 AD変換回路 3 CPU 4 視差制御回路 5、6 DA変換回路 7 輝度積算回路 8 高周波成分積算回路 9 輝度コントラスト算出回路 10 彩度積算回路 11、12、13 左映像用任意画素遅延FIFO 21、22、23 右映像用任意画素遅延FIFO 11a、11b、21a、21b ラインメモリ 51 タイミング信号発生回路 52 視差補間係数発生回路 60 視差情報記憶手段 61〜72 視差レジスタ 80 視差選択回路 81〜84 乗算器 85 加算回路 90 標準アドレス発生回路 91 加算器 92 減算器 101、102、111、112 乗算器 103、113 加算器 401、402、403、404、410、412 正
規化手段 405、406、407、408 乗算手段 409 加算手段 411 奥行き補正手段 413 視差情報決定手段
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04N 13/00 - 15/00

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】 2次元映像信号の各フィールド画面内
    に、あらかじめ複数の視差算出領域を設定し、該視差算
    出領域毎に各視差算出領域内の2次元映像信号から画像
    の特徴を抽出する特徴抽出手段と、該特徴抽出手段で抽
    出した画像の特徴に基づいて各視差算出領域毎に視差情
    報を生成する視差情報生成手段と、1画素毎に、その画
    素が含まれる前記視差算出領域またはその画素が含まれ
    る前記視差算出領域に近接する前記視差算出領域の視差
    情報より単位視差情報を生成する単位視差情報生成手段
    と、該単位視差生成情報手段で生成した単位視差情報に
    基づいて3次元映像のための水平視差を有する第1映像
    信号と第2映像信号とを前記2次元映像信号から生成す
    る映像信号生成手段と、を備えることを特徴とした2次
    元映像を3次元映像に変換する装置。
  2. 【請求項2】 前記視差情報生成手段は、前記画像の特
    徴より前記視差算出領域毎の遠近情報を生成する手
    と、画面の高さ位置のうち、前記遠近情報によってあら
    わされる遠近位置が最も近い高さ位置より下側の各視差
    算出領域のうち、その視差算出領域に対する前記遠近情
    報によって表される遠近位置が、その直上の視差算出領
    域に対する前記遠近情報によって表される遠近位置より
    所定値以上遠い位置である視差算出領域については、そ
    直上の視差算出領域に対する前記遠近情報によって表
    される遠近位置に近接するように、前記遠近情報を補正
    する手段と、補正後の各視差算出領域毎の前記遠近情報
    を、各視差算出領域毎の視差情報に変換する手段と、を
    備えたことを特徴とする請求項1に記載の2次元映像を
    3次元映像に変換する装置。
  3. 【請求項3】 2次元映像信号の各フィールド画面内
    に、あらかじめ複数の視差算出領域を設定し、該視差算
    出領域毎に各視差算出領域内の2次元映像信号から画像
    の特徴を抽出する第1ステップと、該第1ステップで抽
    出した画像の特徴に基づいて各視差算出領域毎に視差情
    報を生成する第2ステップと、1画素毎に、その画素が
    含まれる前記視差算出領域またはその画素が含まれる前
    記視差算出領域に近接する前記視差算出領域の視差情報
    より単位視差情報を生成する第3ステップと、該第3ス
    テップで生成した単位視差情報に基づいて3次元映像の
    ための水平視差を有する第1映像信号と第2映像信号と
    を2次元映像信号から生成する第4ステップと、を備え
    ることを特徴とした2次元映像を3次元映像に変換する
    方法。
  4. 【請求項4】 前記第2ステップは、前記画像の特徴よ
    り前記視差算出領域毎の遠近情報を生成するステップ
    と、画面の高さ位置のうち、前記遠近情報によってあら
    わされる遠近位置が最も近い高さ位置より下側の各視差
    算出領域のうち、その視差算出領域に対する前記遠近情
    報によって表される遠近位置が、その直上の視差算出領
    域に対する前記遠近情報によって表される遠近位置より
    所定値以上遠い位置である視差算出領域については、そ
    直上の視差算出領域に対する前記遠近情報によって表
    される遠近位置に近接するように、前記遠近情報を補正
    するステップと、補正後の各視差算出領域毎の前記遠近
    情報を、各視差算出領域毎の視差情報に変換するステッ
    プと、を備えたことを特徴とする請求項1に記載の2次
    元映像を3次元映像に変換する方法。
JP8208173A 1996-07-18 1996-08-07 2次元映像を3次元映像に変換する装置および方法 Expired - Lifetime JP3005474B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8208173A JP3005474B2 (ja) 1996-08-07 1996-08-07 2次元映像を3次元映像に変換する装置および方法
DE69739179T DE69739179D1 (de) 1996-07-18 1997-07-16 Eidimensionale bilder
PCT/JP1997/002471 WO1998004087A1 (fr) 1996-07-18 1997-07-16 Dispositif et procede pour convertir des signaux video bidimensionnels en signaux video tridimensionnels
EP97930812A EP0918439B1 (en) 1996-07-18 1997-07-16 Device for converting two-dimensional video into three-dimensional video
KR10-1999-7000337A KR100445619B1 (ko) 1996-07-18 1997-07-16 2차원 영상을 3차원 영상으로 변환하는 장치 및 방법
US09/147,518 US6445833B1 (en) 1996-07-18 1997-07-16 Device and method for converting two-dimensional video into three-dimensional video

