JP2996564B2 - Driving method of liquid crystal panel - Google Patents

Driving method of liquid crystal panel

Info

Publication number
JP2996564B2
JP2996564B2 JP4232126A JP23212692A JP2996564B2 JP 2996564 B2 JP2996564 B2 JP 2996564B2 JP 4232126 A JP4232126 A JP 4232126A JP 23212692 A JP23212692 A JP 23212692A JP 2996564 B2 JP2996564 B2 JP 2996564B2
Authority
JP
Japan
Prior art keywords
voltage
pixel
display
flc
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4232126A
Other languages
Japanese (ja)
Other versions
JPH05210365A (en
Inventor
孝次 沼尾
浩文 勝瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4232126A priority Critical patent/JP2996564B2/en
Priority to TW081108675A priority patent/TW245780B/zh
Priority to DE69224147T priority patent/DE69224147T2/en
Priority to EP92310203A priority patent/EP0541396B1/en
Priority to KR1019920020968A priority patent/KR970001848B1/en
Publication of JPH05210365A publication Critical patent/JPH05210365A/en
Application granted granted Critical
Publication of JP2996564B2 publication Critical patent/JP2996564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/04Partial updating of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液晶パネルの駆動方法に
関し、とくに、強誘電性液晶(以下FLCという)を用
いた液晶パネルの駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a liquid crystal panel, and more particularly to a method for driving a liquid crystal panel using a ferroelectric liquid crystal (hereinafter referred to as FLC).

【0002】[0002]

【従来の技術】FLCパネルの構成は図2に概略的な断
面図で示されるものである。即ち、2枚のガラス基板5
a,5bは互いに対向させて配置され、一方のガラス基
板5aの表面にはインジウム錫酸化物(以下ITOと略
称する)等からなる透明な信号電極Sが複数本互いに平
行に配置されており、その上はSiO2 等からなる透明
な絶縁膜6aで被覆されている。
2. Description of the Related Art The structure of an FLC panel is shown in a schematic sectional view in FIG. That is, two glass substrates 5
a and 5b are arranged so as to face each other, and a plurality of transparent signal electrodes S made of indium tin oxide (hereinafter abbreviated as ITO) or the like are arranged in parallel on the surface of one glass substrate 5a. The upper part is covered with a transparent insulating film 6a made of SiO 2 or the like.

【0003】信号電極Sと対向するもう一方のガラス基
板5bの表面にはITO等からなる透明な走査電極Lが
信号電極Sと直交する向きに複数本互いに平行に配置さ
れており、その上はSiO2 からなる透明な絶縁膜6b
で被覆されている。
On the surface of the other glass substrate 5b facing the signal electrode S, a plurality of transparent scanning electrodes L made of ITO or the like are arranged parallel to each other in a direction orthogonal to the signal electrode S. Transparent insulating film 6b made of SiO 2
It is covered with.

【0004】各絶縁膜6a,6b上にはラビング処理な
ど施したポリビニルアルコール等からなる透明な配向膜
7a,7bが各々形成されている。この2枚のガラス基
板5a,5bは一部に注入口を残して封止剤8で貼り合
わされ、その注入口から配向膜7a,7bで挟まれる空
間内に真空注入によってFLC9が導入された後、上記
注入口は封止剤8で封止される。
On the insulating films 6a and 6b, transparent alignment films 7a and 7b made of polyvinyl alcohol or the like subjected to a rubbing process are formed, respectively. The two glass substrates 5a and 5b are bonded together with a sealant 8 except for a part of the injection port, and after the FLC 9 is introduced from the injection port into the space sandwiched by the alignment films 7a and 7b by vacuum injection. The inlet is sealed with a sealant 8.

【0005】このようにして貼り合わせた2枚のガラス
基板5a,5bは、互いの偏光軸が直交するよう配置し
た2枚の偏光板10a,10bで挟まれている。図3
は、このFLCパネル1の走査電極Lに走査側駆動回路
11を接続し、信号電極Sに信号側駆動回路12を接続
したFLCディスプレイ(以下FLCDと略称する)4
の概略的な構成を示す平面図である。
The two glass substrates 5a and 5b thus bonded are sandwiched between two polarizing plates 10a and 10b arranged so that their polarization axes are orthogonal to each other. FIG.
Is an FLC display (hereinafter abbreviated as FLCD) 4 in which a scanning-side driving circuit 11 is connected to the scanning electrodes L of the FLC panel 1 and a signal-side driving circuit 12 is connected to the signal electrodes S.
It is a top view which shows the schematic structure of.

【0006】ここでは説明を簡単にする為に走査電極L
が16本で信号電極Sが16本の場合、つまり16×1
6の画素で構成されているFLCD4の場合について示
しており、走査電極Lの各々は符号Lに添字i(i=0
〜F)を付加して区別し、信号電極Sの各々は符号Sに
添字j(j=0〜F)を付加して区別している。また、
以後の説明では、任意の走査電極Liと任意の信号電極
Sjが交差する部分の画素を符号Aijで表すものとす
る。
Here, for the sake of simplicity, the scanning electrode L
Is 16 and the number of signal electrodes S is 16, that is, 16 × 1
6 shows a case of the FLCD 4 composed of six pixels, and each of the scanning electrodes L has a suffix i (i = 0)
To F), and the signal electrodes S are distinguished by adding a suffix j (j = 0 to F) to the reference symbol S. Also,
In the following description, a pixel at a portion where an arbitrary scanning electrode Li and an arbitrary signal electrode Sj intersect is represented by a symbol Aij.

【0007】この走査側駆動回路11は走査電極Lに電
圧を印加する為の回路であり、図示しないアドレス デ
コーダーとラッチとアナログ スウィッチから構成さ
れ、指定されたアドレスAxに対応する走査電極Liへ
選択電圧Vc1を印加し、それ以外の走査電極Lk(k≠
i)へ非選択電圧Vc0を印加する。また信号側駆動回路
12は信号電極Sに電圧を印加する為の回路であり、図
示しないシフトレジスタとラッチとアナログ スウィッ
チから構成され、データDATAが「1」に対応する信
号電極Sへアクテブ電圧Vs1を印加し、データDATA
が「0」に対応する信号電極Sへノンアクテブ電圧Vs0
を印加する。
The scanning side driving circuit 11 is a circuit for applying a voltage to the scanning electrode L, and comprises an address decoder (not shown), a latch and an analog switch (not shown), and selects a scanning electrode Li corresponding to a designated address Ax. A voltage V c1 is applied, and the other scan electrodes Lk (k ≠
A non-selection voltage Vc0 is applied to i). The signal-side drive circuit 12 is a circuit for applying a voltage to the signal electrode S, and includes a shift register, a latch, and an analog switch (not shown), and the active voltage V is applied to the signal electrode S corresponding to data DATA of “1”. s1 is applied and data DATA
Is applied to the signal electrode S corresponding to “0” by the non-active voltage V s0.
Is applied.

【0008】この画素Aijを構成するFLC分子10
1は、図7(B)に示すように分子の長軸方向と垂直に
自発分極Psを持ち、走査電極Lと信号電極Sの電圧か
ら作られる電界Eと自発分極Psのベクトル積に比例し
た力を受け2倍のチルト角2θの頂角を持った円錐10
2の表面上を移動する。FLC分子101は2つの安定
状態を持ち、電界EによりFLC分子101が図7
(A)に示す軸107まで移動させられると安定状態1
05となり、電界EによりFLC分子101が軸106
まで移動させられると安定状態104となる性質を持
つ。FLC分子101をその与えられた安定状態から電
界Eにより動かすと、その安定状態が替わらない限り元
の安定状態へ戻ろうとする復元力がFLC分子101へ
働く。
The FLC molecules 10 constituting this pixel Aij
1 has a spontaneous polarization Ps perpendicular to the major axis direction of the molecule as shown in FIG. 7B, and is proportional to the vector product of the electric field E formed from the voltage of the scan electrode L and the signal electrode S and the spontaneous polarization Ps. Cone 10 having a vertical angle of 2 times the tilt angle 2θ under the force
2 moves on the surface. The FLC molecule 101 has two stable states.
When moved to the axis 107 shown in FIG.
05, and the electric field E causes the FLC molecule 101 to move to the axis 106
It has the property of becoming a stable state 104 when it is moved to. When the FLC molecule 101 is moved from the given stable state by the electric field E, a restoring force acts on the FLC molecule 101 to return to the original stable state unless the stable state is changed.

【0009】FLC分子には、この他に分子の長軸方向
と短軸方向の誘電率の差Δεと電界Eの2乗に比例した
力が働く。つまりFLC分子に働く力Fは F=K0×Ps×E+K1×Δε×E2 (1) となる。そこで誘電異方性Δεが負のFLC材料をパネ
ルへ封止すれば、FLC分子へ働く力は、ある電界Ee
以下では誘電異方性Δε<0の効果による力より自発分
極Psの効果による力が格段に大きくなるが、ある電界
Ef以上では両者の効果による力は同じ程度になる。
In addition, a force proportional to the square of the electric field E and the difference Δε between the dielectric constant of the molecule in the major axis direction and the minor axis direction acts on the FLC molecule. That is, the force F acting on the FLC molecule is F = K0 × Ps × E + K1 × Δε × E 2 (1) Then, if the FLC material having a negative dielectric anisotropy Δε is sealed in the panel, the force acting on the FLC molecules becomes a certain electric field Ee.
In the following, the force due to the effect of the spontaneous polarization Ps becomes much larger than the force due to the effect of the dielectric anisotropy Δε <0. However, the force due to both effects becomes substantially the same above a certain electric field Ef.

【0010】この事を利用したFLCパネルの駆動方法
として、例えば特開昭62−56933や特開昭62−
280824や特開平1−24234等がある。このう
ち特開平1−24234においてFLC材料の電圧−応
答速度の関係を測定したグラフをそのまま引用したのが
図17である。
As a method of driving an FLC panel utilizing this fact, for example, Japanese Patent Application Laid-Open Nos. Sho 62-56933 and
280824 and JP-A-1-24234. FIG. 17 is a graph obtained by directly measuring the relationship between the voltage and the response speed of the FLC material in JP-A-1-24234.

【0011】特開平1−24234の駆動方法は図16
に示すものである。即ち、画素Aijを構成するFLC
分子の安定状態を一方の安定状態へ書き換えるには、走
査電極Liへ図16(1)に示す電圧波形を印加した
時、信号電極Sjへ図16(3)に示す電圧波形を印加
して、図16(5)に示す電圧波形を画素Aijを構成
するFLC分子へ印加しそのFLC分子の安定状態を一
方の安定状態へ書き換える。画素Aijを構成するFL
C分子の安定状態をもう一方の安定状態へ書き換えるに
は、走査電極Liへ図16(1)に示す電圧波形を印加
した時、信号電極Sjへ図16(4)に示す電圧波形を
印加して、図16(6)に示す電圧波形を画素Aijを
構成するFLC分子へ印加しそのFLC分子の安定状態
をもう一方の安定状態へ書き換える。他の画素Akj
(k≠i)を構成するFLC分子の安定状態を書換えて
いる時には、走査電極Liへ図16(2)に示す電圧波
形が印加され、信号電極Sjへ図16(3)または
(4)に示す電圧波形が印加されるので、画素Aijを
構成するFLC分子へは図16(7)または(8)に示
す電圧波形が印加されそのFLC分子の安定状態は変化
しない。
The driving method of Japanese Patent Application Laid-Open No. 1-234234 is shown in FIG.
It is shown in FIG. That is, FLC constituting the pixel Aij
To rewrite the stable state of the molecule to one stable state, when the voltage waveform shown in FIG. 16A is applied to the scanning electrode Li, the voltage waveform shown in FIG. 16C is applied to the signal electrode Sj. The voltage waveform shown in FIG. 16 (5) is applied to the FLC molecules constituting the pixel Aij, and the stable state of the FLC molecules is rewritten to one stable state. FL configuring pixel Aij
In order to rewrite the stable state of the C molecule to the other stable state, when the voltage waveform shown in FIG. 16A is applied to the scan electrode Li, the voltage waveform shown in FIG. 16D is applied to the signal electrode Sj. Then, the voltage waveform shown in FIG. 16 (6) is applied to the FLC molecules constituting the pixel Aij, and the stable state of the FLC molecules is rewritten to the other stable state. Other pixels Akj
When the stable state of the FLC molecules constituting (k ≠ i) is being rewritten, the voltage waveform shown in FIG. 16 (2) is applied to the scan electrode Li, and the voltage waveform shown in FIG. 16 (3) or (4) is applied to the signal electrode Sj. Since the voltage waveform shown is applied, the voltage waveform shown in FIG. 16 (7) or (8) is applied to the FLC molecules constituting the pixel Aij, and the stable state of the FLC molecules does not change.

