JP3000369B2 - Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution - Google Patents

Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution

Info

Publication number
JP3000369B2
JP3000369B2 JP1121933A JP12193389A JP3000369B2 JP 3000369 B2 JP3000369 B2 JP 3000369B2 JP 1121933 A JP1121933 A JP 1121933A JP 12193389 A JP12193389 A JP 12193389A JP 3000369 B2 JP3000369 B2 JP 3000369B2
Authority
JP
Japan
Prior art keywords
oxygen
complex
complex solution
temperature
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1121933A
Other languages
Japanese (ja)
Other versions
JPH0321319A (en
Inventor
宏 岡本
由章 杉森
大輔 田原
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP1121933A priority Critical patent/JP3000369B2/en
Publication of JPH0321319A publication Critical patent/JPH0321319A/en
Application granted granted Critical
Publication of JP3000369B2 publication Critical patent/JP3000369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素吸収錯体の再生方法及び酸素吸収錯体溶
液を用いた酸素の分離方法に関し、詳しくは、酸素吸収
錯体の溶液を利用して空気から酸素を分離するにあた
り、劣化した錯体を元の状態に再生し、酸素の分離能力
を回復させる方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for regenerating an oxygen-absorbing complex and a method for separating oxygen using an oxygen-absorbing complex solution. The present invention relates to a method for regenerating a degraded complex to an original state and recovering the oxygen separating ability in separating oxygen from oxygen.

〔従来の技術〕[Conventional technology]

工業的規模で空気中の酸素を分離製造する方法として
は、一般に深冷法と吸着剤を用いた圧力変動法(PSA)
が多く用いられている。前者は空気を液化し、多段の精
留工程を経て窒素と酸素とを分離する方法であり、高純
度の酸素又は窒素を製造できるが、多量のエネルギーを
必要とする欠点がある。
In general, cryogenic method and pressure fluctuation method (PSA) using an adsorbent are used to separate and produce oxygen in air on an industrial scale.
Is often used. The former is a method in which air is liquefied and nitrogen and oxygen are separated through a multi-stage rectification process, and high-purity oxygen or nitrogen can be produced, but has a drawback that a large amount of energy is required.

また後者は、ゼオライト又はカーボンモレキュラーシ
ーブス等の吸着剤を用いて、該吸着剤に窒素又は酸素を
選択的に吸着させることにより、酸素又は窒素を分離す
る方法である。この方法は、運転操作が簡便という利点
を有しているが、装置が大きいことと、酸素を製造する
場合には、最大酸素濃度が95%にすぎないという欠点を
有している。
The latter is a method of separating oxygen or nitrogen by selectively adsorbing nitrogen or oxygen on the adsorbent using an adsorbent such as zeolite or carbon molecular sieves. This method has the advantage of simple operation, but has the disadvantage that the apparatus is large and that when producing oxygen, the maximum oxygen concentration is only 95%.

これらの欠点を克服するため、酸素とのみ可逆的に反
応する錯体を利用する方法がいくつか提案されている。
To overcome these drawbacks, several methods have been proposed that utilize complexes that react only reversibly with oxygen.

例えば、特開昭59−20296号公報に記載されている方
法は、5℃以下の低温で錯体溶液と空気とを接触させ
て、空気中の酸素を錯体溶液に吸収させ、次いで、25℃
以上の高温で酸素を錯体溶液から放出させ、これを製品
酸素として採取するもので、錯体溶液は再び5℃以下の
低温に冷却して酸素を吸収させる。以下、同じ工程を繰
り返して酸素を連続的に発生させる(温度変動式吸収
法)。
For example, in the method described in JP-A-59-20296, the complex solution is brought into contact with air at a low temperature of 5 ° C. or less, oxygen in the air is absorbed by the complex solution,
At the above-mentioned high temperature, oxygen is released from the complex solution and is collected as product oxygen. The complex solution is cooled again to a low temperature of 5 ° C. or less to absorb oxygen. Hereinafter, the same process is repeated to continuously generate oxygen (temperature fluctuation type absorption method).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記錯体溶液を利用する酸素分離法で
は、この錯体溶液が劣化するという欠点があり、従来最
も寿命が長いとされているものでも100日程度にすぎな
かった。しかも錯体溶液は高価であるから、錯体溶液を
利用する方法は、前記深冷法とPSA法を凌駕することが
できなった。
However, the oxygen separation method using the above complex solution has a disadvantage that the complex solution is deteriorated, and the one having the longest life in the past was only about 100 days. Moreover, since the complex solution is expensive, the method using the complex solution could not surpass the cryogenic method and the PSA method.

そこで本発明は、錯体溶液を利用した温度変動式吸収
法又は圧力変動式吸収法において、劣化した錯体溶液を
再賦活し、錯体溶液の寿命を実質的に半永久化すること
ができる酸素吸収錯体の再生方法及び酸素吸収錯体溶液
を用いた酸素の分離方法を提供することを目的としてい
る。
Accordingly, the present invention provides an oxygen-absorbing complex that can re-activate a degraded complex solution in a temperature fluctuation absorption method or a pressure fluctuation absorption method using a complex solution and can substantially semi-permanently extend the life of the complex solution. It is an object of the present invention to provide a regeneration method and a method for separating oxygen using an oxygen-absorbing complex solution.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の酸素吸収錯体の
再生方法は、相対的に低い温度での酸素の吸収と、相対
的に高い温度での酸素の放出とを一量化反応で行うサリ
チルアルデヒド系シッフベース酸素吸収錯体を非プロト
ン系溶媒中に含む溶液において、前記酸素吸収錯体が劣
化した際に、前記溶液を前記一量化反応での酸素の放出
温度よりも高い温度である50〜170℃に加熱して前記劣
化した酸素吸収錯体を再生することを特徴とし、また、
加熱時に前記溶液に接する気相の酸素分圧を下げること
を特徴としている。
In order to achieve the above object, a method for regenerating an oxygen-absorbing complex according to the present invention comprises a salicylaldehyde in which the absorption of oxygen at a relatively low temperature and the release of oxygen at a relatively high temperature are performed by a monomerization reaction. In a solution containing a system Schiff-based oxygen-absorbing complex in an aprotic solvent, when the oxygen-absorbing complex is deteriorated, the solution is heated to 50 to 170 ° C., which is a temperature higher than the temperature at which oxygen is released in the monomerization reaction. Heating to regenerate the deteriorated oxygen-absorbing complex, and
It is characterized in that the oxygen partial pressure of the gas phase in contact with the solution during heating is reduced.