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8208173A JP3005474B2 (ja) 1996-08-07 1996-08-07 2次元映像を3次元映像に変換する装置および方法

Publications (2)

Publication Number Publication Date
JPH1051812A JPH1051812A (ja) 1998-02-20
JP3005474B2 true JP3005474B2 (ja) 2000-01-31

Family

ID=16551876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8208173A Expired - Lifetime JP3005474B2 (ja) 1996-07-18 1996-08-07 2次元映像を3次元映像に変換する装置および方法

Country Status (1)

Country Link
JP (1) JP3005474B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729812B2 (ja) * 2001-06-27 2011-07-20 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
KR100893855B1 (ko) 2002-03-26 2009-04-17 주식회사 엘지이아이 3차원 포그라운드와 2차원 백그라운드 결합 방법 및 3차원어플리케이션 엔진
JP4061305B2 (ja) 2002-08-20 2008-03-19 一成 江良 立体視用画像を作成する方法および装置
EP1665815A2 (de) * 2003-09-15 2006-06-07 Armin Grasnick Verfahren zum erstellen einer raumbildvorlage für abbildungsverfahren mit rumlichen tiefenwirkungen und vorrichtung zum anzeigen einer raumbildvorlage
JP4523368B2 (ja) * 2004-09-10 2010-08-11 株式会社マーキュリーシステム 立体視画像生成装置およびプログラム
JP5347717B2 (ja) 2008-08-06 2013-11-20 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP2010062695A (ja) 2008-09-02 2010-03-18 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP4636149B2 (ja) 2008-09-09 2011-02-23 ソニー株式会社 画像データ解析装置、および画像データ解析方法、並びにプログラム
JP5402483B2 (ja) 2009-10-02 2014-01-29 株式会社Jvcケンウッド 擬似立体画像作成装置及び擬似立体画像表示システム
US8537200B2 (en) * 2009-10-23 2013-09-17 Qualcomm Incorporated Depth map generation techniques for conversion of 2D video data to 3D video data
JP5521913B2 (ja) 2009-10-28 2014-06-18 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP5387377B2 (ja) 2009-12-14 2014-01-15 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP2012085030A (ja) * 2010-10-08 2012-04-26 Panasonic Corp 立体撮像装置および立体撮像方法
JP2012120057A (ja) 2010-12-02 2012-06-21 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP2012138787A (ja) 2010-12-27 2012-07-19 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP5500092B2 (ja) * 2011-01-26 2014-05-21 株式会社Jvcケンウッド 奥行き推定データ生成装置、奥行き推定データ生成プログラム及び擬似立体画像表示装置
JP5777920B2 (ja) * 2011-03-30 2015-09-09 Necパーソナルコンピュータ株式会社 画像処理装置および画像処理方法
JP5899684B2 (ja) * 2011-07-11 2016-04-06 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP6330310B2 (ja) * 2013-12-16 2018-05-30 凸版印刷株式会社 画像生成方法および画像生成装置ならびにプログラム
JP5904221B2 (ja) * 2014-02-03 2016-04-13 株式会社ニコン 画像再生装置

Also Published As

Publication number Publication date
JPH1051812A (ja) 1998-02-20

Similar Documents

Publication Publication Date Title
JP3005474B2 (ja) 2次元映像を3次元映像に変換する装置および方法
KR100445619B1 (ko) 2차원 영상을 3차원 영상으로 변환하는 장치 및 방법
US6584219B1 (en) 2D/3D image conversion system
EP1650705B1 (en) Image processing apparatus, image processing method, and distortion correcting method
JP2931520B2 (ja) 単板式カラービデオカメラの色分離回路
JP3276931B2 (ja) 3次元映像の立体感調整方法及び立体感調整装置
JP3235776B2 (ja) 立体感調整方法および立体感調整装置
JP2002237998A (ja) 画面補正方法及び撮像装置
JP4191246B2 (ja) 映像フィールドを順次走査映像フレームへ非飛び越し走査するための方法および装置
JPH10191397A (ja) 意図適応型の2次元映像を3次元映像に変換する装置
JPH06295338A (ja) 画像生成方法
JP2951291B2 (ja) 2次元映像を3次元映像に変換する装置および方法
JP3500056B2 (ja) 2次元映像を3次元映像に変換する装置および方法
JP2002216136A (ja) 距離算出方法及び撮像装置
JPH10208030A (ja) 画像処理装置および処理方法
TWI559762B (zh) An image processing apparatus, an image processing method, and a recording medium
JPH04347969A (ja) 画素密度変換装置
US7522189B2 (en) Automatic stabilization control apparatus, automatic stabilization control method, and computer readable recording medium having automatic stabilization control program recorded thereon
JPH09130756A (ja) フォーマット変換のための画素の補間方法及びその装置
JP3540626B2 (ja) 2次元映像を3次元映像に変換する装置および方法
JP3957343B2 (ja) 2次元映像を3次元映像に変換する装置および方法
JP3485764B2 (ja) 2次元映像を3次元映像に変換する装置および方法
JP3454684B2 (ja) 2次元映像を3次元映像に変換する装置
JP2014074777A (ja) 合焦評価値生成装置、合焦評価値生成方法、及び、合焦評価値生成プログラム
JP2002015327A (ja) 画像種別判別装置およびこれを用いた画像処理装置ならびに画像種別判別方法。

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term