JP3000702B2 - Exciting method of vibrating body - Google Patents

Exciting method of vibrating body

Info

Publication number
JP3000702B2
JP3000702B2 JP3070882A JP7088291A JP3000702B2 JP 3000702 B2 JP3000702 B2 JP 3000702B2 JP 3070882 A JP3070882 A JP 3070882A JP 7088291 A JP7088291 A JP 7088291A JP 3000702 B2 JP3000702 B2 JP 3000702B2
Authority
JP
Japan
Prior art keywords
voltage
vibration
vibrating body
exciting
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3070882A
Other languages
Japanese (ja)
Other versions
JPH04308482A (en
Inventor
修 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3070882A priority Critical patent/JP3000702B2/en
Priority to EP92300396A priority patent/EP0495665B1/en
Priority to DE69228888T priority patent/DE69228888T2/en
Priority to US07/822,485 priority patent/US5343108A/en
Priority to KR1019920000613A priority patent/KR920015691A/en
Publication of JPH04308482A publication Critical patent/JPH04308482A/en
Priority to US08/012,486 priority patent/US5610468A/en
Application granted granted Critical
Publication of JP3000702B2 publication Critical patent/JP3000702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明の振動体の励振方法は振動
を利用した超音波モータ等の振動子の駆動方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a vibrator such as an ultrasonic motor utilizing vibration.

【0002】[0002]

【従来の技術】従来の振動体の励振方法は例えば特開昭
58−148682、特開昭59−122385等の如
く圧電素子等の振動子に交流電圧を印加していた。また
本出願人提出の特願平1−273082の如く一様に分
極した圧電素子の駆動部分を順次切り換え、定在波のノ
ード位置を移動させる方法もあった。さらに本出願人提
出の特願平2−181219の如く部分的に正負に分極
した振動子の駆動電圧の切り換えまたは組み合わせによ
り定在波のノード位置を移動させる方法もあった。
2. Description of the Related Art In a conventional method of exciting a vibrating body, an AC voltage is applied to a vibrator such as a piezoelectric element as disclosed in, for example, JP-A-58-148682 and JP-A-59-122385. There is also a method of sequentially switching the driving portions of the uniformly polarized piezoelectric element and moving the node position of the standing wave as disclosed in Japanese Patent Application No. 1-273082 filed by the present applicant. Further, there has been a method of moving a node position of a standing wave by switching or combining driving voltages of a vibrator partially polarized positive and negative as disclosed in Japanese Patent Application No. 2-181219 filed by the present applicant.

【0003】[0003]

【発明が解決しようとする課題】しかし従来の励振方法
は、交流電圧を印加する場合、例えば蓄電池の様な直流
電源を利用すると素子には最大でもその電圧しか印加す
る事ができなく、低電圧駆動化の妨げになっていた。ま
た圧電素子に正負の分極をした上で部分的に駆動し印加
する電圧の組み合わせる場合には、電圧を印加する部分
の面積や実際に印加される電圧が場合によって異なり、
消費電流や振動変位が異なったり、分極の反転が必要な
事から工程が複雑でコスト高となり、さらにはHi、L
o、ハイインピーダンスの電圧状態が必要な事から駆動
回路も複雑になるといった課題があった。一方、直流電
源で駆動する場合は圧電素子を半周期毎に逆方向にチャ
ージする必要がある為、その度に電流を余計に供給する
必要があり低消費電流化の妨げになっていた。
However, in the conventional excitation method, when an AC voltage is applied, when a DC power source such as a storage battery is used, only the maximum voltage can be applied to the element, and a low voltage is applied. It was hindering drive. In addition, when the piezoelectric element is positively and negatively polarized and then partially driven and combined with a voltage to be applied, the area of the part to which the voltage is applied and the actually applied voltage are different depending on the case,
Since the current consumption and the vibration displacement are different and the polarization reversal is required, the process is complicated and the cost is high.
o, there is a problem that the driving circuit becomes complicated because a high impedance voltage state is required. On the other hand, when driven by a DC power supply, it is necessary to charge the piezoelectric element in the reverse direction every half cycle, so that it is necessary to supply an extra current each time, which has hindered the reduction in current consumption.

