JP2002257971A - Nuclear reactor vessel - Google Patents

Nuclear reactor vessel

Info

Publication number
JP2002257971A
JP2002257971A JP2001054083A JP2001054083A JP2002257971A JP 2002257971 A JP2002257971 A JP 2002257971A JP 2001054083 A JP2001054083 A JP 2001054083A JP 2001054083 A JP2001054083 A JP 2001054083A JP 2002257971 A JP2002257971 A JP 2002257971A
Authority
JP
Japan
Prior art keywords
vessel
core
flow
coolant
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001054083A
Other languages
Japanese (ja)
Inventor
Tomonari Takada
智成 高田
Noboru Kubo
登 久保
Seiji Asada
誠治 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001054083A priority Critical patent/JP2002257971A/en
Publication of JP2002257971A publication Critical patent/JP2002257971A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the flow rate distribution of the flow of a coolant flowing in a core of a pressurized water nuclear reactor. SOLUTION: In the nuclear reactor having a nuclear reactor vessel 40 having a bottomed cylindrical vessel body 41 provided with a lower end plate 43 and a removable upper cover 13, a cylindrical reactor core tank 19 drooped and supported in the vessel body 41 for forming a downcomer 21 with an inner surface of the vessel body 41, and a lower part core supporting plate 23 expanding in a horizontal direction on a lower end part of the core bath 19 for forming a lower part plenum 53 by incorporating with the end plate 43, a plurality of coolant inlet nozzles 15 for opening to the downcomer 21 are integrally formed, with a space, on the upper part of the vessel body 41, and a step shaped projection 55 is arranged on the inner side upper part of the end plate 43 so as to face the lower end opening of the downcomer 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉容器に関
し、特に加圧水型原子炉用原子炉容器の内部構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor vessel, and more particularly to an internal structure of a nuclear reactor vessel for a pressurized water reactor.

【0002】[0002]

【従来の技術】加圧水型原子炉は一般に、原子炉容器の
内部で発生せしめた高温高圧の原子炉冷却材を、原子炉
容器の外側に設けた蒸気発生器に導いてタービン駆動用
蒸気を発生するようになっており、その原子炉容器の典
型的な構造の一例が図4及び図5に示されている。図示
された原子炉容器10は、4基の蒸気発生器を持つ、所
謂4ループ型の加圧水型原子炉用のものであるが、有底
円筒形の容器本体11と着脱自在の上部蓋体13から主
としてなっている。容器本体11の側壁上部には、冷却
材入口ノズル15と冷却材出口ノズル17とがそれぞれ
一体的に形成されている。前述のように、原子炉容器1
0は4ループ型原子炉用であるから、図5に特に示すよ
うに入口ノズル15と出口ノズル17はそれぞれ4個対
称的に配置されている。なお、図において矢印は冷却材
の流れ方向を示している。
2. Description of the Related Art In general, a pressurized water reactor generates steam for driving a turbine by guiding a high-temperature and high-pressure reactor coolant generated inside a reactor vessel to a steam generator provided outside the reactor vessel. An example of a typical structure of the reactor vessel is shown in FIGS. The illustrated reactor vessel 10 is for a so-called four-loop pressurized water reactor having four steam generators, and has a bottomed cylindrical vessel body 11 and a detachable upper lid 13. Mainly from. A coolant inlet nozzle 15 and a coolant outlet nozzle 17 are integrally formed on the upper portion of the side wall of the container body 11. As described above, the reactor vessel 1
Since 0 is for a four-loop reactor, four inlet nozzles 15 and four outlet nozzles 17 are symmetrically arranged as shown in FIG. In the drawings, the arrows indicate the flow direction of the coolant.

【0003】容器本体11の内部には、上方開口部に近
い棚部から円筒形の炉心槽19が垂下支持され、炉心槽
19と容器本体11との間に環状下降流路所謂ダウンカ
マー21が画成されている。炉心槽19の下部に下部炉
心支持板23と下部炉心板25が水平に延びて設けら
れ、下部炉心板25上に多数の燃料集合体が並べられて
炉心27を形成する。燃料集合体の上端は上部炉心板2
9で押さえられるが、その上方に上部プレナム31が形
成され、これは出口ノズル17にのみ連通している。な
お、容器本体11の底部は半球殻状の鏡板33として形
成され、鏡板33と下部炉心支持板23との間が下部プ
レナム35となっている。
[0003] Inside the vessel body 11, a cylindrical core vessel 19 is suspended from a shelf near the upper opening, and an annular descending flow path, so-called downcomer 21, is provided between the vessel 19 and the vessel body 11. It is defined. A lower core support plate 23 and a lower core plate 25 are provided horizontally below the core tank 19, and a number of fuel assemblies are arranged on the lower core plate 25 to form a core 27. The upper end of the fuel assembly is the upper core plate 2.
9, above which an upper plenum 31 is formed, which communicates only with the outlet nozzle 17. The bottom of the container body 11 is formed as a hemispherical shell-like end plate 33, and a lower plenum 35 is provided between the end plate 33 and the lower core support plate 23.

【0004】そして、上述のような構造の原子炉容器1
0の内部における冷却材の流れを概説すると、図示しな
い冷却材ポンプから送られた冷却材は、入口ノズル15
を通って内部のダウンカマー21へ流入する。冷却材は
矢印に示すようにダウンカマー21内を流下し、下部プ
レナム35内で反転し、下部炉心支持板23と下部炉心
板25を貫流して炉心27内に入る。炉心27内では、
冷却材は燃料集合体の燃料棒の外側をこれに沿って上向
きに流れつつ核反応熱を吸収して昇温する。炉心27内
を上昇して上部プレナム31に至ったら、水平方向に向
きを変え、蒸気発生器に向けて出口ノズル17から流出
する。
[0004] The reactor vessel 1 having the above-described structure.
In general, the flow of the coolant inside the coolant nozzle (not shown) is supplied from a coolant pump (not shown) to the inlet nozzle 15.
Through the downcomer 21 inside. The coolant flows down the downcomer 21 as shown by the arrow, reverses in the lower plenum 35, flows through the lower core support plate 23 and the lower core plate 25, and enters the core 27. In the core 27,
The coolant flows upward along the outside of the fuel rods of the fuel assembly, absorbs nuclear reaction heat, and rises in temperature. After ascending in the core 27 and reaching the upper plenum 31, the air is turned horizontally and flows out of the outlet nozzle 17 toward the steam generator.

【0005】[0005]

【発明が解決しようとする課題】前述したように、図示
しない4基の蒸気発生器に連絡するそれぞれ4個の入口
ノズル15と出口ノズル17とには、図示はしないが高
温高圧用高強度配管が取り付けられている。これらの配
管には冷却材ポンプや加圧器なども連結され、その配置
に際し物理空間的制約も多いから、製作性や空間効率を
考慮すると前述のようなノズル配置となることが多い。
しかしながら、入口ノズル15を通った冷却材は、炉心
槽19の外面にほぼ直角に衝突するから、方向や速度が
時間的にランダムに変化する乱流となり、隣接した入口
ノズル15から発した二つの冷却材流れは、互いに衝突
する境界で攻め合う。ダウンカマー21の上部で攻め合
って生じた冷却材の流動変動が、ダウンカマー21を通
って下部プレナム35に至る過程でより大きくなる。こ
のような流れの変動は、炉心27内を上昇する冷却材の
流量分布を乱し、均一な炉心流量分布の確保に支障を来
し、ホットスポット等の発生に繋がる虞もあり、原子炉
の安全な運転上好ましくない。従って、本発明の課題
は、冷却材入口ノズルの数が増え、隣接入口ノズルから
の冷却材流れの相互干渉が生じても、原子炉炉心内を流
れる冷却材の流量分布が一様に維持される内部構造を持
つ原子炉容器を提供することである。
As described above, although not shown, a high-strength high-temperature and high-pressure pipe is connected to each of the four inlet nozzles 15 and four outlet nozzles 17 connected to four steam generators (not shown). Is attached. A coolant pump, a pressurizer, and the like are also connected to these pipes, and there are many physical and spatial restrictions when arranging them. Therefore, in consideration of manufacturability and space efficiency, the above-described nozzle arrangement is often used.
However, since the coolant that has passed through the inlet nozzle 15 collides with the outer surface of the core vessel 19 almost at right angles, a turbulent flow in which the direction and the speed change randomly with time is generated. The coolant flows attack at boundaries where they collide with each other. The flow fluctuation of the coolant generated by aggression at the upper part of the downcomer 21 becomes larger in the process of reaching the lower plenum 35 through the downcomer 21. Such flow fluctuations disturb the flow rate distribution of the coolant ascending in the core 27, hinder the securing of a uniform core flow rate distribution, and may lead to the generation of hot spots and the like. Not preferable for safe driving. Therefore, an object of the present invention is to maintain a uniform flow rate distribution of the coolant flowing in the reactor core even if the number of coolant inlet nozzles increases and mutual interference of coolant flows from adjacent inlet nozzles occurs. The purpose of the present invention is to provide a nuclear reactor vessel having an internal structure that is as follows.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明によれば、下部鏡板を備えた有底円筒状容器
本体と取り外し自在の上蓋とを有する原子炉容器、該容
器本体の中に垂下支持され該容器本体内面との間に環状
下降流路を画成する円筒状の炉心槽、及び該炉心槽の下
端部に水平方向に展延して設けられ前記鏡板と協働して
下部プレナムを画成する下部炉心支持板を有する原子炉
における前記原子炉容器は、該容器本体の上部に該環状
下降流路に開口する複数の冷却材入口ノズルが離れて一
体的に形成され、更に前記鏡板の内面上部には該環状下
降流路の下端開口に臨んで冷却材流流れ均一化構造物が
配設されて構成される。前記流れ均一化構造物として
は、階段状突起、粒状物層又は環状突起から形成するの
が好ましく、その突出高さ乃至厚さは、環状下降流路の
厚さの0.2倍乃至0.5倍とするのが好ましい。
According to the present invention, there is provided, in accordance with the present invention, a nuclear reactor vessel having a bottomed cylindrical vessel body having a lower head and a removable upper lid, A cylindrical core vessel which is suspended from the container body and defines an annular downward flow path with the inner surface of the vessel body, and is provided at the lower end of the core vessel so as to extend horizontally and cooperate with the end plate. The reactor vessel in the reactor having a lower core support plate that defines a lower plenum, a plurality of coolant inlet nozzles that open to the annular descending flow path are formed integrally at an upper part of the vessel body, Further, a coolant flow uniforming structure is disposed above the inner surface of the end plate so as to face the lower end opening of the annular descending channel. The flow uniforming structure is preferably formed of a step-like projection, a granular material layer, or an annular projection, and the height or thickness of the projection is 0.2 to 0.1 times the thickness of the annular descending channel. It is preferable to make it 5 times.

【0007】[0007]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。なお、前述の従来技術に関する図面を
含め、全図に亘り同一部分には同一の符号を付してい
る。先ず図1を参照するに、原子炉容器40は、有底円
筒形の容器本体41と着脱自在の上部蓋体13を有して
いる。容器本体41の側壁上部には、それぞれ1個ずつ
示された4個の冷却材入口ノズル15と冷却材出口ノズ
ル17とが一体的に形成されている。それぞれ4個の入
口ノズル15と出口ノズル17の平面的配置関係は、前
述の図5に示すものと同じである。容器本体41の内部
には、上方開口部に近い棚部から円筒形の炉心槽19が
垂下支持され、炉心槽19と容器本体11との間にダウ
ンカマー21が画成されている。ダウンカマー21の幅
即ち、炉心槽19の外面と容器本体41の内面との距離
は、符号Hで表されている。そして、炉心槽19の下部
に下部炉心支持板23と下部炉心板25が水平に設けら
れ、炉心槽19は下部炉心支持板23の位置で容器本体
11から水平方向に支持されている。その下部炉心板2
5の上には、図示しない多数の燃料集合体が互いに隣接
して装荷され、炉心27を形成する。燃料集合体の上端
は上部炉心板29で押さえられるが、その上方に上部プ
レナム31が形成され、これは炉心槽19のノズルフラ
ンジを通して出口ノズル17へ連絡している。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same portions are denoted by the same reference numerals throughout the drawings, including the drawings related to the above-described prior art. First, referring to FIG. 1, a reactor vessel 40 has a bottomed cylindrical vessel body 41 and a detachable upper lid 13. In the upper part of the side wall of the container body 41, four coolant inlet nozzles 15 and four coolant outlet nozzles 17, one each of which are shown, are integrally formed. The four-dimensional arrangement relationship between the four inlet nozzles 15 and the four outlet nozzles 17 is the same as that shown in FIG. 5 described above. Inside the container body 41, a cylindrical core tank 19 is suspended from a shelf near the upper opening, and a downcomer 21 is defined between the core tank 19 and the container body 11. The width of the downcomer 21, that is, the distance between the outer surface of the core tank 19 and the inner surface of the container body 41 is represented by the symbol H. A lower core support plate 23 and a lower core plate 25 are provided horizontally below the core tank 19, and the core tank 19 is horizontally supported from the vessel body 11 at the position of the lower core support plate 23. The lower core plate 2
A large number of fuel assemblies (not shown) are loaded on each other adjacent to each other and form a core 27. The upper end of the fuel assembly is held by an upper core plate 29, above which an upper plenum 31 is formed, which communicates with the outlet nozzle 17 through the nozzle flange of the core tank 19.

【0008】而して、炉心27内の中性子束などを検出
するため、容器本体41の半球殻状鏡板43を貫いて複
数の計装案内管45が延びていて、下部炉心支持板2
3、上部連接板47及び下部連接板49によって計装案
内管45が保持されている。下部プレナム53内に位置
する上部連接板47及び下部連接板49は、原子炉の運
転時に鏡板43の上面に着座する支持柱51により保持
されている。そして、下部プレナム53に面する鏡板4
3の内面の上部には階段状突起55が形成され、更に下
方には階段状突起57が形成されている。突起55と突
起57との境界は、下部連接板49とほぼ同じ高さにあ
り、突起55の突出高さ(ステップ高さ)は、0.2〜
0.5H(Hはダウンカマー21の幅)の範囲にある。
他方突起57の高さは、0.5H以上の範囲にある。階
段状突起55,57の上面は円周方向に延びているが、
必ずしも連続する必要はない。
In order to detect a neutron flux or the like in the core 27, a plurality of instrumentation guide tubes 45 extend through the hemispherical shell-like end plate 43 of the container body 41, and the lower core support plate 2
3. The instrumentation guide tube 45 is held by the upper connecting plate 47 and the lower connecting plate 49. The upper connecting plate 47 and the lower connecting plate 49 located in the lower plenum 53 are held by the support columns 51 seated on the upper surface of the end plate 43 during operation of the nuclear reactor. Then, the end plate 4 facing the lower plenum 53
A step-like projection 55 is formed on the upper part of the inner surface of the step 3, and a step-like projection 57 is formed further below. The boundary between the protrusion 55 and the protrusion 57 is at substantially the same height as the lower connecting plate 49, and the protrusion height (step height) of the protrusion 55 is 0.2 to
0.5H (H is the width of the downcomer 21).
On the other hand, the height of the projection 57 is in a range of 0.5H or more. Although the upper surfaces of the step-like projections 55 and 57 extend in the circumferential direction,
It is not necessary to be continuous.

【0009】上述のような構造の原子炉容器40におい
て、冷却材Cは従来の原子炉容器の場合と同様に、図示
しない冷却材ポンプにより配管を流れ、入口ノズル15
を通ってダウンカマー21へ流入し、炉心槽19の外面
に衝突する。衝突した冷却材Cは、炉心槽19の外面に
沿って四方に向かって流れるが、最終的には矢印に示す
ようにダウンカマー21内を流下し、下部プレナム35
内で反転し、下部炉心支持板23と下部炉心板25を貫
流して炉心27内に入る。炉心27内では、冷却材C
は、燃料集合体の燃料棒の外側をこれに沿って上向きに
流れつつ、核反応熱を吸収して昇温する。炉心27内を
上昇し、上部プレナム31に至った後、冷却材Cは水平
方向に向きを変え、蒸気発生器に向けて出口ノズル17
から流出する。
In the reactor vessel 40 having the above-described structure, the coolant C flows through the pipes by a coolant pump (not shown) as in the case of the conventional reactor vessel.
Through the downcomer 21 and collides with the outer surface of the core tank 19. The impinging coolant C flows in all directions along the outer surface of the core tank 19, but finally flows down in the downcomer 21 as shown by the arrow, and the lower plenum 35.
And flows into the core 27 through the lower core support plate 23 and the lower core plate 25. In the core 27, the coolant C
Flows upward along the outside of the fuel rods of the fuel assembly and absorbs heat of nuclear reaction to increase the temperature. After ascending in the core 27 and reaching the upper plenum 31, the coolant C turns horizontally and exits the outlet nozzle 17 toward the steam generator.
Spill out of.

【0010】炉心槽19の外面は水平面内で円弧を描い
ているから、前述の衝突後に炉心槽19の円周面に沿っ
て側方へ回り込む冷却材Cの流れは、衝突前の速度成分
と同方向の速度成分を持っていて、量が多くなり易い。
このようにして炉心槽19の円周方向に流れる隣接入口
ノズル15からの冷却材Cは、互いに衝突して干渉し合
うから、最終的には下向きになるダウンカマー21内の
冷却材流の円周方向流量分布は変動している。しかしな
がら、このような冷却材Cの下向き流が、階段状突起5
5の上面に衝突し若しくは上面から形状抵抗を受ける
と、横方向特に円周方向の流れ成分が生じ、このため円
周に沿う半径方向流量分布が一様になる。このようにし
て、下部プレナム53に入る冷却材Cの反転流の円周方
向流量分布は比較的一様になり、この状態を保持して炉
心27内を上向きに流れる。即ち、炉心27内の冷却材
流の速度成分分布は一様となり、ホットスポット等が生
じない。なお、下部連接板49より下方にある階段状突
起57は、省略して平滑な面としても、前述の主要な作
用効果は得られる。
Since the outer surface of the core tank 19 draws an arc in a horizontal plane, the flow of the coolant C flowing sideways along the circumferential surface of the core tank 19 after the above-mentioned collision is caused by the velocity component before the collision It has velocity components in the same direction, and the amount tends to increase.
In this manner, the coolant C from the adjacent inlet nozzles 15 flowing in the circumferential direction of the core tank 19 collides with each other and interferes with each other. The circumferential flow distribution is fluctuating. However, such a downward flow of the coolant C is caused by the step-like projections 5.
When it collides with the upper surface of 5 or receives a shape resistance from the upper surface, a flow component occurs in the lateral direction, particularly in the circumferential direction, and therefore, the radial flow rate distribution along the circumference becomes uniform. In this manner, the circumferential flow distribution of the reversal flow of the coolant C entering the lower plenum 53 becomes relatively uniform, and flows upward in the core 27 while maintaining this state. In other words, the velocity component distribution of the coolant flow in the core 27 becomes uniform, and no hot spot or the like occurs. In addition, even if the step-like projection 57 below the lower connecting plate 49 is omitted and a smooth surface is obtained, the above-described main operation and effect can be obtained.

【0011】次に図2を参照して本発明の別の実施形態
を説明する。本実施形態に係る原子炉容器60は後記す
る以外前述の原子炉容器40と同じ構造である。即ち、
図2の(a)に示されるように、原子炉容器60におい
て、容器本体61の底部の半球殻状鏡板63の内面に粒
状物層65が形成されている。粒状物層65の概念図が
図2(b)に拡大して示されている。粒状物層65の厚
さは、0.02H乃至0.05Hの範囲が良く、好まし
くは約0.05Hである。以上のような構成の原子炉容
器60においても、ダウンカマー21を流下した冷却材
Cは、鏡板63の内面の粒状物層65に接して大きな流
体摩擦を受ける。このため、大きい流速を持つ領域の冷
却材Cの一部は側方に流れて、流速分布は一様化し、下
部プレナム53内に流れ込む反転流の流量分布は一様化
して、前述の実施形態の場合と同様の作用効果が得られ
る。
Next, another embodiment of the present invention will be described with reference to FIG. The reactor vessel 60 according to the present embodiment has the same structure as the above-described reactor vessel 40 except for the following. That is,
As shown in FIG. 2A, in the reactor vessel 60, a granular material layer 65 is formed on the inner surface of the hemispherical shell-shaped end plate 63 at the bottom of the vessel main body 61. FIG. 2B is an enlarged conceptual view of the granular material layer 65. The thickness of the particulate layer 65 is preferably in the range of 0.02H to 0.05H, and is preferably about 0.05H. Also in the reactor vessel 60 having the above-described configuration, the coolant C flowing down the downcomer 21 contacts the granular material layer 65 on the inner surface of the end plate 63 and receives a large fluid friction. For this reason, a part of the coolant C in the region having the large flow velocity flows laterally, the flow velocity distribution is made uniform, and the flow distribution of the reverse flow flowing into the lower plenum 53 is made uniform. The same operation and effect as in the case of are obtained.

【0012】更に本発明の別の改変実施形態を図3を参
照して説明する。図3に示す原子炉容器70は、以下に
説明する部分のみが前述の原子炉容器40、60と異な
る。即ち、容器本体71の底部の半球殻状の鏡板73の
内面に、環状突起75が複数形成されている。環状突起
75の断面は矩形であり、高さは0.2H乃至0.5H
(Hはダウンカマー21の幅)であるが、更に隣接する
環状突起75の間隔は高さの4乃至6倍である。なお、
環状突起75の断面形状は、矩形に代えて三角形や円形
等でも良い。
Still another modified embodiment of the present invention will be described with reference to FIG. The reactor vessel 70 shown in FIG. 3 differs from the above-described reactor vessels 40 and 60 only in portions described below. That is, a plurality of annular projections 75 are formed on the inner surface of the hemispherical shell-shaped end plate 73 at the bottom of the container body 71. The cross section of the annular projection 75 is rectangular, and the height is 0.2H to 0.5H.
(H is the width of the downcomer 21), and the interval between the adjacent annular projections 75 is 4 to 6 times the height. In addition,
The cross-sectional shape of the annular projection 75 may be a triangle, a circle, or the like instead of a rectangle.

【0013】前記した構成の原子炉容器70において、
ダウンカマー21を通って下部プレナム53に流入する
ステップ状流速分布を有する冷却材Cの噴流は、環状突
起75と干渉するために減速される。更に、流体摩擦に
よりステップ状流速分布が急速に平滑化され、下部プレ
ナム53内で矢印に示すように流れ方向を反転し、下部
炉心支持板23及び下部炉心板25を順次通過し、炉心
27内にほぼ均一に流入する。従って、前述と同様の作
用効果を奏する。
In the reactor vessel 70 having the above configuration,
The jet of the coolant C having the step-like flow velocity distribution flowing into the lower plenum 53 through the downcomer 21 is decelerated to interfere with the annular projection 75. Further, the stepwise flow velocity distribution is rapidly smoothed by the fluid friction, the flow direction is reversed as shown by the arrow in the lower plenum 53, and the flow passes through the lower core support plate 23 and the lower core plate 25 sequentially, and Almost uniformly. Therefore, the same operation and effect as described above can be obtained.

【0014】[0014]

【発明の効果】前記したように、本発明によれば、原子
炉容器の容器本体の底部鏡板内面に、ダウンカマー乃至
環状下降流路の下端開口に臨んで、流れ均一化構造を設
けたので、下部プレナム内に向かう冷却材流の半径方向
流速は円周に沿って均一化されるから、炉心内を流れる
冷却材流の流量分布が一様化される。
As described above, according to the present invention, the uniform flow structure is provided on the inner surface of the bottom end plate of the vessel body of the nuclear reactor vessel, facing the downcomer or the lower end opening of the annular descending flow path. Since the radial flow velocity of the coolant flow into the lower plenum is made uniform along the circumference, the flow distribution of the coolant flow flowing in the core is made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る原子炉容器の概略立断
面図である。
FIG. 1 is a schematic vertical sectional view of a reactor vessel according to an embodiment of the present invention.

【図2】前記実施形態の一部を改変した改変実施形態の
要部を示す部分立断面図と更にその部分拡大断面図であ
る。
FIG. 2 is a partial elevation sectional view showing a main part of a modified embodiment in which a part of the embodiment is modified, and a partially enlarged sectional view thereof.

【図3】前記実施形態の一部を改変した別の改変実施形
態の要部を示す部分立断面図である。
FIG. 3 is a partial sectional elevation view showing a main part of another modified embodiment in which a part of the embodiment is modified.

【図4】従来の加圧水型原子炉用原子炉容器の一例を示
す概略立断面図である。
FIG. 4 is a schematic vertical sectional view showing an example of a conventional reactor vessel for a pressurized water reactor.

【図5】図4のV−V線に沿う平断面図である。FIG. 5 is a plan sectional view taken along line VV of FIG. 4;

【符号の説明】[Explanation of symbols]

15 入口ノズル 17 出口ノズル 19 炉心槽 21 ダウンカマー 23 下部炉心支持板 25 下部炉心板 27 炉心 29 上部炉心板 31 上部プレナム 40 原子炉容器 41 容器本体 43 鏡板 45 計装案内管 47 上部連接板 49 下部連接板 51 支柱 53 下部プレナム 55、57 階段状突起 60 原子炉容器 61 容器本体 63 鏡板 65 粒状物層 70 原子炉容器 71 容器本体 73 鏡板 75 環状突起 Reference Signs List 15 inlet nozzle 17 outlet nozzle 19 core tank 21 downcomer 23 lower core support plate 25 lower core plate 27 core 29 upper core plate 31 upper plenum 40 reactor vessel 41 container body 43 end plate 45 instrumentation guide tube 47 upper connecting plate 49 lower Connecting plate 51 Prop 53 Lower plenum 55, 57 Step projection 60 Reactor vessel 61 Vessel main body 63 End plate 65 Granular material layer 70 Reactor vessel 71 Vessel body 73 End plate 75 Ring projection

Claims (4)

【特許請求の範囲】[The claims] 【請求項1】 下部鏡板を備えた有底円筒状容器本体と
取り外し自在の上蓋とを有する原子炉容器、該容器本体
の中に垂下支持され該容器本体内面との間に環状下降流
路を画成する円筒状の炉心槽、及び該炉心槽の下端部に
水平方向に展延して設けられ前記鏡板と協働して下部プ
レナムを画成する下部炉心支持板を有する原子炉におい
て、 前記容器本体の上部には前記環状下降流路に開口する複
数の冷却材入口ノズルが離れて一体的に形成され、前記
鏡板の内面上部には前記環状下降流路の下端開口に臨ん
で冷却材流流れ均一化構造物が配設されていることを特
徴とする原子炉容器。
1. A reactor vessel having a bottomed cylindrical vessel main body provided with a lower end plate and a detachable upper lid, an annular descending flow passage suspended between the vessel body and an inner surface of the vessel body. A nuclear reactor having a cylindrical core vessel to define, and a lower core support plate provided horizontally extending at a lower end of the core vessel and cooperating with the head plate to define a lower plenum; A plurality of coolant inlet nozzles that open to the annular descending flow path are formed integrally at an upper portion of the container main body, and a coolant flow nozzle that faces the lower end opening of the annular descending flow path is formed above the inner surface of the end plate. A reactor vessel, wherein a flow equalizing structure is provided.
【請求項2】 前記流れ均一化構造物が階段状突起から
形成され、その突出高さが前記環状下降流路の厚さの
0.2倍乃至0.5倍である請求項1記載の原子炉容
器。
2. The atom according to claim 1, wherein the flow equalizing structure is formed of a step-shaped protrusion, and a height of the protrusion is 0.2 to 0.5 times a thickness of the annular descending channel. Furnace vessel.
【請求項3】 前記流れ均一化構造物が粒状物層から形
成され、その厚さが前記環状下降流路の厚さの0.2倍
乃至0.5倍である請求項1記載の原子炉容器。
3. The reactor of claim 1 wherein said flow equalizing structure is formed from a layer of granular material, the thickness of which is 0.2 to 0.5 times the thickness of said annular downflow channel. container.
【請求項4】 前記流れ均一化構造物が環状突起から形
成され、その高さが前記環状下降流路の厚さの0.2倍
乃至0.5倍である請求項1記載の原子炉容器。
4. The reactor vessel according to claim 1, wherein the flow equalizing structure is formed of an annular projection, and the height thereof is 0.2 to 0.5 times the thickness of the annular down flow passage. .
JP2001054083A 2001-02-28 2001-02-28 Nuclear reactor vessel Withdrawn JP2002257971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054083A JP2002257971A (en) 2001-02-28 2001-02-28 Nuclear reactor vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054083A JP2002257971A (en) 2001-02-28 2001-02-28 Nuclear reactor vessel

Publications (1)

Publication Number Publication Date
JP2002257971A true JP2002257971A (en) 2002-09-11

Family

ID=18914466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054083A Withdrawn JP2002257971A (en) 2001-02-28 2001-02-28 Nuclear reactor vessel

Country Status (1)

Country Link
JP (1) JP2002257971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177780A (en) * 2013-01-14 2013-06-26 上海核工程研究设计院 Flow distribution device for pressurized-water nuclear reactor
WO2013159438A1 (en) * 2012-04-27 2013-10-31 上海核工程研究设计院 Reactor internals in lower reactor
WO2014108072A1 (en) * 2013-01-08 2014-07-17 国家核电技术有限公司 Flow allocation apparatus, lower reactor internal of reactor, and reactor
CN106875985A (en) * 2017-03-31 2017-06-20 中国核动力研究设计院 A kind of core flow distributor for in-pile component lower chambers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159438A1 (en) * 2012-04-27 2013-10-31 上海核工程研究设计院 Reactor internals in lower reactor
WO2014108072A1 (en) * 2013-01-08 2014-07-17 国家核电技术有限公司 Flow allocation apparatus, lower reactor internal of reactor, and reactor
GB2523519A (en) * 2013-01-08 2015-08-26 State Nuclear Power Technology Corp Ltd Flow allocation apparatus, lower reactor internal of reactor, and reactor
GB2523519B (en) * 2013-01-08 2018-07-11 State Nuclear Power Tech Corporation Ltd Flow allocation apparatus, lower reactor internal of reactor, and reactor
US10636530B2 (en) 2013-01-08 2020-04-28 State Nuclear Power Technology Corporation Ltd. Flow distribution device, lower internals of reactor and reactor
CN103177780A (en) * 2013-01-14 2013-06-26 上海核工程研究设计院 Flow distribution device for pressurized-water nuclear reactor
CN103177780B (en) * 2013-01-14 2015-11-25 上海核工程研究设计院 A kind of pressurized-water reactor flow distribution device
CN106875985A (en) * 2017-03-31 2017-06-20 中国核动力研究设计院 A kind of core flow distributor for in-pile component lower chambers

Similar Documents

Publication Publication Date Title
JP5497454B2 (en) Pressurized water reactor skirt rectifier
EP2016990B1 (en) Gas-water separator
KR101129735B1 (en) Nuclear reactor
JP2012251977A (en) Reactor internal structure and nuclear reactor
WO2007099811A1 (en) Gas-water separator
JP2002257971A (en) Nuclear reactor vessel
US6445758B1 (en) Internal structure of nuclear reactor with coolant flow stabilizing facility
JP2012141298A (en) Internal structure of nuclear reactor
JP2009075001A (en) Nuclear reactor
US3895674A (en) Inlet flow distributor for a heat exchanger
JP2999124B2 (en) Substructure inside a pressurized water reactor
JPH10111379A (en) Internal structure of pressurized water reactor
JPH0862372A (en) Internal structure of pressurized water reactor
JP2014122856A (en) Nuclear reactor structure of pressurized water reactor
JP2012058113A (en) Steam separation facility for nuclear reactor
JP7394041B2 (en) Reactor
JP3853415B2 (en) Pressurized water reactor reactor vessel
JP2012002657A (en) Core internal structure and reactor pressure vessel
JP2013148359A (en) Rectifier in upper plenum inside fast breeder reactor vessel
US20100246743A1 (en) Steam flow vortex straightener
JPH0972985A (en) To-be-heated fluid mixing acceleration structure of vertical heat exchanger
JPH01197696A (en) Natural-circulation type nuclear reactor
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
JP2507361Y2 (en) Vortex prevention device in the upper plenum of the reactor vessel
JPH0587963A (en) Tank type fast breeder reactor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060707

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513