さらに、本発明の酸素吸収錯体溶液を用いた酸素の分
離方法は、相対的に低い温度での酸素の吸収と、相対的
に高い温度での酸素の放出とを一量化反応で行うサリチ
ルアルデヒド系シッフベース酸素吸収錯体を非プロトン
系溶媒中にする方法において、前記溶液の全量又は一部
を前記一量化反応での酸素の放出温度よりも高い温度で
ある50〜170℃に加熱して劣化した酸素吸収錯体を再生
することを特徴としている。
Further, the method for separating oxygen using the oxygen-absorbing complex solution of the present invention comprises a salicylaldehyde-based method in which the absorption of oxygen at a relatively low temperature and the release of oxygen at a relatively high temperature are performed by a monomerization reaction. In the method of preparing a Schiff-based oxygen-absorbing complex in an aprotic solvent, the oxygen degraded by heating the whole or a part of the solution to 50 to 170 ° C., which is a temperature higher than the release temperature of oxygen in the monomerization reaction, is used. It is characterized by regenerating the absorption complex.

本発明の対象となる酸素吸収錯体としては、一般式 (式中、R1,R2,R3はそれぞれ水素,アルコキシ基,アル
キル基又はフェニル基を示し、R4は水素又はメチル基、
R5,R6,R7,R8はそれぞれ水素,アルキル基又はフェニル
基、Mは鉄,コバルト又はニッケルを示す。) で表わされるサリチルアルデヒド系シッフベース錯体を
挙げることができる。
The oxygen-absorbing complex to be used in the present invention has a general formula (Wherein, R 1 , R 2 , and R 3 each represent hydrogen, an alkoxy group, an alkyl group, or a phenyl group; R 4 represents hydrogen or a methyl group;
R 5 , R 6 , R 7 and R 8 each represent hydrogen, an alkyl group or a phenyl group, and M represents iron, cobalt or nickel. ) And a salicylaldehyde-based Schiff base complex.

この錯体は4配位構造であるが、通常6配位構造で安
定な錯体となるものである。
This complex has a four-coordinate structure, but usually has a six-coordinate structure and is a stable complex.

即ち、これらの錯体の第5番目の配位座に軸配位子が
配位すると、第6番目の配位座の酸素配位能力が高めら
れ、ここに酸素が配位して酸素を吸収する。
That is, when an axial ligand is coordinated to the fifth coordination site of these complexes, the oxygen coordination ability of the sixth coordination site is enhanced, and oxygen coordinates there to absorb oxygen. I do.

上記軸配位子としては、塩基性の窒素原子を含むもの
が使用でき、例えばイミダゾール系,ピリジン系,アル
キルアミン系のもの等を用いることができる。
As the axial ligand, those containing a basic nitrogen atom can be used, and for example, imidazole-based, pyridine-based, alkylamine-based, and the like can be used.

上記イミダゾール系の軸配位子としては、イミダゾー
ル、1−メチルイミダゾール、1,1′−ドデカメチレン
ジイミダゾール、3−メチル−1,1′−ドデシルジイミ
ダゾリウムアイオダイド、4−(イミダゾール−1−イ
ル)フェノール、ラウリルイミダゾール、1−ベンゾイ
ルイミダゾール等を挙げることができる。
Examples of the imidazole-based axial ligand include imidazole, 1-methylimidazole, 1,1'-dodecamethylenediimidazole, 3-methyl-1,1'-dodecyldiimidazolium iodide, 4- (imidazole-1 -Yl) phenol, laurylimidazole, 1-benzoylimidazole and the like.

また、ピリジン系の軸配位子としては、ピリジン、4
−ジメチルアミノピリジン、3−ピリジンプロパノー
ル、4−(1−ブチルペンチル)ピリジン、3−ブチル
ピリジン、1,2−ジ(4−ピリジル)エタン等を挙げる
ことができる。
Further, pyridine-based axial ligands include pyridine, 4
-Dimethylaminopyridine, 3-pyridinepropanol, 4- (1-butylpentyl) pyridine, 3-butylpyridine, 1,2-di (4-pyridyl) ethane and the like.

さらに、アルキルアミン系の軸配位子としては、n−
ブチルアミン、イソ−ブチルアミン、ネオペンチルアミ
ン等を挙げることができる。
Further, as the alkylamine-based axial ligand, n-
Butylamine, iso-butylamine, neopentylamine and the like can be mentioned.

一方、上記錯体を溶解する溶媒としては、非プロトン
系の溶媒で前記錯体と軸配位子を溶解できるものであれ
ば極性(親水性),非極性(疎水性)溶媒の種類を問わ
ないが、後に述べる理由により沸点及び引火点の高いも
のが望ましい。これらの例としては、1−メチル−2−
ピロリジノン、N,N′−ジメチルホルムアミド、プロピ
レンカーボネイト、ジメチルスルホキシド、N,N′−ジ
メチルアセトアミド、スルホラン、オルト−ジクロロベ
ンゼン、γ−ブチロラクトン等を挙げることができる。
On the other hand, as the solvent for dissolving the complex, any type of polar (hydrophilic) or nonpolar (hydrophobic) solvent can be used as long as it is an aprotic solvent that can dissolve the complex and the axial ligand. Those having a high boiling point and a high flash point are desirable for the reasons described later. Examples of these include 1-methyl-2-
Examples thereof include pyrrolidinone, N, N'-dimethylformamide, propylene carbonate, dimethyl sulfoxide, N, N'-dimethylacetamide, sulfolane, ortho-dichlorobenzene, and γ-butyrolactone.

前記錯体と軸配位子と溶媒とから成る錯体溶液は、通
常5℃以下の温度で酸素を吸収し、常温以上の温度で、
吸収していた酸素を放出する。これは温度変動式吸収法
による酸素製造の原理である。
The complex solution comprising the complex, the axial ligand, and the solvent usually absorbs oxygen at a temperature of 5 ° C. or less, and at a temperature of normal temperature or more,
Releases absorbed oxygen. This is the principle of oxygen production by the temperature fluctuation absorption method.