【0004】[0004]

【課題を解決するための手段】請求項1に係る本発明の
振動体の励振方法は、ステータに添付した複数の振動子
の一部または全てを電気的に励振し定在波の振動を励起
すると共にそのノードの位置を逐次移動させる振動体の
励起方法において、前記振動子に共通する共通電極に交
流電圧を与えると共に、前記ステータ上の所定の位置に
定在波振動の節を形成するために同調して駆動される前
記振動子の駆動電極の群に、選択的に前記交流電圧と同
位相又は逆位相の交流電圧を与えることによって、所定
の位置に定在波振動の節を形成することを特徴とする。
According to a first aspect of the present invention, there is provided a method for exciting a vibrating body, wherein a part or all of a plurality of vibrators attached to a stator are electrically excited to excite a vibration of a standing wave. And an AC voltage is applied to a common electrode common to the oscillators, and a node of the standing wave oscillation is formed at a predetermined position on the stator. A node of standing wave oscillation is formed at a predetermined position by selectively applying an AC voltage having the same phase or opposite phase to the AC voltage to a group of drive electrodes of the vibrator driven in synchronization with the above. It is characterized by the following.

【0005】また請求項2に係る本発明の振動体の励振
方法は、請求項1記載の振動体の励振方法において、所
定の位置に定在波振動の節を形成するために同調して駆
動される前記振動子の駆動電極の群を駆動するとき、前
記共通電極及び前記駆動電極に交番電圧を与えると共に
その都度前記共通電極と前記駆動電極を相互に導通させ
る導通回路を有し、前記振動子の内部の電荷の移動を行
うことを特徴とする。また請求項3に係る本発明の超音
波モータの駆動方法は、請求項1又は2に記載の振動体
の励振方法を用いて超音波モータを駆動することを特徴
とする。
According to a second aspect of the present invention, there is provided a method of exciting a vibrating body according to the first aspect, wherein the vibrating body is driven synchronously to form a node of a standing wave vibration at a predetermined position. When driving a group of driving electrodes of the vibrator, the driving circuit applies an alternating voltage to the common electrode and the driving electrode, and includes a conduction circuit that connects the common electrode and the driving electrode to each other each time. It is characterized in that charge transfer inside the child is performed. According to a third aspect of the present invention, there is provided a driving method of an ultrasonic motor, wherein the ultrasonic motor is driven using the vibrating body excitation method according to the first or second aspect.

【0006】[0006]

【実施例】図1は本発明の振動体の励振方法の一実施例
を示すブロック図であり、振動子3として圧電素子を用
い、撓み振動の定在波を励振し、そのノード位置を順次
移動させる超音波モータの例である。2は振動体である
ステータであり、摩擦接触をしているロータ(図示せ
ず)を振動変位により移動させている。3は独立した駆
動電極を有する複数の振動要素30からなる圧電素子で
あり、ステータ2に添付した上で電圧を印加する事によ
り撓み振動を励起する。その際振動要素30を部分的に
駆動し、駆動周波数を選択する事により定在波の振動モ
ードを励振する事ができる。さらに振動要素30の組み
合わせを変える事により、振動のノード位置を移動させ
る事ができる。101は振動のノード位置を移動させる
タイミングを司る制御回路、103は圧電素子3を添付
したステータ2の共振周波数近傍の周波数を発振させる
発振回路、102は複数の振動要素30のいずれかを駆
動する為に発振回路103からの信号を振り分ける切換
回路、104は信号を増幅するドライバである。一方圧
電素子30の駆動電極に対する共通電極には、反転ドラ
イバ105を介して駆動電極とは逆位相の電圧を印加し
ている。
FIG. 1 is a block diagram showing an embodiment of a method for exciting a vibrating body according to the present invention. A piezoelectric element is used as a vibrator 3, a standing wave of bending vibration is excited, and its node position is sequentially determined. It is an example of an ultrasonic motor to move. Reference numeral 2 denotes a stator as a vibrator, which moves a rotor (not shown) in frictional contact by vibrating displacement. Reference numeral 3 denotes a piezoelectric element including a plurality of vibration elements 30 having independent drive electrodes. The piezoelectric element 3 is attached to the stator 2 and excites bending vibration by applying a voltage. At that time, by partially driving the vibration element 30 and selecting the driving frequency, the vibration mode of the standing wave can be excited. Further, by changing the combination of the vibration elements 30, the node position of the vibration can be moved. 101 is a control circuit for controlling the timing of moving the node position of vibration, 103 is an oscillation circuit for oscillating a frequency near the resonance frequency of the stator 2 to which the piezoelectric element 3 is attached, and 102 drives any one of the plurality of vibration elements 30 A switching circuit 104 for distributing the signal from the oscillation circuit 103 for this purpose, and a driver 104 for amplifying the signal. On the other hand, a voltage having a phase opposite to that of the drive electrode is applied to the common electrode for the drive electrode of the piezoelectric element 30 via the inversion driver 105.