【0012】この駆動方法が可能となるのは、図16
(6)または(5)に示す電圧−VaまたはVaの絶対
値が図17の30v近辺の電圧で、まだ誘電異方性Δε
<0の効果が自発分極Psの効果に較べて小さな領域の
電圧であり、図16(5)または(6)に示す電圧−V
a−2VbまたはVa+2Vbの絶対値が図17の50
v近辺の電圧であり、誘電異方性Δε<0の効果が自発
分極Psの効果と同じ程度の領域の電圧であり、前者の
電圧によりFLC分子に働く力が後者の電圧によりFL
C分子へ働く力より大きくなる為である。この事は図1
7の電圧−応答速度の関係が30v〜40vで最小値を
とり、40v以上の電圧では応答速度が30vの電圧よ
り遅くなることからも推測される。
This driving method is made possible by the method shown in FIG.
The absolute value of the voltage -Va or Va shown in (6) or (5) is a voltage near 30v in FIG.
The effect of <0 is a voltage in a region smaller than the effect of the spontaneous polarization Ps, and the voltage −V shown in FIG.
The absolute value of a-2Vb or Va + 2Vb is 50 in FIG.
v, the effect of the dielectric anisotropy Δε <0 is a voltage in the same range as the effect of the spontaneous polarization Ps, and the force acting on the FLC molecule by the former voltage is FL by the latter voltage.
This is because the force acting on the C molecule becomes larger. This is illustrated in FIG.
It is also inferred from the fact that the voltage-response speed relationship of No. 7 has a minimum value in the range of 30 v to 40 v, and that the response speed is lower than the voltage of 30 v at a voltage of 40 v or more.

【0013】また、この誘電異方性が負のBDH社製の
FLC材料SCE8を使った別の駆動方法がアメリカで
開かれたFLC’91学会でRSRE社から”The JOER
S/ALVEY Ferroelectric Multiplexing Scheme"として発
表された。図15に示すのはその論文で示されているF
LC材料SCE8の電圧−メモリパルス幅の関係であ
る。図15の(a)で示したデータは図14(B)に示
す通り±10vのバイアス電圧を重畳したパルスを印加
しながら測定したデータであり、図15の(b)で示し
たデータは図14(A)に示す通り±0vのバイアス電
圧を重畳したパルスを印加しながら測定したデータであ
る。この論文の駆動方法は1画面の書換えを2フィール
ドかけて行い、第1のフィールドで図13(A)に示す
駆動波形を印加し、第2のフィールドで図13(B)に
示す駆動波形を印加するというものである。
Further, another driving method using the FLC material SCE8 manufactured by BDH having a negative dielectric anisotropy is described in “The JOER” from RSRE at the FLC'91 meeting held in the United States.
S / ALVEY Ferroelectric Multiplexing Scheme ". Figure 15 shows F
This is a relationship between the voltage of the LC material SCE8 and the memory pulse width. The data shown in FIG. 15A is data measured while applying a pulse on which a bias voltage of ± 10 V is superimposed as shown in FIG. 14B, and the data shown in FIG. As shown in FIG. 14 (A), it is data measured while applying a pulse on which a bias voltage of ± 0 V is superimposed. In the driving method of this paper, rewriting of one screen is performed over two fields, the driving waveform shown in FIG. 13A is applied in the first field, and the driving waveform shown in FIG. 13B is applied in the second field. It is to apply.

【0014】即ち、画素Aijを構成するFLC分子の
安定状態を一方の安定状態へ書き換えるには、第1のフ
ィールドで走査電極Liへ図13(A)の(1)に示す
選択電圧を印加した時、信号電極Sjへ図13(A)の
(3)に示す書換え電圧を印加して、図13(A)の
(5)に示す電圧波形を画素を構成するFLC分子へ印
加し、そのFLC分子の安定状態を一方の安定状態へ書
き換える。また、第2のフィールドで走査電極Liへ図
13(B)の(1)に示す選択電圧を印加した時、信号
電極Sjへ図13(B)の(4)に示す保持電圧を印加
して、図13(B)の(6)に示す電圧波形を画素Ai
jを構成するFLC分子へ印加し、そのFLC分子の安
定状態を変化させない。
That is, in order to rewrite the stable state of the FLC molecules constituting the pixel Aij to one stable state, the selection voltage shown in (1) of FIG. 13A is applied to the scan electrode Li in the first field. At this time, the rewrite voltage shown in (3) of FIG. 13A is applied to the signal electrode Sj, and the voltage waveform shown in (5) of FIG. Rewrite the stable state of the molecule to one stable state. When the selection voltage shown in (1) of FIG. 13B is applied to the scanning electrode Li in the second field, the holding voltage shown in (4) of FIG. 13B is applied to the signal electrode Sj. The voltage waveform shown in (6) of FIG.
j is applied to FLC molecules constituting j, and the stable state of the FLC molecules is not changed.

【0015】画素Aijを構成するFLC分子の安定状
態をもう一方の安定状態へ書き換えるには、第1のフィ
ールドで走査電極Liへ図13(A)の(1)に示す選
択電圧を印加した時、信号電極Sjへ図13(A)の
(4)に示す保持電圧を印加して、図13(A)の
(6)に示す電圧波形を画素Aijを構成するFLC分
子へ印加し、そのFLC分子の安定状態を変化させな
い。また、第2のフィールドで走査電極Liへ図13
(B)の(1)に示す選択電圧を印加した時、信号電極
Sjへ図13(B)の(3)に示す書換え電圧を印加し
て、図13(B)の(5)に示す電圧波形を画素Aij
を構成するFLC分子へ印加し、そのFLC分子の安定
状態をもう一方の安定状態へ書き換える。
In order to rewrite the stable state of the FLC molecules constituting the pixel Aij to another stable state, it is necessary to apply a selection voltage shown in FIG. 13A to the scan electrode Li in the first field. Then, the holding voltage shown in (4) of FIG. 13A is applied to the signal electrode Sj, and the voltage waveform shown in (6) of FIG. 13A is applied to the FLC molecules constituting the pixel Aij. Does not change the stable state of the molecule. Further, in the second field, the scan electrode Li
When the selection voltage shown in (1) of (B) is applied, the rewrite voltage shown in (3) of FIG. 13B is applied to the signal electrode Sj, and the voltage shown in (5) of FIG. Waveform of pixel Aij
Is applied to the FLC molecules constituting the above, and the stable state of the FLC molecules is rewritten to the other stable state.

【0016】他の画素Akj(k≠i)を構成するFL
C分子の安定状態を書き換えている時には、第1のフィ
ールドで走査電極Liへ図13(A)の(2)に示す非
選択電圧が印加され、信号電極Sjへ図13(A)の
(3)または(4)に示す電圧波形が印加され、図13
(A)の(7)または(8)に示す電圧波形が画素Ai
jを構成するFLC分子へ印加される。第2のフィール
ドで走査電極Liへ図13(B)の(2)に示す非選択
電圧が印加された時、信号電極Sjへ図13(B)の
(4)または(3)に示す電圧波形が印加され、図13
(B)の(8)または(7)に示す電圧波形が画素Ai
jを構成するFLC分子へ印加される。いずれの電圧が
印加されてもそのFLC分子の安定状態は変化しない。
FL constituting another pixel Akj (k ≠ i)
When the stable state of the C molecule is being rewritten, the non-selection voltage shown in (2) of FIG. 13A is applied to the scanning electrode Li in the first field, and (3) of FIG. 13A is applied to the signal electrode Sj. ) Or (4) is applied, and FIG.
The voltage waveform shown in (7) or (8) of FIG.
applied to the FLC molecules that make up j. When the non-selection voltage shown in (2) of FIG. 13B is applied to the scanning electrode Li in the second field, the voltage waveform shown in (4) or (3) of FIG. 13B is applied to the signal electrode Sj. Is applied, and FIG.
The voltage waveform shown in (B) (8) or (7) is the pixel Ai
applied to the FLC molecules that make up j. Whichever voltage is applied, the stable state of the FLC molecule does not change.

【0017】この駆動方法が可能となるのは、図13
(A)の(5)または図13(B)の(5)に示す電圧
−Vs+VdまたはVs−Vdの電圧が、誘電異方性Δ
ε<0の効果が自発分極Psの効果に較べ小さい領域の
電圧であり、図13(A)の(6)または図13(B)
の(6)に示す電圧−Vs−VdまたはVs+Vdの電
圧が、誘電異方性Δε<0の効果と自発分極Psの効果
が同じ程度の領域の電圧であり、前者の電圧によりFL
C分子へ働く力が後者の電圧によりFLC分子へ働く力
より大きいことによる。また、図13(A)の(5)ま
たは図13(B)の(5)では電圧−VdまたはVdの
極性が続く電圧−Vs+VdまたはVs−Vdと同極性
であるが、図13(A)の(6)または図13(B)の
(6)では電圧Vdまたは−Vdの極性が続く電圧−V
s−VdまたはVs+Vdと逆極性であるため、前者で
はFLC分子が予め電圧−Vs+VdまたはVs−Vd
で書き換え易い位置になるのに対し、後者ではFLC分
子が逆に電圧−Vs−VdまたはVs+Vdで書き換え
にくい位置になるからでもある。
This driving method is enabled by the method shown in FIG.
The voltage −Vs + Vd or Vs−Vd shown in (5) of FIG. 13A or (5) of FIG.
The effect of ε <0 is a voltage in a region smaller than the effect of the spontaneous polarization Ps, and is (6) in FIG. 13A or FIG.
(6) is a voltage in a region where the effect of the dielectric anisotropy Δε <0 and the effect of the spontaneous polarization Ps are almost the same.
This is because the force acting on the C molecule is larger than the force acting on the FLC molecule due to the latter voltage. Further, in (5) of FIG. 13A or (5) of FIG. 13B, the polarity of the voltage −Vd or Vd is the same as the voltage −Vs + Vd or Vs−Vd, but FIG. (6) or (6) of FIG. 13 (B), the voltage −V, which continues the polarity of the voltage Vd or −Vd.
Since the polarity of the FLC molecule is opposite to that of s−Vd or Vs + Vd, the FLC molecule is previously set to the voltage −Vs + Vd or Vs−Vd
This is because, in the latter case, the FLC molecule is in a position where it is difficult to rewrite with the voltage −Vs−Vd or Vs + Vd.

【0018】[0018]

【発明が解決しようとする課題】例えばFLC’91学
会でRSRE社から”The JOERS/ALVEY FerroelectricM
ultiplexing Scheme"として発表された論文によると、
図13の電圧Vsは50vでありVdは10v(または
7.5v)である。従って、このようにΔε<0の効果
がPsの効果と同じ程度になる電圧は±60v程度であ
る。
[Problems to be Solved by the Invention] For example, "The JOERS / ALVEY FerroelectricM" from RSRE at FLC'91
ultiplexing Scheme ",
The voltage Vs in FIG. 13 is 50 V and Vd is 10 V (or 7.5 V). Therefore, the voltage at which the effect of Δε <0 becomes almost the same as the effect of Ps is about ± 60 V.

【0019】しかし、市販のCMOSドライバーの耐圧
は25v〜35vなので、従来例の駆動方法を使うに
は、BDH社のSCE8の半分程度の電圧でΔε<0の
効果がPsの効果と同じ程度になるFLC材料を開発す
る必要がある。
However, since the withstand voltage of a commercially available CMOS driver is 25 V to 35 V, the effect of Δε <0 is about the same as the effect of Ps at a voltage about half of that of SCE8 of BDH in order to use the conventional driving method. There is a need to develop a new FLC material.

【0020】FLC分子に働く力は関係式(1)におい
て電界Eを半分とすると、 F/2=K1×Ps×E1/2+K2×Δε×(E1/2)2 (2) となり、Psに伴う第1項の値は1/2になるがΔεに
伴う第2項の値は1/4となり、電界E1ではΔε<0
の効果がPsの効果と同じ程度であっても、電界E1/
2ではΔε<0の効果はPsの効果の1/2程度とな
る。
The force acting on the FLC molecule is given by the following equation when the electric field E is halved in the relational expression (1): F / 2 = K1 × Ps × E1 / 2 + K2 × Δε × (E1 / 2) 2 (2) The value of the first term becomes 1 /, but the value of the second term accompanying Δε becomes 4, and in the electric field E1, Δε <0
Is the same as the effect of Ps, the electric field E1 /
In the case of 2, the effect of Δε <0 is about の of the effect of Ps.

【0021】ΔεはFLC材料のベースLCに主に支配
され、PsはFLC材料のカイラルの添加量に支配され
るので、添加するカイラルの量を半分以下にすれば同じ
Δεを持ちPsが半分のFLC材料をブレンドすること
は容易である(一方、Δεの値を変えるのはベースLC
を全く別の組成系にしなければならず、かなり困難であ
る)。
Since Δε is mainly governed by the base LC of the FLC material and Ps is governed by the amount of chiral added to the FLC material, if the amount of chiral to be added is reduced by half or less, the same Δε is obtained and Ps is reduced by half. It is easy to blend the FLC material (while changing the value of Δε is the base LC
Must be a completely different composition system, which is quite difficult).

【0022】このFLC材料を使い関係式(1)におい
て電界Eを半分とすると、 F/4=K1×(Ps/2)×E1/2+K2×Δε×(E1/2)2 (3) となり、Psに伴う第1項の値は1/4となり、Δεに
伴う第2項の値も1/4となるので、自発分極PsのF
LC材料で電界E1でΔε<0の効果がPsの効果と同
じ程度であれば、自発分極Ps/2のFLC材料で電界
E1/2でΔε<0の効果がPsの効果と同じ程度とな
る。
When the electric field E is reduced to half in the relational expression (1) using this FLC material, F / 4 = K1 × (Ps / 2) × E1 / 2 + K2 × Δε × (E1 / 2) 2 (3) The value of the first term associated with Ps is 1 /, and the value of the second term associated with Δε is also 1 /.
If the effect of Δε <0 in the electric field E1 is the same as the effect of Ps in the LC material, the effect of Δε <0 in the electric field E1 / 2 in the spontaneous polarization Ps / 2 is the same as the effect of Ps. .

【0023】しかし、自発分極Ps/2のFLC材料の
応答速度は、FLC分子に働く力が関係式(3)では関
係式(2)の半分となる事から予想できるように、自発
分極PsのFLC材料の応答速度の2倍程度遅くなる。
However, the response speed of the FLC material having the spontaneous polarization Ps / 2 is, as can be expected from the fact that the force acting on the FLC molecule becomes half of the relational expression (2) in the relational expression (3), the response speed of the spontaneous polarization Ps It is about twice as slow as the response speed of the FLC material.

【0024】また、CMOSドライバーの耐圧25v〜
35vのうち、FLC分子の安定状態を書き換えるのに
有効に使われる電圧は、例えば図13の駆動方法では
(Vs−Vd)/(Vs+Vd)=2/3であり、この
ような応答速度の遅いFLC材料と駆動方法を表示に変
化の有る画素も無い画素も一様に書き換えるダイナミッ
ク駆動方法に適用したのでは、画面を上から下まで統べ
ての走査電極上の画素を書き換える時間が長くなり、そ
の時間が表示内容が変化した場合の応答速度の最悪値と
なることから応答速度が遅くなるという問題がある。
Further, the withstand voltage of the CMOS driver is 25 V or more.
Of the 35v, the voltage effectively used to rewrite the stable state of the FLC molecule is, for example, (Vs-Vd) / (Vs + Vd) = 2/3 in the driving method of FIG. Applying the FLC material and the driving method to the dynamic driving method that uniformly rewrites both pixels with no change in display and pixels without display increases the time to rewrite the pixels on the scanning electrodes from the top to the bottom of the screen, There is a problem that the response speed becomes slow because the response speed becomes the worst value when the display content changes during that time.

【0025】そこで、このような応答速度の遅いFLC
材料を、表示に変化の有る画素のみを書き換えるスタテ
ック駆動方法に適用し、表示に変化のあった走査電極上
の画素のみを書換えることにより応答速度を見かけ上速
くした駆動方法を与えるのが本発明の目的である。
Therefore, FLC having such a slow response speed
Applying the material to a static driving method that rewrites only the pixels that have a change in the display, and giving a driving method that apparently speeds up the response speed by rewriting only the pixels on the scanning electrodes that have changed the display. It is an object of the invention.

【0026】[0026]

【課題を解決するための手段】この発明は、互いに交差
する方向に配列した複数の走査電極と複数の信号電極の
に、特定電圧Vminで応答速度が最も早くなる特徴
をもった強誘電性液晶を介在させ、走査電極と信号電極
との交差部に画素を形成した液晶パネルを用い、走査電
極に選択電圧又は非選択電圧を選択的印加すると共に、
信号電極に書換電圧又は保持電圧を選択的に印加し、
択電圧と書換電圧を印加する画素へは極性変化のないパ
ルス電圧を印加し、選択電圧と保持電圧、非選択電圧と
書換電圧、又は非選択電圧と保持電圧のいずれかを印加
する画素へは極性変化のある一連のパルス電圧を印加
し、それらの一連のパルス電圧は、互いに同じ数の同じ
順序で極性が変化する交番パルスからなり、最初と最後
のパルスは異なる極性を有し、各パルスの波高値は液晶
分子への影響がほぼ等しくなるようにVmin以上又は
Vmin以下に設定されたことを特徴とする液晶パネル
の駆動方法を提供するものである。
SUMMARY OF THE INVENTION The present invention is a ferroelectric having between a plurality of scanning electrodes and a plurality of signal electrodes arranged in a direction crossing each other, the earliest further features response speed at a specific voltage Vmin Scanning electrode and signal electrode
Using a liquid crystal panel in which pixels are formed at the intersection with and selectively applying a selection voltage or a non-selection voltage to the scanning electrodes,
The rewriting voltage or a holding voltage is selectively applied to the signal electrode, selection
The pixels to which the select voltage and the rewrite voltage are applied have no polarity change.
Pulse voltage, select voltage and hold voltage, and non-select voltage
Apply either rewrite voltage or non-selection voltage and holding voltage
A series of pulse voltages with polarity changes
And their series of pulse voltages are the same number of the same
It consists of alternating pulses that change polarity in order, first and last
Pulses have different polarities, and the peak value of each pulse is
Vmin or more so that the effects on the molecules are almost equal or
It is intended to provide a method of driving a liquid crystal panel, which is set at Vmin or less .

【0027】[0027]

【0028】さらに、走査電極を複数のグループに仮想
的に分割し、グループ毎にそのグループに属する走査電
極上の画素の表示を変化させる必要があるか否かを検知
する手段と、画素毎にその画素の表示を変化させる必要
があるか否を判別すると共にその表示の変化の種類を検
知する手段を用い、表示を変化させる必要のある画素を
含むグループに属する走査電極から構成される画素につ
いて、表示を変化させる必要のある画素を構成する強誘
電性液晶分子は、その表示させるべき状態に従い一方の
安定状態からもう一方の安定状態へ書き換えたり、もう
一方の安定状態から一方の安定状態へ書き換えたりする
が、表示を変化させる必要のない画素を構成する強誘電
性液晶分子は、その安定状態を保持することが好まし
い。
Further, means for virtually dividing the scanning electrodes into a plurality of groups and detecting whether it is necessary to change the display of the pixels on the scanning electrodes belonging to the group for each group, and for each pixel Using a means for determining whether or not the display of the pixel needs to be changed and detecting the type of the change in the display, the pixel including the scan electrode belonging to the group including the pixel for which the display needs to be changed The ferroelectric liquid crystal molecules that compose a pixel whose display needs to be changed can be rewritten from one stable state to the other, or from the other stable state to the other, depending on the state to be displayed. It is preferable that the ferroelectric liquid crystal molecules constituting the pixel which does not need to change the display to be rewritten maintain its stable state.

【0029】[0029]

【作用】誘電異方性が負のFLC材料を使えば、関係式
(1)において誘電異方性Δε<0の効果が自発分極P
sの効果に較べて小さな電界Egと、誘電異方性Δε<
0の効果が自発分極Psの効果と同程度な電界Ehとに
おいてFLC分子に働く力がほぼ等しくなる。
When an FLC material having a negative dielectric anisotropy is used, the effect of the dielectric anisotropy Δε <0 in the relational expression (1) is due to the spontaneous polarization P
electric field Eg smaller than the effect of s and dielectric anisotropy Δε <
In the electric field Eh where the effect of 0 is the same as the effect of the spontaneous polarization Ps, the forces acting on the FLC molecules become almost equal.

【0030】そこで、非選択電圧を印加した走査電極か
ら構成される画素を構成するFLC分子へ電界±(Eg
+α)を印加し、選択電圧を印加した走査電極と保持電
圧を印加した信号電極から構成される画素を構成するF
LC分子へ電界−Eg−αとEhまたはEg+αと−E
hを印加すれば、そのFLC分子が受ける力は前者の方
が後者より大きくなるか(α>0)または両者はほぼ等
しく(α〜0)なり、その画素の透過光量の変化は前者
の方が後者より大きなるかまたは両者はほぼ等しくな
る。
Therefore, an electric field ± (Eg) is applied to the FLC molecules constituting the pixel constituted by the scanning electrodes to which the non-selection voltage is applied.
+ Α), and a pixel F composed of a scanning electrode to which a selection voltage is applied and a signal electrode to which a holding voltage is applied.
Electric field to LC molecules -Eg-α and Eh or Eg + α and -E
When h is applied, the force received by the FLC molecule is greater in the former than in the latter (α> 0) or both are almost equal (α to 0), and the change in the amount of transmitted light of the pixel is larger than that in the former. Is greater than the latter or both are approximately equal.

【0031】選択電圧を印加した走査電極と保持電圧を
印加した信号電極から構成される画素の透過光量の変化
が、非選択電圧を印加した走査電極から構成される画素
の透過光量の変化より小さくなるかほぼ等しければ、表
示に変化の無い画素では常に一定の(より小さな透過光
量の変化がたまにあっても目立たない)透過光量の変化
が観測されるので、その画素を構成する走査電極へ選択
電圧を印加し、その走査電極から構成される画素の表示
状態を書き換えても、フリッカは観測できない。
The change in the amount of transmitted light of a pixel composed of a scanning electrode to which a selection voltage is applied and the signal electrode to which a holding voltage is applied is smaller than that of a pixel composed of a scanning electrode to which a non-selection voltage is applied. If they are equal or almost equal, a constant change in the amount of transmitted light (which is inconspicuous even if the change in the amount of transmitted light is sometimes small) is always observed in a pixel having no change in display. Even if a voltage is applied and the display state of the pixel constituted by the scanning electrode is rewritten, flicker cannot be observed.

【0032】また、DTP(デスク トップ パブリッ
シング)やCAD(コンピュータエィデット デザイ
ン)の用途では、表示に変化のある画素を含む走査電極
の数は、統べての走査電極の数に較べてかなり少ないの
で、このようなPsを小さくし応答速度が遅くなったF
LC材料を使っても、かなり高速の見かけ上の応答を得
ることができる。
In the case of DTP (Desktop Publishing) and CAD (Computer Edit Design) applications, the number of scan electrodes including pixels having a change in display is considerably smaller than the total number of scan electrodes. , The Fs in which the response speed is slowed by reducing Ps
Even with LC materials, a fairly fast apparent response can be obtained.

【0033】[0033]

【実施例】まずRSRE社の論文に示されていた図15
の追試験を行う。使用するFLCパネルは図2のFLC
パネル1と同じ構成としたので、ここではその説明は省
略する。FLC材料は論文と同じBDH社のSCE8を
使い、配向膜としてチッソ社製の配向膜PSI−XS0
12.PSI−XS014.PSI−X7355.PV
A.ナイロンを使い合計5枚のFLCパネルをつくり、
そのうちナイロンを除く4枚のFLCパネルの電圧−メ
モリパルス幅の関係を図14(A)に示す電圧波形で測
定しグラフ化したのが図18である。また各パネルの基
本特性は以下の通りである。
[Example] First, FIG.
Perform an additional test. The FLC panel used is the FLC shown in Fig. 2.
Since the configuration is the same as that of panel 1, the description is omitted here. The FLC material used was SCE8 from BDH, the same as the paper, and the alignment film PSI-XS0 manufactured by Chisso was used as the alignment film.
12. PSI-XS014. PSI-X7355. PV
A. I made a total of 5 FLC panels using nylon,
FIG. 18 is a graph of the relationship between the voltage and the memory pulse width of the four FLC panels excluding nylon measured with the voltage waveform shown in FIG. The basic characteristics of each panel are as follows.

【0034】 プレチルト角 チルト角θ メモリ角ω PSI−XS012 2.5° 20.9° 13.8° PSI−XS014 2.3° 21.4° 14.0° PSI−X7355 7.5° 21.4° 13.9° PVA 〜0° 22.0° 11.9° ナイロン 〜0° 19.2° 13.6°Pre-tilt angle Tilt angle θ Memory angle ω PSI-XS012 2.5 ° 20.9 ° 13.8 ° PSI-XS014 2.3 ° 21.4 ° 14.0 ° PSI-X7355 7.5 ° 21. 4 ° 13.9 ° PVA 0 ° 22.0 ° 11.9 ° Nylon 0 ° 19.2 ° 13.6 °

【0035】図19はラビング方向とプレチルトの方向
及びシェブロンの方向を記した図である。図19(a)
はC1ユニホーム配向であり、図19(b)はC1ツイ
スト配向であり、図19(c)はC2配向である。各パ
ネルの配向状態を調べたところ、ディスクリとラビング
方向の関係からC2配向と特定できた。
FIG. 19 is a diagram showing a rubbing direction, a pretilt direction, and a chevron direction. FIG. 19 (a)
19B shows the C1 uniform orientation, FIG. 19B shows the C1 twist orientation, and FIG. 19C shows the C2 orientation. When the orientation state of each panel was examined, C2 orientation was identified from the relationship between the discrimination and the rubbing direction.

【0036】図18の電圧−メモリパルス幅特性では、
各パネルともメモリパルス幅が最少になる電圧が存在す
る。そこで、各パネル毎にその電圧をVminとし、 (V0+V1)>Vmin (4) なる電圧(V0+V1)を決めると、その電圧(V0+
V1)が印加されたときとFLC分子が受ける力と同じ
力をFLC分子に与える V0/2<Vmin (5) なる電圧V0/2が存在する事となる。
In the voltage-memory pulse width characteristics shown in FIG.
Each panel has a voltage at which the memory pulse width is minimized. Therefore, the voltage is set to Vmin for each panel, and a voltage (V0 + V1) that satisfies (V0 + V1)> Vmin (4) is determined.
There is a voltage V0 / 2 such that V0 / 2 <Vmin (5) that gives the same force to the FLC molecule as when the V1) is applied and to the FLC molecule.

【0037】そこで、暗か明のメモリ状態にある画素
へ、図20の(1)に示す電圧−V0/2の後に電圧V
0/2と電圧0が続く電圧波形を印加した場合に画素に
生じる透過光量の変化と同じ透過光量の変化を与える電
圧波形は、図20の2)の電圧波形の他に同図(3)や
(4)の電圧波形や、電圧−(V0+V1)の後に電圧
(V0+V1)と電圧0が続く電圧波形や、電圧0の後
に電圧−(V0+V1)と電圧(V0+V1)が続く電
圧波形が存在する事になる。
Therefore, the voltage V is applied to the pixel in the dark or bright memory state after the voltage -V0 / 2 shown in FIG.
A voltage waveform that gives the same change in the amount of transmitted light as the change in the amount of transmitted light that occurs in the pixel when a voltage waveform in which 0/2 and voltage 0 continue is applied is a voltage waveform shown in FIG. And (4), a voltage waveform in which voltage (V0 + V1) and voltage 0 follow voltage-(V0 + V1), and a voltage waveform in which voltage-(V0 + V1) and voltage (V0 + V1) follow voltage 0. Will be.

【0038】また、暗か明のメモリ状態にある画素へ、
図20の(5)に示す電圧V0/2の後に電圧−V0/
2と電圧0が続く電圧波形を印加した場合に画素に生じ
る透過光量の変化と同じ透過光量の変化を与える電圧波
形は、図20の(6)の電圧波形の他に同図(7)や
(8)の電圧波形や、電圧(V0+V1)の後に電圧−
(V0+V1)と電圧0が続く電圧波形や、電圧0の後
に電圧(V0+V1)と電圧−(V0+V1)が続く電
圧波形がが存在する事になる。
Further, to a pixel in a dark or bright memory state,
After the voltage V0 / 2 shown in FIG. 20 (5), the voltage −V0 /
The voltage waveform that gives the same change in the amount of transmitted light as the change in the amount of transmitted light that occurs in the pixel when a voltage waveform in which 2 and the voltage 0 continue is applied is the voltage waveform shown in FIG. The voltage waveform of (8) or the voltage (V0 + V1) followed by the voltage −
There will be a voltage waveform in which (V0 + V1) and voltage 0 continue, and a voltage waveform in which voltage 0 follows voltage (V0 + V1) and voltage-(V0 + V1).

【0039】このような特性を持つ誘電異方性が負の液
晶を注入したFLCパネルに用いる駆動波形決める方法
は以下のようにする。まず、非選択時にクロストークが
存在しないよう非選択時に画素へ印加される電圧を決め
る。非選択電圧を印加した走査電極と保持電圧を印加し
た信号電極から構成される画素A22へ印加する電圧波
形を図20の(1)とすれば、この電圧波形を画素を構
成するFLC分子へ印加した時の画素の透過光量の変化
とほぼ等しい透過光量の変化を示す電圧波形は、図20
の(2)〜(4)の電圧波形か、電圧−(V0+V1)
の後に電圧(V0+V1)と電圧0が続く電圧波形や、
電圧0の後に電圧−(V0+V1)と電圧(V0+V
1)が続く電圧波形である。そのような電圧波形のう
ち、仮に図20の(2)を非選択電圧を印加した走査電
極と書換え電圧を印加した信号電極から構成される画素
A21へ印加する電圧波形とする。
A method of determining a drive waveform used for an FLC panel into which a liquid crystal having a negative dielectric anisotropy having such characteristics is injected is as follows. First, the voltage applied to the pixel at the time of non-selection is determined so that there is no crosstalk at the time of non-selection. If the voltage waveform applied to the pixel A22 composed of the scanning electrode to which the non-selection voltage is applied and the signal electrode to which the holding voltage is applied is represented by (1) in FIG. 20, this voltage waveform is applied to the FLC molecules constituting the pixel. FIG. 20 shows a voltage waveform indicating a change in the amount of transmitted light substantially equal to the change in the amount of transmitted light of the pixel when
Or the voltage waveform of (2) to (4), or the voltage − (V0 + V1)
A voltage waveform in which voltage (V0 + V1) and voltage 0 follow,
After the voltage 0, the voltage − (V0 + V1) and the voltage (V0 + V
1) is a voltage waveform that follows. Of such voltage waveforms, assume that (2) in FIG. 20 is a voltage waveform applied to the pixel A21 composed of the scanning electrode to which the non-selection voltage is applied and the signal electrode to which the rewriting voltage is applied.

【0040】次に、選択電圧を印加した走査電極と保持
電圧を印加した信号電極から構成される画素A12へ印
加する電圧波形を図20の(1)〜(4)の電圧波形
か、電圧−(V0+V1)の後に電圧(V0+V1)と
電圧0が続く電圧波形や、電圧0の後に電圧−(V0+
V1)と電圧(V0+V1)が続く電圧波形から決め
る。このとき画素A22・A21・A12へ印加される
電圧V22・V21・V12と、選択電圧を印加した走
査電極と書換え電圧を印加した信号電極から構成される
画素A11へ印加される電圧V11との間には、 V22−V21=V12−V11 (6) 即ち V11=V12−(V22−V21) (6') なる関係式が成り立つので、画素A11へ印加される電
圧が0か正の電圧だけを含むように画素A12へ印加す
る電圧波形を決めると図20の(3)の電圧波形とな
る。
Next, the voltage waveform applied to the pixel A12 composed of the scanning electrode to which the selection voltage is applied and the signal electrode to which the holding voltage is applied is shown by the voltage waveforms (1) to (4) in FIG. A voltage waveform in which a voltage (V0 + V1) and a voltage 0 follow (V0 + V1), or a voltage − (V0 +
V1) and a voltage waveform (V0 + V1). At this time, between the voltages V22, V21, and V12 applied to the pixels A22, A21, and A12, and the voltage V11 applied to the pixel A11 including the scanning electrodes to which the selection voltage is applied and the signal electrodes to which the rewrite voltage is applied. Since V22−V21 = V12−V11 (6), that is, V11 = V12− (V22−V21) (6 ′) holds, the voltage applied to the pixel A11 includes 0 or only the positive voltage When the voltage waveform applied to the pixel A12 is determined as described above, the voltage waveform shown in (3) of FIG. 20 is obtained.

【0041】以上の計算を波形図を用いて行ったのが図
21の(a)の電圧波形の組合せであり、図21(a)
の(5)に示すのが画素A11へ印加される電圧波形で
ある。同様にして図21(b)〜(d)の電圧波形の組
合せや、図22(a)〜(d)の電圧波形の組合せを得
る事が出来る。また図21(a)〜(d)の電圧波形の
組合せを僅かに変形して作った図23(a)〜(d)の
電圧波形の組合せや図24(a)〜(d)の電圧波形の
組合せの様な電圧波形の組合せでも、(4)の電圧波形
を印加した画素A12の透過光量の変化が、(1)の電
圧波形を印加した画素A22や(2)の電圧波形を印加
した画素A21の透過光量の変化とほぼ等しいなら、本
発明の為の電圧波形の組合せとして使用する事も可能で
ある。そこで、図21(c)の電圧波形の組合せから図
9(A)に示す走査電極や信号電極や画素へ印加する電
圧波形の組合せを決める事ができる。また、図21の
(a)の電圧波形の組合せから図9(B)に示す走査電
極や信号電極や画素へ印加する電圧波形の組合せを決め
る事ができる。
The above calculation was performed using the waveform diagram for the combination of the voltage waveforms shown in FIG.
(5) shows a voltage waveform applied to the pixel A11. Similarly, the combinations of the voltage waveforms of FIGS. 21B to 21D and the combinations of the voltage waveforms of FIGS. 22A to 22D can be obtained. Further, the voltage waveform combinations of FIGS. 23 (a) to 23 (d) and the voltage waveforms of FIGS. 24 (a) to 24 (d) are obtained by slightly modifying the voltage waveform combinations of FIGS. 21 (a) to 21 (d). Even in the combination of the voltage waveforms such as the combination of the above, the change in the amount of transmitted light of the pixel A12 to which the voltage waveform of (4) was applied, the pixel A22 to which the voltage waveform of (1) was applied and the voltage waveform of (2) were applied. As long as the change in the amount of transmitted light of the pixel A21 is almost equal to that of the pixel A21, it can be used as a combination of voltage waveforms for the present invention. Therefore, the combination of the voltage waveforms applied to the scanning electrodes, the signal electrodes, and the pixels shown in FIG. 9A can be determined from the combination of the voltage waveforms in FIG. Further, the combination of the voltage waveforms applied to the scanning electrodes, the signal electrodes, and the pixels shown in FIG. 9B can be determined from the combination of the voltage waveforms of FIG.

【0042】即ち、図9(A)または(B)の(8)に
示す非選択電圧を印加した走査電極と保持電圧を印加し
た信号電極から構成される画素へ印加する電圧波形とし
て、図21の(c)または(a)の電圧波形の組合せの
(1)の電圧波形を当る。図9(A)または(B)の
(7)に示す非選択電圧を印加した走査電極と書換え電
圧を印加した信号電極から構成される画素へ印加する電
圧波形として、図21の(c)または(a)の電圧波形
の組合せの(2)の電圧波形を当る。図9(A)または
(B)の(6)に示す選択電圧を印加した走査電極と保
持電圧を印加した信号電極から構成される画素へ印加す
る電圧波形として、図21の(c)または(a)の電圧
波形の組合せの(4)の電圧波形を当る。図9(A)ま
たは(B)の(5)に示す選択電圧を印加した走査電極
と書換え電圧を印加した信号電極から構成される画素へ
印加する電圧波形として、図21の(c)または(a)
の電圧波形の組合せの(5)の電圧波形を当る。
That is, the voltage waveform applied to the pixel composed of the scanning electrode to which the non-selection voltage is applied and the signal electrode to which the holding voltage is applied as shown in (8) of FIG. (C) or (a), which corresponds to the voltage waveform of (1). As a voltage waveform applied to a pixel composed of a scan electrode to which a non-selection voltage is applied and a signal electrode to which a rewrite voltage is applied as shown in (7) of FIG. This corresponds to the voltage waveform of (2) of the combination of the voltage waveforms of (a). As a voltage waveform applied to a pixel composed of a scanning electrode to which the selection voltage is applied and a signal electrode to which the holding voltage is applied as shown in (6) of (A) or (B) of FIG. The voltage waveform of (4) of the combination of the voltage waveforms of a) is applied. FIG. 21 (c) or (c) of FIG. 21 shows a voltage waveform applied to a pixel composed of the scanning electrode to which the selection voltage is applied and the signal electrode to which the rewriting voltage is applied as shown in (5) of FIG. a)
(5) of the combination of the above voltage waveforms.

【0043】このように画素へ印加する電圧波形を決め
れば、図9(A)または(B)の(6)の電圧波形を画
素を構成するFLC分子に印加したときの画素の透過光
量の変化は、図9(A)の(7)か(8)または図9
(B)の(7)か(8)の電圧波形を画素を構成するF
LC分子に印加したときの画素の透過光量の変化とほぼ
等しくなる。また、図9(A)でも図9(B)でも電圧
V0の代わりに電圧V0+α(α>0)を使えば、図9
(A)の(6)または図9(B)の(6)の電圧波形を
画素を構成するFLC分子に印加されたときの画素の透
過光量の変化は、図9(A)の(7)か(8)または図
9(B)の(7)か(8)の電圧波形を画素を構成する
FLC分子に印加したときの画素の透過光量の変化より
小さくなる。
When the voltage waveform applied to the pixel is determined as described above, the change in the amount of transmitted light of the pixel when the voltage waveform of (6) in FIG. 9A or 9B is applied to the FLC molecules constituting the pixel. 9 (A) or (8) of FIG. 9 (A) or FIG.
The voltage waveform of (7) or (8) in (B) is converted to F
It becomes almost equal to the change in the amount of transmitted light of the pixel when applied to the LC molecules. 9 (A) and FIG. 9 (B), if voltage V0 + α (α> 0) is used instead of voltage V0, FIG.
The change in the amount of transmitted light of the pixel when the voltage waveform of (A) (6) or (6) of FIG. 9 (B) is applied to the FLC molecules constituting the pixel is shown in (7) of FIG. When the voltage waveform of (8) or (7) or (8) of FIG. 9B is applied to the FLC molecules constituting the pixel, the change in the amount of transmitted light of the pixel becomes smaller.

【0044】また、走査電極へ印加する電圧波形を図9
(A)の(1)または図9(B)の(1)を決めれば、
信号電極へ印加する書換え電圧波形は図9(A)の
(3)または図9(B)の(3)と決まり、信号電極へ
印加する保持電圧波形は図9(A)の(4)または図9
(B)の(4)と決まり、走査電極へ印加する非選択電
圧波形は図9(A)の(2)または図9(B)の(2)
と決まる。これは例えば、図9(A)の(1)の電圧を
V1とし、図9(A)の(2)の電圧をV2とし、図9
(A)の(3)の電圧をV3とし、図9(A)の(4)
の電圧をV4とし、図9(A)の(5)の電圧をV5と
し、図9(A)の(6)の電圧をV6とし、図9(A)
の(7)の電圧をV7としたとき、 V3=V1−V5 (7) V4=V1−V6 (8) V2=V3+V7 (9) であるからである。
FIG. 9 shows a voltage waveform applied to the scanning electrode.
If (1) of (A) or (1) of FIG. 9 (B) is determined,
The rewriting voltage waveform applied to the signal electrode is determined as (3) in FIG. 9 (A) or (3) in FIG. 9 (B), and the holding voltage waveform applied to the signal electrode is (4) or (4) in FIG. 9 (A). FIG.
(B) is determined as (4), and the non-selection voltage waveform applied to the scanning electrode is (2) in FIG. 9 (A) or (2) in FIG. 9 (B).
Is determined. For example, the voltage of (1) in FIG. 9A is V1 and the voltage of (2) in FIG.
The voltage of (3) in (A) is V3, and (4) in FIG.
9 (A) is set to V5, the voltage of (6) in FIG. 9 (A) is set to V6, and the voltage of (6) in FIG. 9 (A) is set to V6.
This is because V3 = V1−V5 (7) V4 = V1−V6 (8) V2 = V3 + V7 (9) where V7 is the voltage of (7).

【0045】この図9の電圧波形の組合せでは、図9
(A)の(5)または図9(B)の(5)の一方極性の
電圧の面積と、図9(A)の(7)か(8)または図9
(B)の(7)か(8)の一方極性の電圧の面積比、つ
まり、バイアス比Bは B=(V0/2)÷(V1+V0/2) (10) でありそれほど高いコントラストは期待できないが、図
9(A)の電圧波形の組合せの時間軸をt0からt1と
し、図9(A)の電圧波形の組合せと、図9(A)の電
圧波形の組合せを時間2t1だけずらした電圧波形の組
合せを足し合わせれば図11(A)の電圧波形の組合せ
となり、また、図9(B)の電圧波形の組合せの時間軸
をt0からt1とし、図9(B)の電圧波形の組合せ
と、図9(B)の電圧波形の組合せを時間2t1だけず
らした電圧波形の組合せを足し合わせれば図11(B)
の電圧波形の組合せとなる。図11のバイアス比Bは B=(V0/2)÷(2V1+V0) (11) となり、かなり高いコントラストが期待できる。
In the combination of the voltage waveforms shown in FIG.
9 (A) or (5) of FIG. 9 (B) and the area of the voltage of one polarity and (7) or (8) of FIG. 9 (A) or FIG.
The area ratio of the voltage of one polarity of (7) or (8) in (B), that is, the bias ratio B is B = (V0 / 2) ÷ (V1 + V0 / 2) (10), and so high contrast cannot be expected. However, the time axis of the combination of the voltage waveforms of FIG. 9 (A) is changed from t0 to t1, and the voltage combination of the voltage waveforms of FIG. 9 (A) and the voltage waveform of FIG. 9 (A) are shifted by time 2t1. When the combinations of the waveforms are added, the combination of the voltage waveforms in FIG. 11A is obtained. In addition, the time axis of the combination of the voltage waveforms in FIG. 9B is changed from t0 to t1, and the combination of the voltage waveforms in FIG. FIG. 11B is obtained by adding the combination of the voltage waveforms of FIG. 9B and the combination of the voltage waveforms shifted by the time 2t1.
Of the voltage waveforms shown in FIG. The bias ratio B in FIG. 11 is as follows: B = (V0 / 2) ÷ (2V1 + V0) (11), and a considerably high contrast can be expected.

【0046】このように、この駆動方法ではコントラス
トは図9の電圧波形の組合せを何回ずらして重ね合わせ
るかによって決まる。図9の電圧波形の組合せが何回で
も重ね合わせられるのは、予め図9(A)または(B)
の(6)の電圧波形を、図9(A)または(B)の
(7)と(8)の電圧波形と同じトルクをFLC分子に
与えるよう設計したので、バイアス時にFLC分子のメ
モリ状態が変化しないのと同様に図9(A)または
(B)の(6)の電圧波形を何回重ね合わせてもFLC
分子のメモリ状態を変化させられないからである。さら
に、この事は図9において電圧V0/2の代わりに電圧
(V0+α)/2(α>0)を使えば、よりはっきりす
る。なお、配向膜にPSI−X7355を使ったパネル
では一部にC1ツィスト配向が見られ、配向膜にPSI
−XS012やPSI−XS014を使ったパネルでは
一部にC2ツィスト配向が見られたが、C1ツィスト配
向でもC2ツィスト配向でも図18と同様にメモリパル
ス幅が最小となる電圧を持つ電圧−メモリパルス幅特性
が得られたので、C2ユニホーム配向と同様に電圧(V
0+V1)が印加されたときと同じ力をFLC分子に与
える電圧V0/2が存在する。
As described above, in this driving method, the contrast is determined by how many times the combinations of the voltage waveforms shown in FIG. 9 are shifted and overlapped. The combination of the voltage waveforms in FIG. 9 is superimposed any number of times, as shown in FIG.
(6) is designed to apply the same torque to the FLC molecules as the voltage waveforms of (7) and (8) in FIG. 9 (A) or (B). Similarly to the case where the voltage waveform of FIG. 9A or FIG.
This is because the memory state of the molecule cannot be changed. Furthermore, this becomes clearer when the voltage (V0 + α) / 2 (α> 0) is used instead of the voltage V0 / 2 in FIG. In a panel using PSI-X7355 for the alignment film, C1 twist alignment was partially observed, and PSI-X7355 was used for the alignment film.
In the panel using -XS012 or PSI-XS014, C2 twist orientation was observed in part, but in both the C1 twist orientation and the C2 twist orientation, the voltage having the voltage at which the memory pulse width was minimized as in FIG. Since the width characteristics were obtained, the voltage (V
0 + V1), there is a voltage V0 / 2 that gives the same force to the FLC molecules as when applied.

【0047】実際に図11の電圧波形の組合せを、チッ
ソ社製の配向膜PSI−X7355を使ったFLCパネ
ル1において、電圧V0+V1=50vと固定し、電圧
V0を可変にして、図11(A)の(7)と(8)の電
圧を画素へ印加しその光学的応答をフォトダイオードで
電気信号に測定した特性と、図11(A)の(6)の電
圧を画素へ印加しその光学的応答をフォトダイオードで
電気信号に測定した特性を比較し、ほぼ等しい透過光量
を与える電圧として V0/2=10v V1=30v を得た。また、従来例の図13の駆動波形も同様に重ね
合わせる事ができるが、クロストークが残るので余り好
ましくない。
Actually, the combination of the voltage waveforms shown in FIG. 11 is fixed to a voltage V0 + V1 = 50 V in the FLC panel 1 using the alignment film PSI-X7355 manufactured by Chisso, and the voltage V0 is made variable. 11) Applying the voltages of (7) and (8) to the pixel and measuring the optical response of the pixel to an electric signal with a photodiode, and applying the voltage of (6) of FIG. By comparing characteristics obtained by measuring the electrical response with an electric signal using a photodiode, V0 / 2 = 10v and V1 = 30v were obtained as voltages giving substantially equal amounts of transmitted light. Further, the driving waveforms of FIG. 13 of the conventional example can be superposed in the same manner, but it is not preferable because crosstalk remains.

【0048】そこでV0/2=12v,V1=26vと
して、図11(A)の(6)の電圧の後、図11(A)
の(7)か(8)の電圧を印加し続け、その後図11
(B)の(6)の電圧の後、図11(B)の(7)か
(8)の電圧を印加し続け、これを10Hz周期で繰り返
したがフリッカを感じなかった。無論、図11(A)の
(6)の電圧の代わりに図11(A)の(5)の電圧を
印加すれば画素を一方の状態に書換えられし、図11
(B)の(6)の電圧の代わりに図11(B)の(5)
の電圧を印加すれば画素をもう一方の状態へ書換えられ
た。ところで、電圧V0+V1を50vから下げる為
に、強誘電性液晶SCE−8を誘電異方性が負の化合物
A.Bで薄めた2つの液晶組成物A.B 基となる液晶 薄める化合物 ブレンド比 液晶組成物A SCE−8 化合物A 8:2 液晶組成物B SCE−8 化合物B 9:1 をチッソ社製の配向膜PSI−X012.PSI−X0
14.PSI−X7355を使ったパネルに注入し、電
圧−メモリパルス幅の関係を図14(A)に示す電圧波
形で測定したのが図25と図26である。この図25や
図26と図18を比較すると明らかにメモリパルス幅が
最小となる電圧Vminが小さくなっており、電圧V0
+V1を小さくするには液晶中のカイラルの比率を下げ
ればよいことが判る。
Then, assuming that V0 / 2 = 12v and V1 = 26v, after the voltage of (6) in FIG.
(7) or (8) is continuously applied.
After the voltage (6) in (B), the voltage (7) or (8) in FIG. 11B was continuously applied, and this was repeated at a cycle of 10 Hz, but no flicker was felt. Of course, if the voltage of (5) of FIG. 11A is applied instead of the voltage of (6) of FIG. 11A, the pixel can be rewritten to one state, and FIG.
Instead of the voltage of (6) of (B), (5) of FIG.
The pixel was rewritten to the other state by applying the voltage. By the way, in order to lower the voltage V0 + V1 from 50 V, the ferroelectric liquid crystal SCE-8 is made of a compound A. B. Two liquid crystal compositions diluted with B. Liquid crystal serving as B group Compound for thinning Blend ratio Liquid crystal composition A SCE-8 Compound A 8: 2 Liquid crystal composition B SCE-8 Compound B 9: 1 was prepared by using an alignment film PSI-X012. PSI-X0
14. FIG. 25 and FIG. 26 show the relationship between the voltage and the memory pulse width measured by the voltage waveform shown in FIG. 14 (A) after injection into a panel using PSI-X7355. When FIG. 25 and FIG. 26 are compared with FIG. 18, the voltage Vmin at which the memory pulse width is minimized is clearly smaller, and the voltage V0
It can be seen that the ratio of chiral in the liquid crystal can be reduced to reduce + V1.

【0049】本実施例で用いられるFLCパネル1の構
成とFLCD4の構成は従来例と同じ図2と図3に示す
ものであり、ここではその説明は省略する。図1は、こ
のFLCD4を用いた表示システムの構成を概略的に示
すブロック図である。この表示システムでは、画像表示
に必要な情報をパーソナルコンピュータ2からCRTデ
ィスプレイ3へ出力しているデジタル信号から得、この
デジタル信号を表示制御装置13でFLCD4で画像表
示をさせる為の信号に変換し、この変換信号によってF
LCD4で画像表示が行われる。
The structure of the FLC panel 1 and the structure of the FLCD 4 used in this embodiment are the same as those of the conventional example shown in FIGS. 2 and 3, and the description thereof is omitted here. FIG. 1 is a block diagram schematically showing a configuration of a display system using the FLCD 4. As shown in FIG. In this display system, information necessary for image display is obtained from a digital signal output from the personal computer 2 to the CRT display 3, and this digital signal is converted by the display control device 13 into a signal for displaying an image on the FLCD 4. , The converted signal
An image is displayed on the LCD 4.

【0050】第4図は、このパーソナルコンピュータ2
からCRTディスプレイ3へ出力される各信号の波形図
であり、そのうち図4(1)はCRTディスプレイ3へ
出力される画像情報の1水平走査区間分の周期を与える
水平同期信号HDであり、図4(2)はその情報の1画
面分の周期を与える垂直同期信号VDであり、図4
(3)はその情報を表示データDataとして1水平走
査区間ごとにまとめて示したものであり添付の数字は1
水平期間毎にデータDataを区別する為のものであ
る。図4(4)は水平同期信号HDの1水平走査区間を
拡大して示す波形図であり、図4(5)は上記表示デー
タDataの1水平走査区間を拡大して示す波形図であ
り添付の数字は1画素毎にデータDataを区別する為
のものであり、、図4(6)はその表示データData
のデータ転送用クロックCLKを示す波形図である。
FIG. 4 shows the personal computer 2
FIG. 4A is a waveform diagram of each signal output from the device to the CRT display 3, of which FIG. 4A is a horizontal synchronizing signal HD giving a period of one horizontal scanning section of image information output to the CRT display 3. 4 (2) is a vertical synchronizing signal VD for giving a period of one screen of the information, and FIG.
(3) collectively shows the information as display data Data for each one horizontal scanning section.
This is for distinguishing the data Data for each horizontal period. FIG. 4 (4) is a waveform diagram showing one horizontal scanning section of the horizontal synchronization signal HD in an enlarged manner, and FIG. 4 (5) is a waveform chart showing one horizontal scanning section of the display data Data in an enlarged manner. Are used to distinguish data Data for each pixel, and FIG. 4 (6) shows the display data Data.
FIG. 4 is a waveform diagram showing a data transfer clock CLK of FIG.

【0051】ところで、このデジタル信号は9×8画素
分しかないにもかかららず、FLCパネル1の16×1
6画素全部のデータを表示できる。というのは、FLC
パネル1の16×16画素は走査電極L0〜L7と信号
電極S0〜S7からなる表示部分0と、走査電極L0〜
L7と信号電極S8〜SFからなる表示部分1と、走査
電極L8〜LFと信号電極S0〜S7からなる表示部分
2と、走査電極L8〜LFと信号電極S8〜SFからな
る表示部分3とに仮想的に分割され、第5図及び第6図
に示すように入力される9×8画素分のデジタル信号の
第0の水平走査区分のデータで、それに続く第1〜第8
の水平走査区分のデータが前記表示部分0〜3のどれに
対応するかを指示されているからである。
By the way, this digital signal has only 9 × 8 pixels, but the 16 × 1
Data of all six pixels can be displayed. Because FLC
A 16 × 16 pixel of the panel 1 has a display portion 0 including scanning electrodes L0 to L7 and signal electrodes S0 to S7, and a scanning electrode L0 to L7.
A display portion 1 including L7 and signal electrodes S8 to SF, a display portion 2 including scan electrodes L8 to LF and signal electrodes S0 to S7, and a display portion 3 including scan electrodes L8 to LF and signal electrodes S8 to SF. The data of the 0th horizontal scanning section of the digital signal of 9 × 8 pixels, which is virtually divided and input as shown in FIGS. 5 and 6, is followed by the first to eighth data.
This is because it is instructed to which of the display portions 0 to 3 the data of the horizontal scanning section corresponds to.

【0052】即ち、第5図及び第6図に従って説明すれ
ば、第0の水平走査区分の第3データが「明」(斜線が
ないデータ)で第7データが「明」なら(第5図はこれ
に相当する。)次に続く第1〜第8の水平走査区分のデ
ータは表示部分0に対応し、第0の水平走査区分の第3
データが「明」で第7データが「暗」(斜線があるデー
タ)なら次に続く第1〜第8の水平走査区分のデータは
表示部分1に対応し、第0の水平走査区分の第3データ
が「暗」で第7データが「明」なら(第6図はこれに相
当する。)次に続く第1〜第8の水平走査区分のデータ
は表示部分2に対応し、第0の水平走査区分の第3デー
タが「暗」で第7データが「暗」なら次に続く第1〜第
8の水平走査区分のデータは表示部分3に対応する。
In other words, according to FIGS. 5 and 6, if the third data in the 0th horizontal scanning section is “bright” (data without oblique lines) and the seventh data is “bright” (FIG. 5). The data of the following first to eighth horizontal scanning sections correspond to the display portion 0, and the third data of the 0th horizontal scanning section.
If the data is “bright” and the seventh data is “dark” (data with diagonal lines), the data of the following first to eighth horizontal scanning sections correspond to the display portion 1 and the data of the 0th horizontal scanning section If the third data is “dark” and the seventh data is “bright” (FIG. 6 corresponds to this), the data of the following first to eighth horizontal scanning sections correspond to the display portion 2 and the 0th data If the third data of the horizontal scanning section is “dark” and the seventh data is “dark”, the subsequent data of the first to eighth horizontal scanning sections correspond to the display portion 3.

【0053】図8は表示制御装置13の概略的な構成を
示すブロック図である。この表示制御装置13は、パー
ソナルコンピュータ2からのデジタル信号を受けそれを
必要な回路に分配するインターフェース回路14と、F
LCパネル1へ次に表示させるべき表示データDAを記
録している表示メモリ回路15と、その表示メモリ回路
15のデータの変化を4画素毎にまとめて(1画素でも
変化していれば変化ありと)記録している同異メモリ回
路17と、その表示メモリ回路15のデータの変化を2
走査電極毎にまとめて(1画素でも変化していれば変化
ありと)記録している群メモリ回路16と、これら3つ
のメモリ回路15,16,17へパーソナルコンピュー
タ2からのデジタル信号を書き込むタイミングを制御す
る入力制御回路18と、これら3つのメモリ回路15,
16,17からFLCD4へ出力すべきデータを読み出
すタイミングを制御する出力制御回路19及びアドレス
回路20と、メモリ回路15,16,17と出力制御回
路19及びアドレス回路20からデータ受けてFLCD
4を構成する走査側駆動回路11及び信号側駆動回路1
2の動作を制御する駆動制御回路21より構成される。
FIG. 8 is a block diagram showing a schematic configuration of the display control device 13. As shown in FIG. The display control device 13 includes an interface circuit 14 for receiving a digital signal from the personal computer 2 and distributing the digital signal to necessary circuits;
A display memory circuit 15 that records display data DA to be displayed next on the LC panel 1 and data changes in the display memory circuit 15 are grouped every four pixels (if at least one pixel changes, there is a change). And) the recorded data change in the different memory circuit 17 and its display memory circuit 15
A group memory circuit 16 that collectively records each scan electrode (if even one pixel has changed, there is a change) and the timing of writing digital signals from the personal computer 2 to these three memory circuits 15, 16, and 17 , An input control circuit 18 for controlling the three memory circuits 15,
An output control circuit 19 and an address circuit 20 for controlling the timing of reading data to be output from the FLCD 16 to the FLCD 4, and an FLCD receiving data from the memory circuits 15, 16, 17 and the output control circuit 19 and the address circuit 20.
Scanning-side drive circuit 11 and signal-side drive circuit 1 that constitute 4
2 comprises a drive control circuit 21 for controlling the operation.

【0054】メモリ回路15,17では、第1にメモリ
から入力側アドレスIACx,IASxで指定されるア
ドレスのデータを読み出し、第2にメモリから出力側ア
ドレスOACx,OASxで指定されるアドレスのデー
タを読み出し、第3にメモリへ入力側アドレスIAC
x,IASxで指定されるアドレスへデータを書き込
み、第4にメモリから出力側アドレスOACx,OAS
xで指定されるアドレスのデータを読み出すという連続
した4つのサイクルが繰り返される。また、群メモリ回
路16では、この4つのサイクルのうち第2のサイクル
において出力側アドレスOAGxで指定されるアドレス
のデータを変化なしの状態へ書き換えることをしてい
る。
The memory circuits 15 and 17 first read the data at the address specified by the input addresses IACx and IASx from the memory, and second read the data at the addresses specified by the output addresses OACx and OASx from the memory. Read, thirdly, input address IAC to memory
x, IASx to write data to the address, and fourthly, from the memory, output addresses OACx, OAS
Four consecutive cycles of reading data at the address specified by x are repeated. In the group memory circuit 16, the data at the address specified by the output address OAGx is rewritten to the state without change in the second cycle of the four cycles.

【0055】この表示制御装置13を使えば、図3のF
LCD4の16本の走査電極Lを2本づつ8つのグルー
プに仮想的に分割し、各グループに属する2本の走査電
極上の画素の表示を変化させる必要があるかが群メモリ
回路16へ記録され、その2本の走査電極上の画素のど
の画素の表示状態を変化させるべきかが4画素毎にまと
めて同異メモリ回路17へ記録され、その画素をどんな
表示状態へ変化させるべきかが1画素毎に表示メモリ回
路15へ記録される。
If this display control device 13 is used, F shown in FIG.
The 16 scan electrodes L of the LCD 4 are virtually divided into eight groups of two, and whether the display of the pixels on the two scan electrodes belonging to each group needs to be changed is recorded in the group memory circuit 16. Then, which of the pixels on the two scanning electrodes should be changed in the display state is collectively recorded every four pixels in the different memory circuit 17, and the display state of the pixel to be changed is determined. The data is recorded in the display memory circuit 15 for each pixel.

【0056】FLCD4の表示が図3の「ABCD」で
あるとき、パーソナルコンピュータ2から図5に9×8
のマトリックスで示すデータDataが表示制御装置1
3へ入力されれば、表示制御装置13の群メモリ回路1
6では走査電極L0とL1に対応するグループ0と、走
査電極L2とL3に対応するグループ1と、走査電極L
4とL5に対応するグループ2と、走査電極L6とL7
に対応するグループ3のデータが表示に変化有りとな
り、それ以外のグループ4〜7のデータは表示に変化な
しとなる。
When the display on the FLCD 4 is “ABCD” in FIG. 3, the personal computer 2 displays 9 × 8 in FIG.
Of the display control device 1
3, the group memory circuit 1 of the display controller 13
6, group 0 corresponding to scan electrodes L0 and L1, group 1 corresponding to scan electrodes L2 and L3, and scan electrode L
Group 2 corresponding to L4 and L5, and scanning electrodes L6 and L7
Is changed in the display of the group 3 corresponding to the above, and the data of the other groups 4 to 7 is not changed in the display.

【0057】そこで、グループ0に属する走査電極L0
とL1へ順番に図11(A)の(1)の選択電圧を印加
し、選択電圧が印加された走査電極Li上の画素Aij
に対応する同異メモリ回路17のデータが変化ありであ
り、かつ表示メモリ回路15のデータが暗の表示状態の
時、その画素Aijを暗の表示状態へ書換えるために、
その画素Aijを構成する信号電極Sjへ図11(A)
の(3)の書換え電圧を印加する。また、それ以外のそ
の走査電極Li上の画素Aih(j≠h)を構成する信
号電極Shへは図11(A)の(4)の保持電圧を印加
する。
Therefore, the scan electrodes L0 belonging to the group 0
And L1 are sequentially applied with the selection voltage of (1) in FIG. 11A, and the pixel Aij on the scanning electrode Li to which the selection voltage is applied.
When the data of the different memory circuit 17 corresponding to the above is changed and the data of the display memory circuit 15 is in the dark display state, the pixel Aij is rewritten to the dark display state.
FIG. 11 (A) is applied to the signal electrode Sj constituting the pixel Aij.
(3) is applied. Further, the holding voltage of (4) in FIG. 11A is applied to the other signal electrodes Sh constituting the pixels Aih (j ≠ h) on the scanning electrodes Li.

【0058】次に、グループ0に属する走査電極L0と
L1へ順番に図11(B)の(1)の選択電圧を印加
し、選択電圧が印加された走査電極Li上の画素Aij
に対応する同異メモリ回路17のデータが変化ありであ
り、かつ表示メモリ回路15のデータが明の表示状態の
時、その画素Aijを明の表示状態へ書換えるために、
その画素Aijを構成する信号電極Sjへ図11(B)
の(3)の書換え電圧を印加する。また、それ以外のそ
の走査電極Li上の画素Aih(j≠h)を構成する信
号電極Shへは図11(B)の(4)の保持電圧を印加
する。その後グループ1,2,3と同じ事をし、図3の
FLCD4の表示は「ABCD」から「EBCD」へす
る。
Next, the selection voltage of (1) in FIG. 11B is sequentially applied to the scanning electrodes L0 and L1 belonging to the group 0, and the pixel Aij on the scanning electrode Li to which the selection voltage has been applied.
When the data of the different memory circuit 17 corresponding to the above is changed and the data of the display memory circuit 15 is in the bright display state, the pixel Aij is rewritten to the bright display state.
FIG. 11 (B) is applied to the signal electrode Sj constituting the pixel Aij.
(3) is applied. Further, the holding voltage of (4) in FIG. 11B is applied to the other signal electrodes Sh constituting the pixels Aih (j ≠ h) on the scanning electrodes Li. After that, the same operation as in the groups 1, 2, and 3 is performed, and the display of the FLCD 4 in FIG. 3 is changed from “ABCD” to “EBCD”.

【0059】ところで、画素の表示が暗とか明というの
は、図7(A)に示しFLC分子の安定状態104と1
05のうち、一方の安定状態の長軸方向と図2の偏光版
10aの偏光軸を一致させれば、一致したほうの安定状
態が暗の安定状態となり、もう一方の安定状態が明の安
定状態となる。また、暗の安定状態にあるFLC分子か
ら構成される画素は暗の表示状態であるし、明の安定状
態にあるFLC分子から構成される画素は明の表示状態
である。また、もし総ての走査電極上の画素を書換える
ダイナミック駆動方法に適用するなら、図9の電圧波形
の組合せでなくても、図10の電圧波形の組合せでもさ
しつかえがない。図10の各電圧波形は図10の(6)
の電圧波形を画素に印加した時の透過光量と、図10の
(7)か(8)の電圧波形を画素に印加した時の透過光
量とが等しくならないと言う点で図9の電圧波形の組合
せとは異なるが、その他の点では図9の電圧波形と同じ
なのでここではそれ以上の説明を省略する。さらに、図
10の電圧波形の組合せを図11の電圧波形の組合せと
同様にスタテック駆動方法に適用することも可能であ
る。その場合、図10(A)の(6)の電圧波形が電圧
V1をt0/2時間印加したあと電圧−V1−V0をt
0時間印加する電圧波形となるので、電圧V1によりF
LC分子が受ける力がV1+V0によりFLC分子が受
ける力の約2倍程度でなければならない。
By the way, whether the display of a pixel is dark or light is as shown in FIG.
If the long axis direction of one of the stable states is matched with the polarization axis of the polarizing plate 10a in FIG. 2, the stable state of the matched one becomes a dark stable state and the other stable state becomes a bright stable state. State. A pixel composed of FLC molecules in a dark stable state is in a dark display state, and a pixel composed of FLC molecules in a light stable state is in a bright display state. Further, if the present invention is applied to a dynamic driving method for rewriting pixels on all the scanning electrodes, not only the combination of the voltage waveforms of FIG. 9 but also the combination of the voltage waveforms of FIG. Each voltage waveform in FIG. 10 is (6) in FIG.
9 in that the amount of transmitted light when the voltage waveform of FIG. 9 is applied to the pixel is not equal to the amount of transmitted light when the voltage waveform of (7) or (8) in FIG. 10 is applied to the pixel. Although it is different from the combination, it is the same as the voltage waveform of FIG. 9 in other respects, so that further description is omitted here. Further, the combination of the voltage waveforms in FIG. 10 can be applied to the static driving method similarly to the combination of the voltage waveforms in FIG. In this case, after the voltage V1 is applied for t0 / 2 hours after the voltage waveform of (6) in FIG.
Since the voltage waveform is applied for 0 hours, the voltage V1
The force received by the LC molecules must be about twice the force received by the FLC molecules due to V1 + V0.

【0060】ところで、図11(A)の(5)または図
11(B)の(5)の電圧波形は一方の極性の電圧しか
含んでいない。この為、前記のグループ0に属する走査
電極L0とL1を図11(A)の電圧波形の組合せで駆
動した後、4:1の飛び越し走査で1本の走査電極上の
画素を図11(A)または図11(B)の電圧波形の組
合せで書き直し、その後グループ0に属する走査電極L
0とL1を図11(B)の電圧波形の組合せで駆動した
後、4:1の飛び越し走査で1本の走査電極上の画素を
図11(B)または図11(A)の電圧波形の組合せで
書き直す等々の駆動をしても、比較的書き直しに伴うフ
リッカは感知しずらい。
Incidentally, the voltage waveform of (5) in FIG. 11A or (5) in FIG. 11B includes only one polarity voltage. For this reason, after the scan electrodes L0 and L1 belonging to the group 0 are driven by the combination of the voltage waveforms shown in FIG. 11A, the pixels on one scan electrode are driven by the interlace scanning of 4: 1 in FIG. ) Or the combination of the voltage waveforms in FIG.
After driving 0 and L1 by the combination of the voltage waveforms of FIG. 11B, the pixels on one scan electrode are interlaced with the voltage waveforms of FIG. 11B or FIG. Even when rewriting is performed in combination, flickering accompanying rewriting is relatively difficult to detect.

【0061】図12に示す波形図は、走査電極LDを図
11(A)の電圧波形を用いて書き直し、グループ6を
図11(A)の電圧波形を用いて駆動し、走査電極L2
を図11(B)の電圧波形を用いて書き直し、グループ
0を図11(B)の電圧波形を用いて駆動し、走査電極
L2を図11(A)の電圧波形を用いて書き直し、グル
ープ0を図11(A)の電圧波形を用いて駆動し、走査
電極L6を図11(B)の電圧波形を用いて書き直し、
グループ1を図11(B)の電圧波形を用いて駆動した
場合のものである。図12(1)に走査電極L2へ印加
される電圧を、(2)に走査電極L3へ印加される電圧
を、(3)に信号電極S1へ印加される電圧を、(4)
に信号電極S2へ印加される電圧を、(5)に画素A2
1へ印加される電圧を、(6)に画素A22へ印加され
る電圧を、(7)に画素A31へ印加される電圧を、
(8)に画素A32へ印加される電圧を示す。
In the waveform diagram shown in FIG. 12, the scan electrode LD is rewritten using the voltage waveform shown in FIG. 11A, the group 6 is driven using the voltage waveform shown in FIG.
11 is rewritten using the voltage waveform of FIG. 11B, group 0 is driven using the voltage waveform of FIG. 11B, and the scan electrode L2 is rewritten using the voltage waveform of FIG. Is driven by using the voltage waveform of FIG. 11A, and the scan electrode L6 is rewritten by using the voltage waveform of FIG.
This is a case in which Group 1 is driven using the voltage waveform of FIG. FIG. 12 (1) shows the voltage applied to the scan electrode L2, (2) shows the voltage applied to the scan electrode L3, (3) shows the voltage applied to the signal electrode S1, and (4)
Is applied to the signal electrode S2, and (5) is applied to the pixel A2.
1, the voltage applied to the pixel A22 in (6), the voltage applied to the pixel A31 in (7),
(8) shows the voltage applied to the pixel A32.

【0062】この図12(5)と(6)の画素A21,
A22へ印加される電圧からわかるとうり、この図11
の電圧波形の組合せを使った駆動で画素A21,A22
の透過光量のピークは、印加電圧波形の組合せを図11
(A)から図11(B)へ替えた時または図11(B)
から図11(A)へ替えた時と、図11(A)の(5)
の電圧波形または図11(B)の(5)の電圧波形が画
素へ印加された時である。
The pixels A21, shown in FIGS.
As can be seen from the voltage applied to A22, FIG.
A21, A22 by driving using a combination of the voltage waveforms of
The peak of the amount of transmitted light in FIG.
When (A) is changed to FIG. 11 (B) or FIG. 11 (B)
11 (A) from FIG. 11 (A) and (5) in FIG. 11 (A).
11 or the voltage waveform (5) in FIG. 11B is applied to the pixel.

【0063】しかし、図11(A)の(5)の電圧波形
または図11(B)の(5)の電圧波形は一方極性パル
スなので、FLC分子は図7(A)の安定状態105ま
たは104から、チルト角±θの限界による軸107ま
たは106まで動くだけであり、チルト角θとメモリ角
ωがほぼ等しければ、印加電圧波形の組合せを図11
(A)から図11(B)へ替えた時または図11(B)
から図11(A)へ替えた時とたいして変わらない透過
光量の変化を画素に与え、フリッカの目立ちにくい駆動
を実現できる。
However, since the voltage waveform of (5) in FIG. 11A or the voltage waveform of (5) in FIG. 11B is a unipolar pulse, the FLC molecule is in the stable state 105 or 104 in FIG. Only moves to the axis 107 or 106 due to the limit of the tilt angle ± θ, and if the tilt angle θ is almost equal to the memory angle ω, the combination of the applied voltage waveforms is changed as shown in FIG.
When (A) is changed to FIG. 11 (B) or FIG. 11 (B)
11A, the change in the amount of transmitted light, which is not much different from that when the pixel is changed to FIG. 11A, is given to the pixel, and driving in which flicker is less noticeable can be realized.

【0064】[0064]

【発明の効果】この発明によれば、見かけの応答速度が
速くなり、高いコントラストが得られる。
According to the present invention, the apparent response speed is increased, and a high contrast is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】FLCDの表示システムの概略的な構成を示す
ブロック図。
FIG. 1 is a block diagram showing a schematic configuration of an FLCD display system.

【図2】FLCDで用いられるFLCパネルの構成を示
す断面図。
FIG. 2 is a sectional view showing a configuration of an FLC panel used in the FLCD.

【図3】FLCDに「ABCD」の文字を表示した状態
を示す図。
FIG. 3 is a diagram showing a state in which characters “ABCD” are displayed on the FLCD.

【図4】パーソナルコンピュータからの出力信号を示す
波形図。
FIG. 4 is a waveform chart showing an output signal from a personal computer.

【図5】出力信号の意味するデータをマトリックス状に
示した図。
FIG. 5 is a diagram showing data meaning an output signal in a matrix.

【図6】出力信号の意味するデータをマトリックス状に
示した図。
FIG. 6 is a diagram showing data meaning an output signal in a matrix.

【図7】(A):FLC分子の様子をガラス基板から見
た図。(B):スメクチックC相におけるFLC分子の
状態を示す図。
FIG. 7A is a view of a state of FLC molecules as viewed from a glass substrate. (B): Diagram showing the state of FLC molecules in the smectic C phase.

【図8】本実施例の表示制御装置の概略的な構成を示す
ブロック図。
FIG. 8 is a block diagram illustrating a schematic configuration of a display control device according to the present embodiment.

【図9】本実施例のFLCパネルの駆動に用いられる各
印加電圧を示す波形図。
FIG. 9 is a waveform chart showing applied voltages used for driving the FLC panel of this embodiment.

【図10】本実施例のFLCパネルの駆動に用いられる
各印加電圧を示す波形図。
FIG. 10 is a waveform chart showing applied voltages used for driving the FLC panel of the present embodiment.

【図11】本実施例のFLCパネルの駆動に用いられる
各印加電圧を示す波形図。
FIG. 11 is a waveform chart showing applied voltages used for driving the FLC panel of the present embodiment.

【図12】本実施例のFLCパネルのいくつかの走査電
極と信号電極と画素にかかる電圧を示す波形図。
FIG. 12 is a waveform chart showing voltages applied to some scanning electrodes, signal electrodes, and pixels of the FLC panel of the present embodiment.

【図13】従来例のFLCパネルの駆動に用いられる各
印加電圧を示す波形図。
FIG. 13 is a waveform diagram showing applied voltages used for driving a conventional FLC panel.

【図14】図15の測定条件を示す電圧波形。FIG. 14 is a voltage waveform showing the measurement conditions of FIG.

【図15】従来例におけるΔε<0のFLC材料の電圧
−メモリパルス幅の特性を示すグラフ。
FIG. 15 is a graph showing a voltage-memory pulse width characteristic of a FLC material of Δε <0 in a conventional example.

【図16】従来例のFLCパネルの駆動に用いられる各
印加電圧を示す波形図。
FIG. 16 is a waveform chart showing applied voltages used for driving a conventional FLC panel.

【図17】他の従来例におけるFLC材料の電圧−メモ
リパルス幅の特性を示すグラフ。
FIG. 17 is a graph showing voltage-memory pulse width characteristics of an FLC material in another conventional example.

【図18】実測したFLC材料の電圧−メモリパルス幅
の特性を示すグラフ。
FIG. 18 is a graph showing measured voltage-memory pulse width characteristics of an FLC material.

【図19】ラビング方向とシェブロンの関係から配向状
態を規定する理論図。
FIG. 19 is a theoretical diagram that defines an alignment state from a relationship between a rubbing direction and a chevron.

【図20】暗または明のメモリ状態にある画素へ与える
光学的な特性の等しい印加電圧波形の組合せを示す波形
図。
FIG. 20 is a waveform chart showing combinations of applied voltage waveforms having equal optical characteristics to be applied to pixels in a dark or bright memory state.

【図21】選択電圧か非選択電圧が走査電極へ印加さ
れ、書換え電圧か保持電圧が信号電極へ印加された4種
類の画素の間の電圧関係を計算する為の波形図。
FIG. 21 is a waveform diagram for calculating a voltage relationship between four types of pixels in which a selection voltage or a non-selection voltage is applied to a scanning electrode, and a rewriting voltage or a holding voltage is applied to a signal electrode.

【図22】暗または明のメモリ状態にある画素へ与える
光学的な特性の等しい印加電圧波形の組合を示す波形
図。
FIG. 22 is a waveform chart showing a combination of applied voltage waveforms having equal optical characteristics to be applied to pixels in a dark or bright memory state.

【図23】暗または明のメモリ状態にある画素へ与える
光学的な特性のほぼ等しい印加電圧波形の組合を示す波
形図。
FIG. 23 is a waveform chart showing a combination of applied voltage waveforms having substantially equal optical characteristics to be applied to a pixel in a dark or bright memory state.

【図24】暗または明のメモリ状態にある画素へ与える
光学的な特性のほぼ等しい印加電圧波形の組合を示す波
形図。
FIG. 24 is a waveform chart showing a combination of applied voltage waveforms having substantially equal optical characteristics to be applied to a pixel in a dark or bright memory state.

【図25】実測したFLC材料の電圧−メモリパルス幅
の特性を示すグラフ。
FIG. 25 is a graph showing measured voltage-memory pulse width characteristics of an FLC material.

【図26】実測したFLC材料の電圧−メモリパルス幅
の特性を示すグラフ。
FIG. 26 is a graph showing the measured voltage-memory pulse width characteristics of the FLC material.

【符号の説明】[Explanation of symbols]

1 FLCパネル 2 パーソナルコンピュータ 3 CRT 4 FLCD 5 ガラス 6 絶縁膜 7 配向膜 8 封止剤 9 FLC 10 偏光版 11 走査側駆動回路 12 信号側駆動回路 13 表示制御装置回路 14 インターフェース回路 15 表示メモリ回路 16 群メモリ回路 17 同異メモリ回路 18 入力制御回路 19 出力制御回路 20 アドレス回路 21 駆動制御回路 L 走査電極 S 信号電極 DESCRIPTION OF SYMBOLS 1 FLC panel 2 Personal computer 3 CRT 4 FLCD 5 Glass 6 Insulating film 7 Alignment film 8 Sealant 9 FLC 10 Polarization plate 11 Scanning side drive circuit 12 Signal side drive circuit 13 Display control device circuit 14 Interface circuit 15 Display memory circuit 16 Group memory circuit 17 Different memory circuit 18 Input control circuit 19 Output control circuit 20 Address circuit 21 Drive control circuit L Scan electrode S Signal electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/133 G09G 3/36 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G02F 1/133 G09G 3/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに交差する方向に配列した複数の走
査電極と複数の信号電極の間に、特定電圧Vminで応
答速度が最も早くなる特徴をもった強誘電性液晶を介在
せ、走査電極と信号電極との交差部に画素を形成した
液晶パネルを用い、走査電極に選択電圧又は非選択電圧
を選択的印加すると共に、信号電極に書換電圧又は保持
電圧を選択的に印加し、選択電圧と書換電圧を印加する
画素へは極性変化のないパルス電圧を印加し、選択電圧
と保持電圧、非選択電圧と書換電圧、又は非選択電圧と
保持電圧のいずれかを印加する画素へは極性変化のある
一連のパルス電圧を印加し、それらの一連のパルス電圧
は、互いに同じ数の同じ順序で極性が変化する交番パル
スからなり、最初と最後のパルスは異なる極性を有し、
各パルスの波高値は液晶分子への影響がほぼ等しくなる
ようにVmin以上又はVmin以下に設定されたこと
を特徴とする液晶パネルの駆動方法。
Between 1. A mutually intersecting a plurality arranged in a direction of the scan electrodes and the plurality of signal electrodes, interposing a ferroelectric liquid crystal having the earliest further features response speed at a specific voltage Vmin <br/> Using a liquid crystal panel in which pixels are formed at the intersections of the scanning electrodes and the signal electrodes , selectively applying a selection voltage or a non-selection voltage to the scanning electrodes, and selectively applying a rewriting voltage or a holding voltage to the signal electrodes. Apply, select voltage and rewrite voltage
A pulse voltage with no polarity change is applied to the pixel, and the selection voltage
And hold voltage, non-select voltage and rewrite voltage, or non-select voltage
There is a polarity change in the pixel to which one of the holding voltages is applied
Apply a series of pulse voltages, and a series of those pulse voltages
Are alternating pulses whose polarity changes in the same number and in the same order as each other.
The first and last pulses have different polarities,
The peak value of each pulse has almost the same effect on liquid crystal molecules
The driving method of the liquid crystal panel, which is set to Vmin or higher or Vmin or lower .
【請求項2】 走査電極を複数のグループに仮想的に分
割し、グループ毎にそのグループに属する走査電極上の
画素の表示を変化させる必要があるか否かを検知する手
段と、画素毎にその画素の表示を変化させる必要がある
か否かを判別すると共にその表示の変化の種類を検知す
る手段を用い、表示を変化させる必要のある画素を含む
グループに属する走査電極から構成される画素につい
て、 表示を変化させる必要のある画素を構成する強誘電性液
晶分子は、その表示させるべき状態に従い一方の安定状
態からもう一方の安定状態へ書き換えたり、もう一方の
安定状態から一方の安定状態へ書き換えたりするが、表
示を変化させる必要のない画素を構成する強誘電性液晶
分子は、その安定状態を保持することを特徴とする請求
記載の液晶パネルの駆動方法。
2. A means for virtually dividing a scan electrode into a plurality of groups and detecting whether it is necessary to change the display of pixels on the scan electrodes belonging to the group for each group, and for each pixel. A pixel constituted by a scanning electrode belonging to a group including a pixel whose display needs to be changed by using means for determining whether or not the display of the pixel needs to be changed and detecting a type of the change of the display. The ferroelectric liquid crystal molecules that compose a pixel whose display needs to be changed can be rewritten from one stable state to another or from one stable state to another, depending on the state to be displayed. or rewrite to, but the ferroelectric liquid crystal molecules constituting the unnecessary pixel changing the display, the liquid crystal of claim 1, wherein the holding its stable state Method of driving the panel.
JP4232126A 1991-11-08 1992-08-31 Driving method of liquid crystal panel Expired - Lifetime JP2996564B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4232126A JP2996564B2 (en) 1991-11-08 1992-08-31 Driving method of liquid crystal panel
TW081108675A TW245780B (en) 1991-11-08 1992-10-30
DE69224147T DE69224147T2 (en) 1991-11-08 1992-11-06 Control method for a liquid crystal display panel
EP92310203A EP0541396B1 (en) 1991-11-08 1992-11-06 Method for driving liquid crystal panel
KR1019920020968A KR970001848B1 (en) 1991-11-08 1992-11-09 A driving method for lcd panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29317991 1991-11-08
JP3-293179 1991-11-08
JP4232126A JP2996564B2 (en) 1991-11-08 1992-08-31 Driving method of liquid crystal panel

Publications (2)

Publication Number Publication Date
JPH05210365A JPH05210365A (en) 1993-08-20
JP2996564B2 true JP2996564B2 (en) 2000-01-11

Family

ID=26530301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4232126A Expired - Lifetime JP2996564B2 (en) 1991-11-08 1992-08-31 Driving method of liquid crystal panel

Country Status (5)

Country Link
EP (1) EP0541396B1 (en)
JP (1) JP2996564B2 (en)
KR (1) KR970001848B1 (en)
DE (1) DE69224147T2 (en)
TW (1) TW245780B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850966B1 (en) 2003-02-10 2005-03-18 Rhodia Polyamide Intermediates PROCESS FOR PRODUCING DINITRIL COMPOUNDS
FR2854891B1 (en) 2003-05-12 2006-07-07 Rhodia Polyamide Intermediates PROCESS FOR PREPARING DINITRILES
TWI263834B (en) 2005-04-29 2006-10-11 Au Optronics Corp Liquid crystal display panel
EP2322503B1 (en) 2005-10-18 2014-12-31 Invista Technologies S.à.r.l. Process of making 3-aminopentanenitrile
KR20080104315A (en) 2006-03-17 2008-12-02 인비스타 테크놀러지스 에스.에이.알.엘 Method for the purification of triorganophosphites by treatment with a basic additive
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
WO2009091790A1 (en) 2008-01-15 2009-07-23 Invista Technologies S.A.R.L. Hydrocyanation of pentenenitriles
EP2229354B1 (en) 2008-01-15 2013-03-20 Invista Technologies S.à.r.l. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
WO2010045131A1 (en) 2008-10-14 2010-04-22 Invista Technologies S.A.R.L. Process for making 2-secondary-alkyl-4,5-di-(normal-alkyl)phenols
KR20120047251A (en) 2009-08-07 2012-05-11 인비스타 테크놀러지스 에스.에이.알.엘. Hydrogenation and esterification to form diesters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280824A (en) * 1986-05-30 1987-12-05 Alps Electric Co Ltd Driving method for liquid crystal display device
GB8720856D0 (en) * 1987-09-04 1987-10-14 Emi Plc Thorn Matrix addressing
JPH03203776A (en) * 1989-12-29 1991-09-05 Sharp Corp Display controller for ferroelectric liquid crystal panel

Also Published As

Publication number Publication date
EP0541396B1 (en) 1998-01-21
JPH05210365A (en) 1993-08-20
EP0541396A2 (en) 1993-05-12
KR970001848B1 (en) 1997-02-17
TW245780B (en) 1995-04-21
DE69224147D1 (en) 1998-02-26
DE69224147T2 (en) 1998-08-06
KR930010835A (en) 1993-06-23
EP0541396A3 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JPH0466327B2 (en)
EP1504437A2 (en) Liquid crystal device operable in two modes
JPH01134346A (en) Ferrodielectric liquid crystal display device, driving thereof and generation of drive waveform
US4981340A (en) Method and apparatus for readout of information from display panel
JP2996564B2 (en) Driving method of liquid crystal panel
JPH10253944A (en) Liquid crystal device and its drive method
US4925277A (en) Method and apparatus for driving optical modulation device
JPH01133033A (en) Liquid crystal display device and synthetic waveform generation circuit for driving the same
JP4073514B2 (en) Liquid crystal display
JPH0434130B2 (en)
JP2849740B2 (en) Ferroelectric liquid crystal electro-optical device
JPH11133382A (en) Method and device for addressing liquid crystal device and the liquid crystal device
JPH05119746A (en) Matrix type liquid crystal display device
EP0596607A1 (en) Method for driving a ferroelectric liquid crystal panel
JP3441096B2 (en) Antiferroelectric liquid crystal panel
US5896118A (en) Display system
JPH06123877A (en) Method for driving liquid crystal element
JPH09325319A (en) Simple matrix type liquid crystal display device and driving circuit therefor
JP3108844B2 (en) Display device
JP2717014B2 (en) Driving method of display device
JP2584752B2 (en) Liquid crystal device
JP2003131265A (en) Method for driving liquid crystal display device
JPS63259516A (en) Method for driving matrix type liquid crystal display body
JPH02120791A (en) Ferroelectric liquid crystal controller
JPH0448367B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

EXPY Cancellation because of completion of term