また、温度を例えば0℃に保ち、錯体溶液と接触して
いる気相の酸素分圧を高くすると酸素を吸収し、真空排
気装置等で気相の酸素分圧を下げると吸収していた酸素
が放出される。これは圧力変動式吸収法による酸素製造
の原理である。
Further, if the temperature is kept at, for example, 0 ° C. and the oxygen partial pressure of the gas phase in contact with the complex solution is increased, oxygen is absorbed, and if the oxygen partial pressure of the gas phase is reduced by a vacuum exhaust device or the like, the absorbed oxygen is absorbed. Is released. This is the principle of oxygen production by the pressure fluctuation absorption method.

このように、錯体溶液中の錯体は、温度又は圧力を変
えると、下記式(1)のように一量化反応で可逆的に酸
素を吸放出する。
As described above, when the temperature or pressure is changed, the complex in the complex solution reversibly absorbs and releases oxygen by a monomerization reaction as shown in the following formula (1).

BLM+O2BLM−O2………(1) (式中、Lは前記錯体、Bは軸配位子、Mは中心金属、
O2は酸素を表わす。) しかしながら、酸素の吸収と放出を繰り返すと、錯体
溶液の酸素吸収能力は徐々に低下し、最終的には酸素吸
収能力がなくなる。この酸素吸収能力が低下する速さ、
即ち錯体溶液の劣化速度は、使用した錯体、軸配位子お
よび溶媒の各種類によって異なる。錯体溶液の初期酸素
吸収能力が半減するまでの時間を寿命とすると、寿命の
短いものは数秒、長いものでも数ヵ月である。
BLM + O 2 BLM-O 2 (1) (wherein L is the complex, B is an axial ligand, M is a central metal,
O 2 represents oxygen. However, when the absorption and release of oxygen are repeated, the oxygen absorbing ability of the complex solution gradually decreases, and eventually the oxygen absorbing ability disappears. The speed at which this oxygen absorption capacity decreases,
That is, the deterioration rate of the complex solution differs depending on the type of the complex, the axial ligand and the solvent used. Assuming that the time until the initial oxygen absorption capacity of the complex solution is reduced to half is the lifetime, the one with a short lifetime is several seconds, and the one with a long lifetime is several months.

酸素結合の平衡乗数Ko2は下記の式(2)で表わさ
れ、一般にこのKo2の大きい錯体溶液は、劣化速度が速
いことが知られている。
The equilibrium multiplier Ko 2 of the oxygen bond is represented by the following equation (2), and it is generally known that a complex solution having a large Ko 2 has a high deterioration rate.

(式中L,B,M,O2は前記と同じ) 上記錯体溶液の劣化原因としては、二量化反応,4座配
位子における水素引抜反応,軸配位子の酸化,中心金属
の酸化など種々のものが考えられているが、本発明者
は、各種実験の結果、主たる劣化原因は、次の式(3)
に示される二量化反応であることを知見した。
(In the formula, L, B, M, and O 2 are the same as above.) Deterioration of the above complex solution includes dimerization reaction, hydrogen abstraction reaction in tetradentate ligand, oxidation of axial ligand, oxidation of central metal The present inventor has found that as a result of various experiments, the main cause of degradation is the following equation (3).
It was found that the reaction was a dimerization reaction shown in FIG.

BLM−O2+MLB→ BLM−O2−MLB………(3) (式中L,B,M,O2は前記と同じ) 例えば、中心金属がコバルトの場合、一量体の時は常
磁性(xp>0)であるが、二量体の時は反磁性(xd<0,
|xp/xD|≒102)であることがFloriani(Journal of Che
mical Society(A),946(1969))等によって示され
ている。
BLM-O 2 + MLB → BLM-O 2 -MLB (3) (where L, B, M, and O 2 are the same as above) For example, when the central metal is cobalt, it is always Magnetic (x p > 0), but diamagnetic (x d <0,
| x p / x D | ≒ 10 2 ) can be Floriani (Journal of Che
mical Society (A), 946 (1969)).

即ち、酸素を吸収した錯体溶液の帯磁率は、時間の経
過と共に低下し、最終的にx≒0となり、上記式(3)
の反応が進行したことを示す。
That is, the magnetic susceptibility of the complex solution having absorbed oxygen decreases with the passage of time, and finally becomes x 、 0.
Indicates that the reaction has progressed.

これに対し、酸素を吸収した錯体溶液に、0℃と70℃
の間で定期的に温度変動を与えると、開始初期には劣化
が進行して帯磁率が低下するが、それ以後は劣化度合が
約50%で一定となり、劣化の進行が止まることが観察さ
れた。この結果から、錯体溶液に温度変動を与えた場
合、加熱工程において、劣化生成物である二量化物の一
部が一量体に再生されているものと思われる。
In contrast, 0 ° C and 70 ° C
When temperature fluctuations are given periodically during the initial period, deterioration progresses and magnetic susceptibility decreases at the beginning of the start, but after that, the degree of deterioration becomes constant at about 50%, and it is observed that the progress of deterioration stops. Was. From this result, it is considered that when temperature fluctuation is given to the complex solution, in the heating step, a part of the dimer which is a degradation product is regenerated to a monomer.

即ち、下記式(4)に示すように、劣化して式右側の
如き二量化物となった錯体が加熱により式左側に示す初
期の構造に再生されているものと思われる。
That is, as shown in the following formula (4), it is considered that the complex which has deteriorated to a dimer as shown in the right side of the formula is regenerated to the initial structure shown in the left side of the formula by heating.

(式中L,B,M,O2は前記と同じ、△は加熱を表わす。) そこで、本発明者は、上記事実を酸素吸収能力の測定
により確認する実験を行ったところ、例えば、錯体溶液
は、酸素を吸収させた後、0℃で4日間放置すると、酸
素吸収能力は事実上なくなるが、0℃と50℃の間で温度
変動を与え、酸素を吸放出させた場合、初期数十サイク
ルでは酸素吸放出量が急速に低下し、その後は一定とな
り、劣化の進行が止まることを確認した。この結果は、
前述の帯磁率測定結果と良く一致している。
(In the formula, L, B, M, and O 2 are the same as above, and △ represents heating.) Thus, the present inventor conducted an experiment to confirm the above fact by measuring the oxygen absorption capacity. When the solution is allowed to stand for 4 days at 0 ° C. after absorbing oxygen, the oxygen absorbing ability is virtually lost, but when the temperature fluctuates between 0 ° C. and 50 ° C. and oxygen is absorbed and released, the initial number It was confirmed that the oxygen absorption and desorption rapidly decreased in ten cycles, and then became constant after that, and that the progress of the degradation stopped. The result is
This is in good agreement with the susceptibility measurement results described above.