【0007】図2は図1を具体化した第1の実施例を示
す回路図であり図3はその各部におけるタイミングチャ
ートである。本実施例においては圧電素子3を添付した
ステータ2に、2λ(λは波長数)の振動モードを励振
し、2本のノード位置を30°ずつ1周12分周して移
動させる場合の例である。圧電素子3は独立して変形し
うる12の振動要素を有し、それぞれ31〜42の駆動
電極を有している。この場合分極方向は一様で良く共通
電極は裏面全体に配置してある。3つの隣り合う振動要
素とその対角位置の振動要素を同位相で駆動する事によ
り2λの振動モードが励振でき、組み合わせを1つずら
す事により振動のノードの位置も1つ分移動する。その
タイミングの信号φcから、切換回路102で1/6分
周回路108、シフトレジスタ107によりそれぞれ位
相がずれたa,b,cの信号を形成している。そして発
振回路からの信号φrからイクスクルーシブオアを介
し、駆動信号d,e,fとインバータ111,112,
113を介した反転信号を形成する。さらにバッファ1
21〜126からなるドライバ104を介し、振動要素
の駆動パターン31〜42に電圧を印加する。一方、イ
ンバータ114等から成る反転ドライバ105を介し、
φrと逆位相の電圧相の電圧を圧電素子3の共通電極c
に印加している。信号d,e,fはそれぞれa,b,c
のタイミングで位相が反転し、φrの位相と同相になっ
たり逆相になったりする。この時、逆相の時は、駆動電
極側と共通電極側に交互に電圧が印加される為、振動要
素には駆動電圧の倍の電圧が印加されたと同等の効果が
得られる。また、同相の場合は同電位であるので振動要
素には実質的な電位差が与えられず、駆動されない。図
2の構成においては図3のt1 の区間は振動要素31,
32,33,37,38,39が駆動され、t2 の区間
は32,33,34,38,39,40が駆動され、以
降、順次駆動される振動要素の位置をずらしていく。そ
れにより、ノードの位置が振動要素1ヶ分ずつ移動し、
それに伴なって、ロータが間欠的に駆動される。尚駆動
電極側と共通電極側に同相の電圧が加えられる場合に
は、振動によって振動要素に蓄積された電荷を逃がす事
ができる為、その電荷による不必要な変形による悪影響
を防ぐ事ができる。
FIG. 2 is a circuit diagram showing a first embodiment of the embodiment of FIG. 1, and FIG. 3 is a timing chart of each part. In the present embodiment, an example is shown in which a 2λ (λ is the number of wavelengths) vibration mode is excited in the stator 2 to which the piezoelectric element 3 is attached, and the two node positions are moved by 30 ° in one round divided by 12. It is. The piezoelectric element 3 has 12 independently deformable vibration elements, and has 31 to 42 drive electrodes, respectively. In this case, the polarization direction is uniform and the common electrode is disposed on the entire back surface. By driving three adjacent vibration elements and the vibration elements at diagonal positions in phase, a vibration mode of 2λ can be excited, and by shifting one combination, the position of the vibration node also moves by one. From the signal φc at that timing, signals of a, b, and c whose phases are shifted by the 1/6 frequency divider circuit 108 and the shift register 107 by the switching circuit 102 are formed. The driving signals d, e, f and the inverters 111, 112,
An inverted signal via 113 is formed. Buffer 1
A voltage is applied to the driving patterns 31 to 42 of the vibration element via the driver 104 including 21 to 126. On the other hand, through an inversion driver 105 including an inverter 114 and the like,
The voltage of the voltage phase opposite to φr is applied to the common electrode c of the piezoelectric element 3.
Is applied. Signals d, e, and f are a, b, and c, respectively.
At this timing, the phase becomes the same as or opposite to the phase of φr. At this time, when the phase is reversed, a voltage is alternately applied to the drive electrode side and the common electrode side, so that the same effect as when a voltage twice the drive voltage is applied to the vibration element can be obtained. Further, in the case of the same phase, since the potentials are the same, a substantial potential difference is not given to the vibration element, so that the vibration element is not driven. In the configuration of FIG. 2, the section at t 1 in FIG.
32,33,37,38,39 is driven, the interval of t 2 is 32,33,34,38,39,40 is driven, by shifting the position of the vibration elements later, are sequentially driven. Thereby, the position of the node moves by one vibration element,
Accordingly, the rotor is driven intermittently. When a voltage of the same phase is applied to the drive electrode side and the common electrode side, the electric charge accumulated in the vibration element can be released by the vibration, so that an adverse effect due to unnecessary deformation due to the electric charge can be prevented.

【0008】図4は図1を具体化した第2の実施例を示
す回路図であり、図5は各部におけるタイミングチャー
トである。圧電素子3は例えば3つの振動要素及び駆動
電極31,32,33を有し、等分割して配置してある
ので相互の位置は120°ずれている。この様な構成に
おいてはそれぞれの振動要素を2λの共振周波数近傍の
周波数で順次励振するとノードの位置は120°ずる移
動する。この時2本のノードの相対角度は90°である
ので、ノードの移動した角度は30°と同等である。タ
イミング信号φcは切換回路102で1/6分周回路1
09、シフトレジスタ107により、それぞれ位相がず
れたa,b,cの信号を形成し、イクスクルーシブオア
131,132、イクスクルーシブノア133でd,
e,fに変換して、スイッチ115,116,117で
発振回路からの信号φrからバッファ121,122,
123から成る、ドライバ104を介しg,h,iを形
成し駆動電極31,32,33に印加する。一方インバ
ータ114等から成る反転ドライバ105を介し、圧電
素子の共通電極cに、φrと逆相の電圧を印加してい
る。したがって振動要素には交番電圧が印加される。
FIG. 4 is a circuit diagram showing a second embodiment which embodies FIG. 1, and FIG. 5 is a timing chart of each part. The piezoelectric element 3 has, for example, three vibrating elements and drive electrodes 31, 32, and 33, and is mutually divided so that the mutual positions are shifted by 120 °. In such a configuration, when each vibration element is sequentially excited at a frequency near the resonance frequency of 2λ, the position of the node shifts by 120 °. At this time, since the relative angle between the two nodes is 90 °, the angle at which the node has moved is equivalent to 30 °. The timing signal φc is supplied to the switching circuit 102 by the 1/6 frequency divider 1
09, the signals of a, b, and c having phases shifted from each other are formed by the shift register 107, and the exclusive ORs 131 and 132 and the exclusive NOR
e, f, and switches 115, 116, 117 convert the signal φr from the oscillation circuit into buffers 121, 122,
G, h, i are formed via a driver 104 and applied to the drive electrodes 31, 32, 33. On the other hand, a voltage having a phase opposite to that of φr is applied to the common electrode c of the piezoelectric element via an inversion driver 105 including an inverter 114 and the like. Therefore, an alternating voltage is applied to the vibration element.

【0009】図6は図4における振動要素及び駆動電極
の配置の他の実施例を示す説明図であり、それぞれの分
極方向を+、−で示している。駆動電極31,34,3
7,40を図5におけるgで駆動し、駆動電極32,3
5,38,41をh、駆動電極33,36,39,42
をiで駆動する事により前述の例と同様に2λの振動モ
ードを30°ずつずらす事ができる。この場合、常に振
動の腹に相等する部分のみを駆動する事ができる為、振
動振幅が大きくとれる。
FIG. 6 is an explanatory view showing another embodiment of the arrangement of the vibration element and the drive electrode in FIG. 4, in which the respective polarization directions are indicated by + and-. Drive electrodes 31, 34, 3
7, 40 are driven by g in FIG.
H, 5, 38, 41, drive electrodes 33, 36, 39, 42
Is driven by i, the 2λ vibration mode can be shifted by 30 ° in the same manner as in the above-described example. In this case, it is possible to always drive only a portion that is equivalent to the antinode of the vibration, so that the vibration amplitude can be large.