さらに、これらの結果は、錯体の種類,軸配位子の種
類及び溶媒の種類を変えた場合でも、同じような現象を
観測することができた。即ち、この加熱による錯体の再
生現象は、特定の錯体溶液に固有のものではなく、一般
的なものであることが判明した。
Furthermore, these results indicate that a similar phenomenon could be observed even when the type of complex, the type of axial ligand, and the type of solvent were changed. That is, it has been found that the phenomenon of regeneration of the complex by heating is not specific to a specific complex solution but a general phenomenon.

上記式(4)の平衡反応が一般的に成り立つとする
と、加熱温度が高くし、発生する酸素を系内から除去す
れば平衡点が式(4)の左側に移動し、式右側の二量化
物が一量体に再生させる割合が更に大きくなるものと予
想される。特に、加熱温度が100℃の場合は大気下、即
ち酸素分圧が約160Torrあっても式(4)の平衡点は充
分左に移動することが判明した。
Assuming that the equilibrium reaction of the above formula (4) generally holds, if the heating temperature is increased and the generated oxygen is removed from the system, the equilibrium point moves to the left side of the formula (4) and the dimerization on the right side of the formula It is expected that the rate at which objects will regenerate into monomers will increase. In particular, it has been found that when the heating temperature is 100 ° C., the equilibrium point of the equation (4) moves sufficiently to the left under the atmosphere, that is, even when the oxygen partial pressure is about 160 Torr.

このようなことから、錯体溶液中の劣化生成物である
二量化物を100℃程度の加熱操作で一量体に戻して再生
することが可能であることを確認した。さらに、このよ
うな再生方法を適用することにより、温度変動式吸収法
又は圧力変動式吸収法で、空気中の酸素を分離採取する
場合、酸素吸放出の1サイクル毎に、又は一定のサイク
ル数毎に、錯体溶液の全量又は一部を適度な温度に加熱
すれば、酸素吸収能力の低下した錯体溶液を活性な一量
体に再生することができ、長期に亙って酸素分離能力を
維持させることが可能となる。
From these facts, it was confirmed that the dimer, which is a degradation product in the complex solution, could be returned to a monomer by a heating operation at about 100 ° C. and regenerated. Furthermore, by applying such a regeneration method, when oxygen in the air is separated and collected by the temperature fluctuation type absorption method or the pressure fluctuation type absorption method, every one cycle of oxygen absorption / release or a certain number of cycles By heating the whole or a part of the complex solution to an appropriate temperature every time, the complex solution having reduced oxygen absorbing ability can be regenerated into an active monomer, and the oxygen separating ability can be maintained for a long period of time. It is possible to do.

また、上記加熱再生工程において、加熱温度を170℃
より高くすると、錯体又は軸配位子又は溶媒が分解する
おそれがあり、また、分解しない場合でも、分子量の小
さい軸配位子や溶媒は、蒸気圧が高いから、加熱時に蒸
発散逸して、錯体溶液の組成が変化することがある。一
方加熱温度が50℃未満の場合には、前記式(4)の平衡
点を充分左に移動させることができず、効果的な再生が
できない。従って、加熱温度は50℃から170℃の間とす
ることが好ましく、より好ましくは100℃前後の温度で
ある。
In the heating and regeneration step, the heating temperature is set to 170 ° C.
If it is higher, the complex or the axial ligand or the solvent may be decomposed, and even when the decomposition is not performed, the low-molecular-weight axial ligand or the solvent has a high vapor pressure, so that it evaporates and disperses during heating, The composition of the complex solution may change. On the other hand, when the heating temperature is lower than 50 ° C., the equilibrium point of the above formula (4) cannot be sufficiently moved to the left, and effective regeneration cannot be performed. Therefore, the heating temperature is preferably between 50 ° C. and 170 ° C., more preferably around 100 ° C.

また、軸配位子や溶媒は、その蒸発逸散を防ぐため
に、沸点の高いものを選択することが好ましい。更に、
加熱操作を行なうと前記二量化物の一量体への分解に伴
い酸素が発生するから、錯体溶液に接する気相酸素分圧
が高くなる。従って、着火・爆発の危険を防ぐため、引
火点の高い軸配位子や溶媒を用いることが好ましい。さ
らに、錯体溶液の種類によっては、100℃前後に加熱し
た時、発生酸素量が多くて、錯体溶液に接する気相酸素
分圧が高くなり、式(4)の左向きの反応が進行しなく
なる場合がある。このような場合は、真空排気装置等を
用いて気相酸素分圧を低下せしめることにより、二量化
物の再生操作を有効に行なうことができる。
Further, it is preferable to select an axial ligand or a solvent having a high boiling point in order to prevent evaporation and loss. Furthermore,
When a heating operation is performed, oxygen is generated along with the decomposition of the dimer into a monomer, so that the partial pressure of the gas phase oxygen in contact with the complex solution increases. Therefore, in order to prevent danger of ignition or explosion, it is preferable to use an axial ligand or a solvent having a high flash point. Furthermore, depending on the type of the complex solution, when heated to around 100 ° C., the amount of generated oxygen is large, and the partial pressure of gaseous oxygen in contact with the complex solution becomes high, so that the leftward reaction of the formula (4) does not proceed. There is. In such a case, the operation of regenerating the dimer can be effectively performed by lowering the gaseous phase oxygen partial pressure using a vacuum exhaust device or the like.

尚、前記錯体,軸配位子,溶媒は例として挙げたもの
で本発明の範囲がこれらに限定されるものではない。
The above-mentioned complex, axial ligand and solvent are given as examples, and the scope of the present invention is not limited to these.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて、さらに詳細に説明
する。
Hereinafter, the present invention will be described in more detail based on examples.