【0010】図7は本発明の振動体の励振方法の他の実
施例を示すブロック図である。振動体であるステータ2
に添付した複数の振動要素30からなる振動子3の共振
点近傍の周波数を発振する発振回路103の信号φrを
制御回路101のタイミングで切換回路102で切り換
えドライバ104で増幅し駆動信号g,h,iを送出し
ている。反転ドライバ105はφrを反転増幅し、微分
回路110はφrから微分波形jを形成している。導通
回路110は微分波形jのタイミングで、g,h,iを
遮断すると共に共通電極Cと駆動電極30をショートさ
せている。
FIG. 7 is a block diagram showing another embodiment of the method for exciting a vibrating body according to the present invention. Stator 2 that is a vibrating body
The signal φr of the oscillation circuit 103 that oscillates a frequency near the resonance point of the vibrator 3 including the plurality of vibration elements 30 attached to the control circuit 101 is amplified by the switching circuit 104 at the timing of the control circuit 101 by the switching driver 104, and the driving signals g, h , I. The inversion driver 105 inverts and amplifies φr, and the differentiating circuit 110 forms a differential waveform j from φr. The conduction circuit 110 cuts off g, h, and i and short-circuits the common electrode C and the drive electrode 30 at the timing of the differential waveform j.

【0011】図8は図7における微分回路110、導通
回路106の一実施例を示す回路図、図9は各部の動作
を示すタイミングチャートである。微分回路110はφ
rの波形の立ち上り及び立ち下りで短い幅のパルスjを
発生する。スイッチ145,146,147はjのタイ
ミングでONし、駆動電極31、32、33と共通電極
Cを導通させ蓄積された電荷を解放する。同時にインバ
ータ144を介しスイッチ148,149,150をO
FFし、g,h,iを遮断する。したがって、振動要素
に加わる電圧は最大で2倍のVDDの電圧が印加される。
そして、ショートしている期間は圧電素子内部で電荷の
やりとりが行なわれ、直流電源からは供給されない為、
省電流化ができる。波形k,l,mはjによりショート
された状態を中間的な電位として概念的に示した。
FIG. 8 is a circuit diagram showing one embodiment of the differentiating circuit 110 and the conducting circuit 106 in FIG. 7, and FIG. 9 is a timing chart showing the operation of each section. The differentiating circuit 110 is φ
A pulse j having a short width is generated at the rise and fall of the waveform r. The switches 145, 146, and 147 are turned on at the timing of j to make the drive electrodes 31, 32, and 33 and the common electrode C conductive to release the accumulated charge. At the same time, the switches 148, 149 and 150 are turned off via the inverter 144.
FF and cut off g, h, i. Therefore, the voltage applied to the vibrating element is at most twice the voltage of V DD .
During the short-circuit period, electric charges are exchanged inside the piezoelectric element, and are not supplied from the DC power supply.
Current can be saved. Waveforms k, l, and m conceptually show a state shorted by j as an intermediate potential.

【0012】尚、本発明においては、振動子の電荷を内
部で導通させる事である為、本実施例の様に、駆動電極
と共通電極をショートする例に限定せず、駆動電極相互
に導通させたり、また、同時にショートするのではなく
個別に導通させても何らかまわない。その際電極の形状
やショートさせる電極の組み合わせ等も何ら限定するも
のではない。
In the present invention, since the electric charge of the vibrator is conducted internally, the present invention is not limited to an example in which the drive electrode and the common electrode are short-circuited as in this embodiment, It does not matter if they are turned on or individually turned on instead of being short-circuited at the same time. At this time, the shape of the electrodes and the combination of the electrodes to be short-circuited are not limited at all.

【0013】さらに本発明の振動体の励振方法は駆動電
極と共通電極に逆相の電圧を印加する事を特徴とする
為、前述した様な振動モードや、電極パターンや、駆動
回路などに何ら限定するものではない。また圧電素子を
用いた超音波モータの例について詳述したが、振動体の
励振に係るものであれば本実施例に限定するものではな
い。
Further, the method of exciting a vibrating body according to the present invention is characterized in that voltages of opposite phases are applied to the driving electrode and the common electrode, so that the vibration mode, the electrode pattern, the driving circuit, etc. It is not limited. Although the example of the ultrasonic motor using the piezoelectric element has been described in detail, the present invention is not limited to the present embodiment as long as it relates to the excitation of the vibrating body.

【0014】[0014]

【発明の効果】以上詳述した様に本発明によれば、駆動
電極と共通電極に逆位相の電圧を印加した事により、電
源電圧の倍の電圧を振動子に印加する事ができた為、よ
り低い電源電圧で駆動する事ができた。また、圧電素子
の分極の方向を一方向のみにした事により製造コストが
低減できた。一方振動モードの腹の位置の振動要素を励
振する事により大きな振動振幅が得られた。さらに、圧
電素子の電荷をショートさせた事により、電源から供給
する電流を半減させる事ができた。
As described in detail above, according to the present invention, a voltage twice the power supply voltage can be applied to the vibrator by applying voltages of opposite phases to the drive electrode and the common electrode. , And could be driven with a lower power supply voltage. In addition, the manufacturing cost can be reduced by setting the direction of polarization of the piezoelectric element to only one direction. On the other hand, a large vibration amplitude was obtained by exciting the vibration element at the position of the antinode of the vibration mode. Further, by short-circuiting the electric charge of the piezoelectric element, the current supplied from the power supply could be reduced by half.

【図面の簡単な説明】[Brief description of the drawings]

【図1】振動体の励振方法の一実施例を示すブロック
図。
FIG. 1 is a block diagram showing one embodiment of a method of exciting a vibrating body.

【図2】第1の実施例を示す回路図。FIG. 2 is a circuit diagram showing a first embodiment.

【図3】図2におけるタイミングチャート。FIG. 3 is a timing chart in FIG. 2;

【図4】第2の実施例を示す回路図。FIG. 4 is a circuit diagram showing a second embodiment.

【図5】図4におけるタイミングチャート。FIG. 5 is a timing chart in FIG. 4;

【図6】振動要素及び駆動電極の配置の他の実施例を示
す説明図。
FIG. 6 is an explanatory view showing another embodiment of the arrangement of the vibration element and the drive electrode.

【図7】振動体の励振方法の他の実施例を示すブロック
図。
FIG. 7 is a block diagram showing another embodiment of a method of exciting a vibrating body.

【図8】微分回路、導通回路の一実施例を示す回路図。FIG. 8 is a circuit diagram showing one embodiment of a differentiation circuit and a conduction circuit.

【図9】図8におけるタイミングチャート。FIG. 9 is a timing chart in FIG.

【符号の説明】[Explanation of symbols]