実施例1 常法によって合成した(N,N′−ビス(4−メトキシ
サリチリデン)−1,2−ジアミノ−2−メチルプロパナ
ト)コバルト(II)[Co(4−MeOSal)Dmen] と、3−メチル−1,1′−ドデシルジイミダゾリウムア
イオダイド[Im(CH212ImMe+I-とをN,N−ジメチルホルムアミド[DMFd7]に溶解させ、
錯体濃度0.1M,軸配位子1.5当量の錯体溶液1mlを調製し
た。
Example 1 (N, N'-bis (4-methoxysalicylidene) -1,2-diamino-2-methylpropanato) cobalt (II) [Co (4-MeOSal) Dmen] synthesized by a conventional method. And 3-methyl-1,1'-dodecyldiimidazolium iodide [Im (CH 2 ) 12 ImMe + I ] And dissolved in N, N-dimethylformamide [DMFd7],
1 ml of a complex solution having a complex concentration of 0.1 M and an axial ligand of 1.5 equivalent was prepared.

次に、この錯体溶液を0℃の温度として酸素ガスを15
分間バブリングし、充分酸素を吸収させた後、帯磁率測
定用のサンプル管に移し、錯体溶液の上部気相を空気に
置換して密閉した。尚、錯体溶液の帯磁率xは、核磁気
共鳴装置を利用したエバンス法で測定した。
Next, the complex solution was heated to 0 ° C. and oxygen gas was added for 15 minutes.
After bubbling for a minute to sufficiently absorb oxygen, the complex solution was transferred to a sample tube for magnetic susceptibility measurement, and the upper gas phase of the complex solution was replaced with air and sealed. The magnetic susceptibility x of the complex solution was measured by the Evans method using a nuclear magnetic resonance apparatus.

その結果、第1図の線Aに示すように、錯体溶液調整
直後の帯磁率x0を基準にして、x/x0により錯体溶液の劣
化度合を測定したところ、この錯体溶液を0℃で保存し
た場合は、6日間経過するとx/x0<0.1となった。
As a result, as shown by the line A in FIG. 1, the degree of deterioration of the complex solution was measured by x / x 0 based on the magnetic susceptibility x 0 immediately after the preparation of the complex solution. When stored, x / x 0 <0.1 after 6 days.

この錯体溶液をサンプル管に入れたままの状態、即
ち、酸素分圧が約160Torrの大気圧条件下で、100℃の温
度に1時間加熱した。放冷後、0℃で帯磁率を測定する
とx/x0=0.80まで回復していた。これを第1図に点Bで
示す。
This complex solution was heated to a temperature of 100 ° C. for 1 hour in a state of being kept in the sample tube, that is, under an atmospheric pressure condition where the oxygen partial pressure was about 160 Torr. After cooling, the magnetic susceptibility was measured at 0 ° C., and it was recovered to x / x 0 = 0.80. This is indicated by point B in FIG.

実施例2 実施例1と同じ錯体溶液を調製し、0℃と70℃の温度
幅で、周期的に温度変動する断熱槽(周期は3時間/サ
イクル)に保存し、実施例1と同様の方法で帯磁率を測
定した。尚、帯磁率の測定温度は、断熱槽から錯体溶液
を取出す時の温度とは無関係に、0℃とした。その結
果、第1図の線Cに示すように、初期2日間はx/x0が低
下するが、それ以後はx/x0=0.5前後で一定となり、こ
れ以上の錯体溶液の劣化は認められなかった。
Example 2 The same complex solution as in Example 1 was prepared and stored in an adiabatic bath (period: 3 hours / cycle) with a temperature range of 0 ° C. and 70 ° C., and the temperature fluctuated periodically. The magnetic susceptibility was measured by the method. The measurement temperature of the magnetic susceptibility was set to 0 ° C. irrespective of the temperature at which the complex solution was taken out from the adiabatic tank. As a result, as shown by the line C in FIG. 1, x / x 0 decreases for the first two days, but thereafter becomes constant at about x / x 0 = 0.5, and further deterioration of the complex solution is recognized. I couldn't.

この錯体溶液をサンプル管に入れたままの状態で、実
施例1と同様に加熱処理した後、0℃で帯磁率を測定す
るとx/x0=0.91まで回復していた。これを第1図に点D
で示す。
After heating this complex solution in the sample tube in the same manner as in Example 1, when the susceptibility was measured at 0 ° C., it was recovered to x / x 0 = 0.91. This is shown in FIG.
Indicated by

実施例3 実施例1と同じ錯体溶液20mlを、全容積37mlのセルに
入れ、気相を真空排気した後、0℃の温度で既知量の酸
素ガスを導入し、酸素ガスの圧力変化を測定することに
より、酸素結合の平衡常数Ko2を求めた。その結果、錯
体溶液調製直後のKo2は0.18cmHg-1であったが、この錯
体溶液を4日間0℃に保った後、再びKo2を測定する
と、1×10-3cmHg-1であり、実質的に酸素吸収能力を失
っていた。
Example 3 20 ml of the same complex solution as in Example 1 was placed in a cell having a total volume of 37 ml, the gas phase was evacuated, a known amount of oxygen gas was introduced at a temperature of 0 ° C., and the pressure change of the oxygen gas was measured. Then, the equilibrium constant Ko 2 of the oxygen bond was obtained. As a result, Ko 2 immediately after the preparation of the complex solution was 0.18 cmHg -1 . After keeping the complex solution at 0 ° C. for 4 days, Ko 2 was measured again and found to be 1 × 10 -3 cmHg -1 . , And had substantially lost oxygen absorption capacity.

この酸素吸収能力を失った錯体溶液を別の容器に取出
し、アルゴンガスをバブリングしながら、100℃で1時
間加熱した。放冷後0℃で酸素結合の平衡常数Ko2を測
定したところ、0.03cm3Hg-1であり、酸素吸収能力が回
復していた。
The complex solution having lost the oxygen absorbing ability was taken out to another container and heated at 100 ° C. for 1 hour while bubbling argon gas. When the equilibrium constant Ko 2 of the oxygen bond was measured at 0 ° C. after cooling, it was 0.03 cm 3 Hg −1 , indicating that the oxygen absorbing ability was restored.

実施例4 実施例1と同じ錯体と4−ジメチルアミノピリジン
[DMAP]とを1−メチル−2−ピロリジン[NMP]に溶
解させ、錯体濃度0.1M、軸配位子1.5当量の錯体溶液9ml
を調製した。
Example 4 The same complex as in Example 1 and 4-dimethylaminopyridine [DMAP] were dissolved in 1-methyl-2-pyrrolidine [NMP], and a complex solution having a complex concentration of 0.1 M and 1.5 equivalents of an axial ligand was 9 ml.
Was prepared.

この錯体溶液を容積20cm3のガラス製セルに入れ、2
時間周期で0℃で50℃の間で温度変動を与えることがで
きる温度可変浴槽にセットするとともに、上記セルの上
部を圧力素子を取り付けてある容器(16cm3)と接続し
た。
This complex solution was placed in a glass cell having a volume of 20 cm 3 ,
The vessel was set in a temperature variable bath capable of giving a temperature fluctuation between 0 ° C. and 50 ° C. with a time cycle, and the upper part of the cell was connected to a vessel (16 cm 3 ) provided with a pressure element.

セルを冷却すると容器中の酸素が吸収され、容器圧力
が減少し、セルを加熱すると錯体溶液から酸素が放出さ
れ、容器圧力が上昇する。この圧力変化を基にして錯体
溶液の酸素吸放出量を算出した。
When the cell is cooled, the oxygen in the container is absorbed and the container pressure is reduced. When the cell is heated, oxygen is released from the complex solution, and the container pressure is increased. Based on this pressure change, the amount of oxygen absorbed and released by the complex solution was calculated.

最初の酸素吸放出量をQ0とし、2回目以降の吸放出量
をQ(c)とおき、Q(c)/Q0により錯体溶液の劣化
度合を測定した。ここでcはサイクル数を表わす。その
結果、第2図に示すように、初期数十サイクルでは急速
に劣化するが、60サイクル目以降は、Q(c)/Q0が0.5
5前後で一定となった。
The initial oxygen absorption / desorption amount was Q 0 , the second and subsequent absorption / desorption amounts were Q (c), and the degree of deterioration of the complex solution was measured by Q (c) / Q 0 . Here, c represents the number of cycles. As a result, as shown in FIG. 2, although it rapidly deteriorates in the initial tens of cycles, Q (c) / Q 0 becomes 0.5 after the 60th cycle.
It became constant around 5.

この錯体溶液が200回の酸素吸放出を繰り返した後、
この錯体溶液を別の容器に取出し、アルゴンガスをバブ
リングしながら、1時間100℃で加熱した。放冷後、再
び0℃と50℃の間で酸素吸放出を行なうと、初期酸素吸
放出量Q0に近い値となった(これを第2図にAで示
す)。その後は開始初期と同様に数十サイクルの間は急
速に劣化が進行したが、それ以後はQ(c)/Q0=0.55
前後で一定となった。
After this complex solution repeats oxygen absorption and desorption 200 times,
The complex solution was taken out to another container and heated at 100 ° C. for 1 hour while bubbling argon gas. After the cooling, oxygen absorption and desorption was again performed between 0 ° C. and 50 ° C., and the value was close to the initial oxygen absorption and desorption amount Q 0 (this is indicated by A in FIG. 2). Thereafter, the deterioration rapidly progressed for several tens of cycles as in the initial stage, but thereafter, Q (c) / Q 0 = 0.55
It became constant before and after.

さらに、この錯体溶液が合計で370回の酸素吸放出を
繰り返した後、再び別の容器に取出し、大気下、即ち、
酸素分圧が約160Torrの条件下で、1時間100℃に加熱し
た。放冷後、再び0℃と50℃の間で酸素吸放出を行なう
と初期酸素吸放出量Q0に近い値を示した(これを第2図
にBで示す)。その後の酸素吸放出量の変化は前と同様
であった。
Furthermore, after the complex solution has been repeatedly absorbed and released 370 times of oxygen, the complex solution is again taken out to another container, and is removed under the atmosphere, that is,
The mixture was heated to 100 ° C. for 1 hour under the condition that the oxygen partial pressure was about 160 Torr. After cooling, oxygen absorption and desorption was again performed between 0 ° C. and 50 ° C., indicating a value close to the initial oxygen absorption and desorption amount Q 0 (this is indicated by B in FIG. 2). Subsequent changes in oxygen absorption and release were the same as before.

この錯体溶液が合計で800回の酸素吸放出を繰り返し
た後、前記同様の加熱操作を行なったが、同様の結果を
得ることができた(これを第2図にCで示す)。
After the complex solution was repeatedly absorbed and desorbed oxygen 800 times in total, the same heating operation was performed, but the same result was obtained (this is indicated by C in FIG. 2).

実施例5 錯体として、(N,N′−ビス(4−メトキシサリチル
デン)−2,3−ジアミノ−2,3−ジメチルブタナト)コバ
ルト(II)[Co(4−MeOSal)Tmen] と、軸配位子として4−ジメチルアミノピリジン[DMA
P]と、溶媒として1−メチル−2−ピロリジノン[NM
P]を用いて錯体濃度0.1M、軸配位子5.0当量の錯体溶液
9mlを調製した。
Example 5 As a complex, (N, N'-bis (4-methoxysalicyldene) -2,3-diamino-2,3-dimethylbutanato) cobalt (II) [Co (4-MeOSal) Tmen] And 4-dimethylaminopyridine [DMA as an axial ligand
P] and 1-methyl-2-pyrrolidinone [NM
P], a complex solution with a complex concentration of 0.1 M and an axial ligand of 5.0 equivalents
9 ml were prepared.

この錯体溶液を用いて、−20℃と+25℃の間で温度変
動を与えた以外は実施例4と同様に操作したところ、同
様の結果を得ることができた。
Using this complex solution, the same operation as in Example 4 was performed except that the temperature was varied between -20 ° C and + 25 ° C, and the same result was obtained.

実施例6 実施例5において、軸配位子を3−メチル−1,1′−
ドデシルイミダゾリウムアイオダイド[Im(CH212ImM
e+I-]を代えた以外は同様に操作したところ、同様の結
果を得ることができた。
Example 6 In Example 5, the axial ligand was changed to 3-methyl-1,1′-
Dodecyl imidazolium iodide [Im (CH 2 ) 12 ImM
e + I -] where is was operated in the same manner except for changing the, it was possible to obtain similar results.

実施例7 錯体として、(N,N′−ビス(3−ターシャリーブチ
ルサリチリデン)−2,3−ジアミノ−2,3−ジメチルブタ
ナト)コバルト(II)[Co(3−tBuSal)Tmen] 軸配位子として4−ジメチルアミノピリジン[DMAP]、
溶媒として1−メチル−2−ピロリジノン[NMP]を用
いて錯体濃度0.1M、軸配位子10.0当量の錯体溶液9mlを
調製した。
Example 7 As a complex, (N, N'-bis (3-tert-butylsalicylidene) -2,3-diamino-2,3-dimethylbutanato) cobalt (II) [Co (3-tBuSal) Tmen ] 4-dimethylaminopyridine [DMAP] as an axial ligand,
Using 1-methyl-2-pyrrolidinone [NMP] as a solvent, 9 ml of a complex solution having a complex concentration of 0.1 M and 10.0 equivalents of an axial ligand was prepared.

この錯体溶液を用いて、実施例5と同様に操作したと
ころ、実施例4と同様の結果を得ることができた。
When the same operation as in Example 5 was performed using this complex solution, the same results as in Example 4 were obtained.

実施例8 実施例7において、溶媒をオルト−ジクロロベンゼン
[o−DCB]に代え、軸配位子を1.5当量とした以外は同
様に操作したところ、実施例4と同様の結果を得ること
ができた。
Example 8 The same operation as in Example 4 was performed, except that the solvent was changed to ortho-dichlorobenzene [o-DCB] and the axial ligand was changed to 1.5 equivalents. did it.

実施例9 錯体として(N,N′−ビス(3,5−ジターシャリーブチ
ルサリチリデン)−2,3−ジアミノブタナト)コバルト
(II)[Co3,5−DtBuSalBn−Meso] 軸配位子として4−ジメチルアミノピリジン[DMAP]、
溶媒として1−メチル−2−ピロリジノン[NMP]を用
いて錯体濃度0.1M、軸配位子1.5当量の錯体溶液9mlを調
製した。この錯体溶液を用いて、実施例4と同様に操作
したところ、同様の結果を得ることができた。
Example 9 (N, N'-bis (3,5-di-tert-butylsalicylidene) -2,3-diaminobutanato) cobalt (II) [Co3,5-DtBuSalBn-Meso] as a complex 4-dimethylaminopyridine [DMAP] as an axial ligand,
Using 1-methyl-2-pyrrolidinone [NMP] as a solvent, 9 ml of a complex solution having a complex concentration of 0.1 M and 1.5 equivalents of an axial ligand was prepared. When the same operation as in Example 4 was performed using this complex solution, similar results were obtained.

実施例10 錯体として(N,N′−ビス(サリチリデン)−1,2−ジ
アミノプロパナト)コバルト(II)[CoSalPn] 軸配位子としてラウリルイミダゾール[Im(C
H212]、溶媒として1−メチル−2−ピロリジノン
[NMP]を用いて錯体濃度0.3M、軸配位子5.0当量の錯体
溶液9mlを調製した。この錯体溶液を用いて、実施例5
と同様に操作したところ、同様の結果を得ることができ
た。
Example 10 (N, N'-bis (salicylidene) -1,2-diaminopropanato) cobalt (II) [CoSalPn] as a complex As an axial ligand, laurylimidazole [Im (C
H 2 ) 12 ] and 9 ml of a complex solution having a complex concentration of 0.3 M and an axial ligand of 5.0 equivalents were prepared using 1-methyl-2-pyrrolidinone [NMP] as a solvent. Using this complex solution, Example 5
By performing the same operation as in the above, similar results could be obtained.

次表に上記各実施例に用いた錯体溶液をまとめて示
す。
The following table summarizes the complex solutions used in each of the above examples.

〔発明の効果〕 以上説明したように、本発明の酸素吸収錯体の再生方
法によれば、劣化した錯体溶液を簡便容易な操作により
再生することが可能であり、この方法を利用して錯体溶
液を用いた酸素分離方法の錯体溶液を再生することによ
り、長期に亘って錯体溶液を使用することも可能とな
り、酸素分離におけるコストを大幅に低減することがで
きる。
[Effects of the Invention] As described above, according to the method for regenerating an oxygen-absorbing complex of the present invention, it is possible to regenerate a degraded complex solution by a simple and easy operation. By regenerating the complex solution of the oxygen separation method using, the complex solution can be used for a long period of time, and the cost in oxygen separation can be significantly reduced.

また、二量化反応を防止するために、錯体が互いに接
近できないように錯体に立体障害基を付与する試みがな
されているが、この方法では、二量化反応を完全に防止
することは難しい上、錯体の合成コストが極めて高くな
り、工業的に実用性に乏しい。従って、本発明の再生操
作を利用すれば、簡単な構造の錯体でも実質的に半永久
的な寿命で使用することができる。特に、例として挙げ
た錯体溶液は常温常圧近傍で酸素を吸放出できるから、
従来より低エネルギーで酸素を分離することができる。
Further, in order to prevent the dimerization reaction, attempts have been made to add a sterically hindered group to the complex so that the complexes cannot approach each other. However, in this method, it is difficult to completely prevent the dimerization reaction, The cost of synthesizing the complex becomes extremely high, and it is not industrially practical. Therefore, using the regeneration operation of the present invention, even a complex having a simple structure can be used with a substantially semi-permanent life. In particular, since the complex solution given as an example can absorb and release oxygen near normal temperature and normal pressure,
Oxygen can be separated with lower energy than before.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1及び実施例2における帯磁率の変化を
示す図、第2図は実施例4における酸素吸放出量の変化
を示す図である。
FIG. 1 is a diagram showing a change in magnetic susceptibility in Examples 1 and 2, and FIG. 2 is a diagram showing a change in oxygen absorption / release amount in Example 4.

フロントページの続き (56)参考文献 特開 平2−296703(JP,A) 特開 平1−9802(JP,A) 特開 昭61−174286(JP,A) 特開 昭53−123392(JP,A) 特開 昭51−122690(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/14 - 53/18 Continuation of front page (56) References JP-A-2-296703 (JP, A) JP-A-1-9802 (JP, A) JP-A-61-174286 (JP, A) JP-A-53-123392 (JP, A) , A) JP-A-51-122690 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/14-53/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相対的に低い温度での酸素の吸収と、相対
的に高い温度での酸素の放出とを一量化反応で行うサリ
チルアルデヒド系シッフベース酸素吸収錯体を非プロト
ン系溶媒中に含む溶液において、前記酸素吸収錯体が劣
化した際に、前記溶液を前記一量化反応での酸素の放出
温度よりも高い温度である50〜170℃に加熱して前記劣
化した酸素吸収錯体を再生することを特徴とする酸素吸
収錯体の再生方法。
1. A solution containing a salicylaldehyde-based Schiff-based oxygen-absorbing complex in an aprotic solvent in which oxygen is absorbed at a relatively low temperature and oxygen is released at a relatively high temperature by a monomerization reaction. In the method, when the oxygen-absorbing complex is deteriorated, the solution is heated to 50 to 170 ° C., which is a temperature higher than the temperature at which oxygen is released in the monomerization reaction, to regenerate the deteriorated oxygen-absorbing complex. A method for regenerating an oxygen-absorbing complex.
【請求項2】加熱時に前記溶液に接する気相の酸素分圧
を下げることを特徴とする請求項1記載の酸素吸収錯体
の再生方法。
2. The method for regenerating an oxygen-absorbing complex according to claim 1, wherein the oxygen partial pressure of a gas phase in contact with said solution is reduced during heating.
【請求項3】相対的に低い温度での酸素の吸収と、相対
的に高い温度での酸素の放出とを一量化反応で行うサリ
チルアルデヒド系シッフベース酸素吸収錯体を非プロト
ン系溶媒中に含む溶液を用いて温度変動式吸収法又は圧
力変動式吸収法により、酸素を分離する方法において、
前記溶液の全量又は一部を前記一量化反応での酸素の放
出温度よりも高い温度である50〜170℃に加熱して劣化
した酸素吸収錯体を再生することを特徴とする酸素吸収
錯体溶液を用いた酸素の分離方法。
3. A solution containing a salicylaldehyde-based Schiff-based oxygen-absorbing complex in an aprotic solvent, wherein the absorption of oxygen at a relatively low temperature and the release of oxygen at a relatively high temperature are performed by a monomerization reaction. In the method of separating oxygen by a temperature fluctuation absorption method or a pressure fluctuation absorption method using
An oxygen-absorbing complex solution characterized in that the entire or a part of the solution is heated to 50 to 170 ° C., which is a temperature higher than the temperature at which oxygen is released in the monomerization reaction, to regenerate the deteriorated oxygen-absorbing complex. The method of separating oxygen used.
JP1121933A 1989-05-16 1989-05-16 Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution Expired - Lifetime JP3000369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121933A JP3000369B2 (en) 1989-05-16 1989-05-16 Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121933A JP3000369B2 (en) 1989-05-16 1989-05-16 Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution

Publications (2)

Publication Number Publication Date
JPH0321319A JPH0321319A (en) 1991-01-30
JP3000369B2 true JP3000369B2 (en) 2000-01-17

Family

ID=14823526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121933A Expired - Lifetime JP3000369B2 (en) 1989-05-16 1989-05-16 Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution

Country Status (1)

Country Link
JP (1) JP3000369B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158840B2 (en) * 1998-02-17 2008-10-01 能美防災株式会社 Fire extinguisher
US8246975B2 (en) 2006-06-28 2012-08-21 Ihi Corporation Drug, drug guidance system, magnetic detection system, and drug design method
JP4774536B2 (en) * 2006-11-06 2011-09-14 株式会社Ihi Magnetic material, magnetic material induction device, and magnetic material design method
US20090169484A1 (en) * 2007-12-28 2009-07-02 Ihi Corporation Iron-salen complex
JP2009274962A (en) * 2008-05-12 2009-11-26 Yoshihiro Ishikawa Iron salen complex, medicine having magnetism, guiding system of medicine and device for detecting magnetism
CN102239138A (en) 2008-11-20 2011-11-09 株式会社Ihi Auto magnetic metal salen complex compound

Also Published As

Publication number Publication date
JPH0321319A (en) 1991-01-30

Similar Documents

Publication Publication Date Title
EP0098157B1 (en) Absorption process for producing oxygen and nitrogen and solutions therefor
Aylor et al. Investigations of the Dispersion of Pd in H-ZSM-5
EP0546808A1 (en) Nitrogen sorption
EP0747118B1 (en) Adsorbent for removal of trace oxygen from inert gases
TW200844043A (en) Xenon retrieval system and retrieval device
Tu et al. Self-enhancement of CO reversible absorption accompanied by phase transition in protic chlorocuprate ionic liquids for effective CO separation from N 2
JP3000369B2 (en) Method for regenerating oxygen absorbing complex and method for separating oxygen using oxygen absorbing complex solution
Tao et al. Cuprous‐based composite ionic liquids for the selective absorption of CO: Experimental study and thermodynamic analysis
JPH062682B2 (en) Acetylene purification method and apparatus used therefor
JPH06211506A (en) Rfining of hexafluoride sulfur
Hua et al. Adsorption Behavior of Halogenated Anesthetic and Water Vapor on Cr‐Based MOF (MIL‐101) Adsorbent. Part II. Multiple‐Cycle Breakthrough Tests
JPH07165776A (en) Cobalt schiff base complex, complex solution for separating oxygen and method for separating oxygen
JP2007204446A (en) Metal complex and method for recovering rare gas by using the same
JP2703874B2 (en) Cobalt Schiff base complex and complex solution for oxygen separation and oxygen separation method
Tanaka et al. Decomposition of Formic Acid over Metal Phthalocyanines
CN115282941B (en) Metal organic framework material and preparation method and application thereof
JPH09151192A (en) Cobalt schiff base complex, complex solution for separating oxygen and separation of oxygen
Dickinson et al. The mechanism of methanol formation and other reactions following formaldehyde adsorption on Ni (110)
JP2703875B2 (en) Complex solution for oxygen separation and oxygen separation method
GB2416137A (en) Preparation of a gold catalyst
Fu et al. Deuterium separation under ambient conditions by spatial confinement between Pd nanoparticles and benzene skeleton
JP3009758B2 (en) Cobalt Schiff base complex and oxygen separation process using the same
JP2752342B2 (en) Complex solution for oxygen separation and oxygen separation method
Tanaka et al. Adsorption of hydrogen on the stoichiometric electron donor-acceptor complexes of anthracene with sodium
CN115282941A (en) Metal organic framework material and preparation method and application thereof