2 振動体(ステータ) 3 振動子(圧電素子) 30 振動要素(駆動電極) 101 制御回路 102 切換回路 103 発振回路 104 ドライバ 105 反転ドライバ 106 導通回路 107 シフトレジスタ 108 1/6分周回路 109 1/6分周回路 110 微分回路 C 共通電極 2 Oscillator (stator) 3 Oscillator (piezoelectric element) 30 Oscillating element (drive electrode) 101 Control circuit 102 Switching circuit 103 Oscillation circuit 104 Driver 105 Inverting driver 106 Conducting circuit 107 Shift register 108 1/6 frequency dividing circuit 109 1 / 6 frequency dividing circuit 110 differentiating circuit C common electrode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ステータに添付した複数の振動子の一部ま
たは全てを電気的に励振し定在波の振動を励起すると共
にそのノードの位置を逐次移動させる振動体の励起方法
において、 前記振動子に共通する共通電極に交流電圧を与えると共
に、前記ステータ上の所定の位置に定在波振動の節を形
成するために同調して駆動される前記振動子の駆動電極
の群に、選択的に前記交流電圧と同位相又は逆位相の交
流電圧を与えることによって、所定の位置に定在波振動
の節を形成することを特徴とする振動体の励振方法。
1. A method of exciting a vibrating body that electrically excites a part or all of a plurality of vibrators attached to a stator to excite the vibration of a standing wave and sequentially moves the position of a node thereof. An AC voltage is applied to a common electrode common to the transducers, and a group of drive electrodes of the transducers that are tuned and driven to form nodes of standing wave vibration at predetermined positions on the stator are selectively provided. Wherein a node of standing wave vibration is formed at a predetermined position by applying an AC voltage having the same phase or opposite phase to the AC voltage.
【請求項2】請求項1記載の振動体の励振方法におい
て、所定の位置に定在波振動の節を形成するために同調
して駆動される前記振動子の駆動電極の群を駆動すると
き、前記共通電極及び前記駆動電極に交番電圧を与える
と共にその都度前記共通電極と前記駆動電極を相互に導
通させる導通回路を有し、前記振動子の内部の電荷の移
動を行うことを特徴とする振動体の励振方法。
2. A method for exciting a vibrating body according to claim 1, wherein a group of driving electrodes of said vibrator driven synchronously to form a node of standing wave vibration at a predetermined position is driven. And a conduction circuit for applying an alternating voltage to the common electrode and the drive electrode and for conducting the common electrode and the drive electrode to each other each time, so that the electric charge inside the vibrator is moved. Exciting method of vibrating body.
【請求項3】請求項1又は2に記載の振動体の励振方法
を用いて超音波モータを駆動することを特徴とする超音
波モータの駆動方法。
3. A method for driving an ultrasonic motor, comprising driving the ultrasonic motor using the method for exciting a vibrating body according to claim 1.
JP3070882A 1990-10-22 1991-04-03 Exciting method of vibrating body Expired - Fee Related JP3000702B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3070882A JP3000702B2 (en) 1991-04-03 1991-04-03 Exciting method of vibrating body
EP92300396A EP0495665B1 (en) 1991-01-17 1992-01-16 Ultrasonic stepping motor
DE69228888T DE69228888T2 (en) 1991-01-17 1992-01-16 Ultrasonic stepper motor
US07/822,485 US5343108A (en) 1991-01-17 1992-01-17 Ultrasonic step motor
KR1019920000613A KR920015691A (en) 1991-01-17 1992-01-17 Ultrasonic Stepping Motor and Oscillator Driving Method
US08/012,486 US5610468A (en) 1990-10-22 1993-02-01 Ultrasonic step motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070882A JP3000702B2 (en) 1991-04-03 1991-04-03 Exciting method of vibrating body

Publications (2)

Publication Number Publication Date
JPH04308482A JPH04308482A (en) 1992-10-30
JP3000702B2 true JP3000702B2 (en) 2000-01-17

Family

ID=13444356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070882A Expired - Fee Related JP3000702B2 (en) 1990-10-22 1991-04-03 Exciting method of vibrating body

Country Status (1)

Country Link
JP (1) JP3000702B2 (en)

Also Published As

Publication number Publication date
JPH04308482A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
EP0495665B1 (en) Ultrasonic stepping motor
JP2006149180A (en) Flat-type piezoelectric ultrasonic motor
JPH10146072A (en) Oscillatory motor device
JPH09163769A (en) Ultrasonic motor apparatus
JP3000702B2 (en) Exciting method of vibrating body
JP3126563B2 (en) Driving device for vibration motor
JPS63186571A (en) Ultrasonic motor driver
JPS61203873A (en) Drive circuit of vibration wave motor
JP3018400B2 (en) Wave motor
JP3043124B2 (en) Traveling wave type motor device
JPS61221584A (en) Drive circuit of vibration wave motor
JP3000686B2 (en) Ultrasonic motor
JP2509310B2 (en) Control method of ultrasonic motor
JP3006037B2 (en) Wave step motor
JPS61221585A (en) Drive circuit of vibration wave motor
JPH0937572A (en) Driving device of oscillatory wave device
JPH0828986B2 (en) Vibration wave motor
JP3044751B2 (en) Drive control device for wave step motor
JP4388273B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JPH08317672A (en) Ultrasonic motor apparatus
JP3026220B2 (en) Ultrasonic open / close detection method and device
JPH03215176A (en) Driving circuit of ultrasonic motor
JPH04172975A (en) Ultrasonic motor
JPH03143276A (en) Standing wave motor
JP3006039B2 (en) Wave step motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees