JP2994887B2 - Furnace desulfurization and denitration method for pressurized fluidized bed boiler - Google Patents

Furnace desulfurization and denitration method for pressurized fluidized bed boiler

Info

Publication number
JP2994887B2
JP2994887B2 JP4313310A JP31331092A JP2994887B2 JP 2994887 B2 JP2994887 B2 JP 2994887B2 JP 4313310 A JP4313310 A JP 4313310A JP 31331092 A JP31331092 A JP 31331092A JP 2994887 B2 JP2994887 B2 JP 2994887B2
Authority
JP
Japan
Prior art keywords
fluidized bed
limestone
fluidized
bed
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4313310A
Other languages
Japanese (ja)
Other versions
JPH06159614A (en
Inventor
直治 林田
祐一 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4313310A priority Critical patent/JP2994887B2/en
Publication of JPH06159614A publication Critical patent/JPH06159614A/en
Application granted granted Critical
Publication of JP2994887B2 publication Critical patent/JP2994887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加圧流動床ボイラの炉
内脱硫方法に関し、また、石炭等の固体燃料やCWM、
重油等の液体燃料の燃焼から発生する亜酸化窒素(N2
O)を低減する加圧流動床ボイラの炉内脱硫脱硝方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for desulfurization of a pressurized fluidized-bed boiler in a furnace.
Nitrous oxide (N 2) generated from the combustion of liquid fuels such as heavy oil
The present invention relates to a method for desulfurization and denitration in a furnace of a pressurized fluidized-bed boiler for reducing O).

【0002】[0002]

【従来の技術】二度のオイルショック以来、世界各国に
おいて石油代替エネルギ開発の一環として石炭の再利用
が高まり、石炭エネルギ転換技術として石炭焚流動床燃
焼炉及び加圧型石炭焚流動床燃焼炉(以下加圧流動床ボ
イラと略する)、加圧型流動床、噴流床石炭ガス化炉等
の実用化研究が盛んに行われている。
2. Description of the Related Art Since the two oil shocks, the recycling of coal has increased in various countries around the world as part of the development of alternative energy to petroleum, and coal-fired fluidized bed combustion furnaces and pressurized coal-fired fluidized bed combustion furnaces ( A pressurized fluidized bed boiler (hereinafter abbreviated as boiler), a pressurized fluidized bed, a spouted bed coal gasifier and the like have been actively studied for practical use.

【0003】この中で、加圧流動床ボイラは、設備が小
さく建設費が安くなること、炉内脱硫が可能なこと、ガ
スタービンとの組合せによる発電効率の向上が見込まれ
ることの特徴から、開発至近距離のものとして注目され
ている。
[0003] Among them, pressurized fluidized bed boilers are characterized by small facilities, low construction costs, in-furnace desulfurization, and improvement in power generation efficiency by combination with a gas turbine. It is attracting attention as a close-range product.

【0004】加圧流動床ボイラでは、高圧下(15気圧
程度)で脱硫剤として用いられる石灰石又はドロマイト
に含んだCaOを炉内に投入する燃料(石炭)中の燃焼
性S量に対して1〜2倍になるように調整して、空気で
流動床を形成する。そして、流動床中に燃料(石炭等)
を供給し、800〜900℃の最適な脱硫温度にて燃焼
させることにより、燃焼とともに発生するS化合物をC
aに固定させる炉内脱硫と低温燃焼及びオーバファイア
エア(O・F・A)燃焼によるN化合物の炉内脱硝を行
うことを目的とする。
[0004] In a pressurized fluidized-bed boiler, the amount of combustible S in a fuel (coal) in which CaO contained in limestone or dolomite used as a desulfurizing agent under high pressure (about 15 atm) is introduced into a furnace is considered. Adjust to ~ 2x to form a fluidized bed with air. And the fuel (coal etc.) in the fluidized bed
And combust at an optimum desulfurization temperature of 800 to 900 ° C. to reduce the S compound generated with combustion to C
The purpose of the present invention is to perform in-furnace denitrification of N compounds by in-furnace desulfurization, low-temperature combustion, and overfire air (OFA) combustion fixed to a.

【0005】[0005]

【発明が解決しようとする課題】前記の加圧流動床ボイ
ラにおいて、平均径0.8mmの石灰石と平均径1.0mm
の石炭を用いてCa /Sのモル比を2に設定し、圧力1
5気圧、流動床温度850℃の条件で運転した結果65
〜75%の脱硫率しか得られず、充分な脱硫率を得るこ
とは困難であった。
In the pressurized fluidized bed boiler described above, limestone having an average diameter of 0.8 mm and limestone having an average diameter of 1.0 mm are used.
, The molar ratio of Ca / S was set to 2 and the pressure was 1
As a result of operating under the conditions of 5 atm and fluidized bed temperature of 850 ° C, 65
Only a desulfurization rate of ~ 75% was obtained, and it was difficult to obtain a sufficient desulfurization rate.

【0006】一方、成層圏のオゾン層破壊の原因物質の
一つである亜酸化窒素(N2 O)は一般に高温度(13
00℃以上)での燃焼方式(微粉炭燃焼、ガス燃焼、油
燃焼等)では殆ど生じないが、加圧流動床ボイラでは炉
内脱硫温度の関係上、低温度(700〜900℃)で燃
焼させるため、数百ppm の濃度のN2 Oが発生し、炉内
の空気比を小さくしてもN2 Oの発生量は低下しなかっ
た。
On the other hand, nitrous oxide (N 2 O), which is one of the substances causing the depletion of the ozone layer in the stratosphere, generally has a high temperature (13 ° C.).
Although it hardly occurs in the combustion method (pulverized coal combustion, gas combustion, oil combustion, etc.) with the temperature of 00 ° C or more, combustion at a low temperature (700 to 900 ° C) occurs in the pressurized fluidized bed boiler due to the desulfurization temperature in the furnace. For this reason, N 2 O was generated at a concentration of several hundred ppm, and the amount of generated N 2 O did not decrease even if the air ratio in the furnace was reduced.

【0007】本発明は、このような従来技術の課題を解
決するためになされたもので加圧流動床ボイラにおい
て、効率良い炉内脱硫及び亜酸化窒素(N2 O)の発生
を低減することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and it is an object of the present invention to provide a pressurized fluidized-bed boiler with efficient furnace desulfurization and reduction of nitrous oxide (N 2 O) generation. With the goal.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 本発明の加圧流動床ボイラの炉内脱硫方法は、
加圧流動床ボイラの流動床を形成している粗粒の石炭と
粗粒の石灰石中に流動床重量の3%以下の超微粒の石灰
石を供給して炉内脱硫を行わせることを特徴とする。 (2) また、本発明の加圧流動床ボイラの炉内脱硫脱
硝方法は、前記(1)の加圧流動床ボイラの炉内脱硫方
法において、加圧流動床ボイラの流動床表面と気泡の破
裂個所に空気又は酸素を噴霧して流動床から排出される
微粉の未燃炭素を燃焼させ、流動床表面温度を900℃
〜1000℃に制御して亜酸化窒素を熱分解して除去す
ることを特徴とする。
(1) The in-furnace desulfurization method of the pressurized fluidized-bed boiler of the present invention comprises:
Ultra-fine limestone of 3% or less of the weight of the fluidized bed is supplied into coarse coal and coarse limestone forming the fluidized bed of the pressurized fluidized-bed boiler to perform in-furnace desulfurization. I do. (2) The method for desulfurization and denitration in a furnace of a pressurized fluidized-bed boiler according to the present invention is the method for desulfurization in a furnace of a pressurized fluidized-bed boiler according to the above (1), wherein Air or oxygen is sprayed at the rupture location to burn fine unburned carbon discharged from the fluidized bed, and the fluidized bed surface temperature becomes 900 ° C.
It is characterized in that nitrous oxide is thermally decomposed and removed by controlling the temperature to ~ 1000 ° C.

【0009】[0009]

【作用】前記本発明(1)では、流動床内に超微粒の石
灰石が滞留するために、石灰石の反応表面積が従来の粗
粒の石灰石を使用した場合に比して数十倍に増加し、石
灰石のSO2 ガスとの反応割合が増加して脱硫率が向上
する。
According to the present invention (1), since the ultrafine limestone stays in the fluidized bed, the reaction surface area of the limestone is increased by several tens of times as compared with the case where the conventional coarse limestone is used. In addition, the reaction rate of limestone with SO 2 gas increases, and the desulfurization rate improves.

【0010】流動床内における超微粒の石灰石の濃度が
流動床重量の3%を超えると、それ以上超微粒の石灰石
を流動床内に保持させることが困難となり、未反応の超
微粒の石灰石が反応しないまま系外に排出されてしまう
ことになる。従って、本発明(1)においては、超微粒
の石灰石の量を流動床重量の3%以下とした。
When the concentration of ultrafine limestone in the fluidized bed exceeds 3% of the weight of the fluidized bed, it becomes difficult to keep the ultrafine limestone in the fluidized bed further, and unreacted ultrafine limestone becomes unreacted. It will be discharged out of the system without reacting. Therefore, in the present invention (1), the amount of ultrafine limestone is set to 3% or less of the fluidized bed weight.

【0011】また、石灰石は3〜5μm の大きさの石灰
石結晶粒子の集まりから形成されており、超微粒の石灰
石はその大きさを小さくする程表面積が増大して脱硫反
応速度を増加することができるが、石灰石の粉砕技術と
経済性を考慮すると、本発明(1)においては、超微粒
の石灰石の大きさは0.1〜20μm 程度の範囲とする
のが適当であり、特に約20μm 前後とするのが最適で
ある。
Further, limestone is formed from a collection of limestone crystal particles having a size of 3 to 5 μm, and ultra-fine limestone has a surface area which increases as the size decreases, and the desulfurization reaction rate increases. However, in consideration of the limestone crushing technique and economy, in the present invention (1), the size of the ultrafine limestone is suitably in the range of about 0.1 to 20 μm, and particularly about 20 μm. It is most suitable.

【0012】本発明(2)においては、前記本発明
(1)において、加圧流動床ボイラの流動床表面と気泡
の破裂個所に空気又は酸素を噴霧して流動床から排出さ
れる微粉の未燃分を燃焼させる。前記本発明(1)にお
いては、前記したように、炉内脱硫を行うために通常低
温度(700〜900℃)での燃焼が行われるが、本発
明(2)においては、流動床表面と気泡の破裂個所に空
気又は酸素を噴霧して微粉の未燃炭素を燃焼させて流動
床表面温度を900〜1000℃に維持する。これによ
って、N2 Oを熱分解してN2 Oが効果的に低減され
る。
[0012] In the present invention (2), in the present invention (1), air or oxygen is sprayed on the fluidized bed surface of the pressurized fluidized bed boiler and the rupture point of bubbles to remove fine powder discharged from the fluidized bed. Burn the fuel. In the present invention (1), as described above, combustion at a low temperature (700 to 900 ° C.) is usually performed in order to perform in-furnace desulfurization. Air or oxygen is sprayed at the rupture points of the bubbles to burn fine unburned carbon, and the fluidized bed surface temperature is maintained at 900 to 1000 ° C. Thereby, N 2 O is thermally decomposed to effectively reduce N 2 O.

【0013】[0013]

【実施例】図1は、本発明の一実施例に用いられる加圧
流動床ボイラの縦断面図である。
FIG. 1 is a longitudinal sectional view of a pressurized fluidized-bed boiler used in one embodiment of the present invention.

【0014】図1において、流動床1は、図示しない加
圧容器の内側に設けた水冷壁2に囲まれ、分散板3上に
形成されている。流動床1とは分散板3の下方から供給
されるガスによって粒子が浮遊し、ガスにより混合攪拌
されている状態であり、その上方には粒子の存在割合が
流動床1よりも1桁以上小さくなったフリーボード4が
存在する。粗粒の石炭5は供給ノズル7から、また、粗
粒の石灰石6と超微粉石灰石6aは、供給ノズル8か
ら、それぞれ流動床1へ供給され、空気9は空気供給ノ
ズル10から風箱11を経て、分散板3の多数の小孔3
aから流動床1へ供給される。
In FIG. 1, a fluidized bed 1 is surrounded by a water cooling wall 2 provided inside a pressurized container (not shown) and formed on a dispersion plate 3. The fluidized bed 1 is a state in which particles are suspended by a gas supplied from below the dispersion plate 3 and are mixed and stirred by the gas. Above that, the existing ratio of the particles is at least one digit smaller than that of the fluidized bed 1. There is a free board 4. The coarse coal 5 is supplied from the supply nozzle 7, and the coarse limestone 6 and the ultrafine limestone 6 a are supplied from the supply nozzle 8 to the fluidized bed 1, and the air 9 is supplied from the air supply nozzle 10 to the wind box 11. Through a number of small holes 3 in the dispersion plate 3
a to the fluidized bed 1.

【0015】また、水冷壁2と流動床1内に設置された
冷却管12とは、流動床1内の反応熱を除去するため、
それぞれ、冷却水13、14が供給されている。流動床
1内の粗大粒子は、流動床1の下部から下方へ延びる排
出管15から排出される。燃焼ガスは、フリーボード4
で燃焼ガスに随伴された未燃粒子および脱硫剤粒子を重
力分級により分離した後、フリーボード4の上部に開口
する排出口16からダストを含んだ燃焼排ガス17とし
て排出される。
The water cooling wall 2 and the cooling pipe 12 installed in the fluidized bed 1 are used to remove reaction heat in the fluidized bed 1.
Cooling waters 13 and 14 are supplied, respectively. The coarse particles in the fluidized bed 1 are discharged from a discharge pipe 15 extending downward from the lower part of the fluidized bed 1. Combustion gas is free board 4
After the unburned particles and desulfurizing agent particles entrained in the combustion gas are separated by gravity classification, they are discharged as a combustion exhaust gas 17 containing dust from a discharge port 16 opened at an upper portion of the free board 4.

【0016】さらに、流動床1の上部には、複数の燃焼
用空気ノズル18が流動床1の表面に向って設置され、
流動床表面及び気泡の破裂箇所に空気(又は酸素)19
が供給されるようになっている。
Further, a plurality of combustion air nozzles 18 are provided above the fluidized bed 1 toward the surface of the fluidized bed 1.
Air (or oxygen) 19 at the fluidized bed surface and at the point where bubbles burst
Is supplied.

【0017】次に、以上に説明した加圧流動床ボイラの
運転方法の一具体例について述べる。
Next, a specific example of an operation method of the pressurized fluidized bed boiler described above will be described.

【0018】まず初めに、流動床1、フリーボード4に
空気供給ノズル10から空気9を通気し、16ata に加
圧する。例えば、2.0mm以下に粉砕・分級した粗粒の
石炭5と粒径が1.41〜0.5mmの粗粒の石灰石6を
それぞれ石炭、石灰石ノズル7、8より供給し、約1メ
ートルの高さの流動床1を形成する。流動床1の空塔速
度を0.8〜1.0m/sec 、Ca /Sのモル比を2.
0前後に調整する。また、流動床1の温度は石炭供給量
と冷却管12に通水する冷却水14の水量とにより調整
し、流動床1内を最適な脱硫温度800〜870℃の範
囲内である850℃にコントロールを行う。
First, air 9 is passed through the fluidized bed 1 and the free board 4 from the air supply nozzle 10 and pressurized to 16 ata. For example, coarse coal 5 pulverized and classified to 2.0 mm or less and coarse limestone 6 having a particle size of 1.41 to 0.5 mm are supplied from coal and limestone nozzles 7 and 8, respectively, and are supplied by approximately 1 meter. A fluidized bed 1 of height is formed. The superficial velocity of the fluidized bed 1 is 0.8 to 1.0 m / sec, and the molar ratio of Ca / S is 2.
Adjust to around 0. The temperature of the fluidized bed 1 is adjusted by the amount of coal supplied and the amount of the cooling water 14 flowing through the cooling pipe 12, and the inside of the fluidized bed 1 is set to 850 ° C., which is within the optimum desulfurization temperature of 800 to 870 ° C. Take control.

【0019】この結果、燃焼排ガス17中の亜硫酸ガス
(SO2 )、酸化窒素(NO)、亜酸化窒素(N
2 O)、濃度は、それぞれ、SO2 =64ppm (O2
6%換算)脱硫率70%、NO=39ppm (O2 −6%
換算)、N2 O=123ppm (O2−6%換算)であっ
た。
As a result, sulfur dioxide (SO 2 ), nitric oxide (NO), and nitrous oxide (N
2 O) and the concentration were SO 2 = 64 ppm (O 2
Desulfurization rate 70%, NO = 39ppm (O 2 -6%)
Equivalent), it was N 2 O = 123ppm (O 2 -6% conversion).

【0020】前記のSOx は連続SOx 計(非分散型赤
外法)またNOは連続NOx 計、さらにN2 Oはガスク
ロマトグラフィを用いて行った。
The above SO x was measured using a continuous SO x meter (non-dispersive infrared method), NO was measured using a continuous NO x meter, and N 2 O was measured using gas chromatography.

【0021】本発明の実施例では、前記の運転条件を基
に、約20μm の超微粒石灰石6aを1.41〜0.5
mmの粗粒石灰石6中に重量比で2.5%になるように調
整し石灰石供給ノズル8から流動床1に供給する。この
場合、流動床重量割合は、チャー0.2〜1%、灰分1
0〜50%、石灰石50〜90%となり、超微粒石灰石
6aは流動床総重量の3%となる。
In the embodiment of the present invention, the ultrafine limestone 6a having a thickness of about 20 .mu.
The weight is adjusted to 2.5% by weight in the coarse-grained limestone 6 mm and supplied to the fluidized bed 1 from the limestone supply nozzle 8. In this case, the weight ratio of the fluidized bed is char 0.2-1%, ash content 1
0 to 50% and limestone 50 to 90%, and the ultrafine limestone 6a accounts for 3% of the total weight of the fluidized bed.

【0022】この超微粒石灰石6aの反応表面積は著し
く大きく、SO2 ガスとの反応が充分に行われる。この
結果、排ガス17中のSO2 =64ppm (O2 −6%換
算)から38ppm (O2 −6%換算)に低減することが
できた(脱硫率83%)。
The reaction surface area of the ultrafine limestone 6a is extremely large, and the reaction with SO 2 gas is sufficiently performed. As a result, SO 2 in the exhaust gas 17 was reduced from 64 ppm (O 2 -6% conversion) to 38 ppm (O 2 -6% conversion) (desulfurization rate 83%).

【0023】一方NO及びN2 O値は変化しなかった。On the other hand, NO and N 2 O values did not change.

【0024】さらに、燃料用空気ノズル18から空気1
9を流動床1の表面及び気泡の破裂箇所に噴霧する。こ
れによって、流動床1の表面及びフリーボード4の下部
の温度は845℃から943℃に上昇し、排ガス17中
のN2 Oは24ppm 、NOは35ppm 、SO2 は36pp
m に低減することが判明した。
Further, the air 1 from the fuel air nozzle 18
9 is sprayed on the surface of the fluidized bed 1 and the rupture point of bubbles. As a result, the temperature of the surface of the fluidized bed 1 and the lower part of the free board 4 rises from 845 ° C. to 943 ° C., N 2 O in the exhaust gas 17 is 24 ppm, NO is 35 ppm, and SO 2 is 36 pp.
m.

【0025】本実施例において、以上の通り、超微粉石
灰石を流動床内に供給することは、石灰石の反応表面積
は大幅に増大し、SO2 低減手段として有効である。一
方、流動床表面及び気泡の破裂部に燃料用空気又は酸素
を噴霧して微粉の未燃炭素を燃焼させることによって、
流動床表面の温度を900℃以上に維持することがで
き、N2 Oを大幅に低減させることができる。
In the present embodiment, as described above, supplying ultrafine limestone into the fluidized bed greatly increases the reaction surface area of limestone and is effective as a means for reducing SO 2 . On the other hand, by spraying air or oxygen for fuel on the fluidized bed surface and the rupture portion of bubbles to burn fine unburned carbon,
The temperature of the fluidized bed surface can be maintained at 900 ° C. or higher, and N 2 O can be significantly reduced.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、加
圧流動床ボイラの流動床内に粗粒の石炭等の燃料、粗粒
の石灰石及び超微粒石灰石を共存させることで最適な流
動床を形成し、SO2 と反応する石灰石の反応表面積を
最大限に有効活用することが可能となり、SO2 の発生
を大幅に低減することができる。
As described above, according to the present invention, an optimum fuel such as coarse coal, coarse limestone and ultrafine limestone coexist in the fluidized bed of a pressurized fluidized bed boiler. A fluidized bed can be formed, and the reaction surface area of limestone reacting with SO 2 can be effectively used to the maximum, and generation of SO 2 can be significantly reduced.

【0027】また、さらに、流動床表面と気泡の破裂箇
所に燃焼用空気又は酸素を噴霧して流動床から排出され
る未燃炭素を燃焼させ、流動床表面に温度を900〜1
000℃に維持するという簡単な方法で、地球温室効果
および成層圏オゾン層破壊の原因物質である亜酸化窒素
(N2 O)を容易に効果的に低減することができる。
Further, combustion air or oxygen is sprayed on the surface of the fluidized bed and the rupture point of bubbles to burn unburned carbon discharged from the fluidized bed, and the temperature of the fluidized bed surface is increased to 900-1.
With a simple method of maintaining the temperature at 000 ° C., nitrous oxide (N 2 O), which is a causative substance of the global greenhouse effect and stratospheric ozone depletion, can be easily and effectively reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に用いられる加圧流動床ボイ
ラの縦断面図である。
FIG. 1 is a vertical sectional view of a pressurized fluidized-bed boiler used in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 流動床 2 水冷壁 3 分散板 3a 小孔 4 フリーボード 5 石炭 6 粗粒石灰石 6a 超微粒石灰石 7 石炭の供給ノズル 8 石灰石の供給ノズル 9 空気 10 空気供給ノズル 11 風箱 12 冷却管 13 冷却水 14 冷却水 15 排出管 16 排出口 17 燃焼排ガス 18 燃焼用空気ノズル 19 空気(又は酸素) DESCRIPTION OF SYMBOLS 1 Fluidized bed 2 Water cooling wall 3 Dispersion plate 3a Small hole 4 Free board 5 Coal 6 Coarse limestone 6a Ultrafine limestone 7 Coal supply nozzle 8 Limestone supply nozzle 9 Air 10 Air supply nozzle 11 Wind box 12 Cooling pipe 13 Cooling water 14 cooling water 15 discharge pipe 16 discharge port 17 combustion exhaust gas 18 combustion air nozzle 19 air (or oxygen)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−222304(JP,A) 特開 昭55−77605(JP,A) 特開 昭63−83507(JP,A) 実開 平2−28909(JP,U) 国際公開87/7528(WO,A1) (58)調査した分野(Int.Cl.6,DB名) F23C 11/02 301 F23C 11/02 304 F23C 11/02 310 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-222304 (JP, A) JP-A-55-77605 (JP, A) JP-A-63-83507 (JP, A) 28909 (JP, U) WO 87/7528 (WO, A1) (58) Fields investigated (Int. Cl. 6 , DB name) F23C 11/02 301 F23C 11/02 304 F23C 11/02 310

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加圧流動床ボイラの流動床を形成してい
る粗粒の石炭と粗粒の石灰石中に流動床重量の3%以下
の超微粒の石灰石を供給して炉内脱硫を行わせることを
特徴とする加圧流動床ボイラの炉内脱硫方法。
An in-furnace desulfurization is performed by supplying ultra-fine limestone of 3% or less of the weight of a fluidized bed into coarse coal and coarse limestone forming a fluidized bed of a pressurized fluidized bed boiler. A desulfurization method in a furnace of a pressurized fluidized-bed boiler, characterized in that:
【請求項2】 請求項1に記載の加圧流動床ボイラの炉
内脱硫方法において、加圧流動床ボイラの流動床表面と
気泡の破裂個所に空気又は酸素を噴霧して流動床から排
出される微粉の未燃炭素を燃焼させ、流動床表面温度を
900℃〜1000℃に制御して亜酸化窒素を熱分解し
て除去することを特徴とする加圧流動床ボイラの炉内脱
硫脱硝方法。
2. The method for desulfurizing a pressurized fluidized-bed boiler in a furnace according to claim 1, wherein air or oxygen is sprayed onto the fluidized-bed surface of the pressurized fluidized-bed boiler and a rupture point of bubbles to be discharged from the fluidized bed. Denitrification in a furnace of a pressurized fluidized-bed boiler, comprising burning unburned carbon of fine powder, controlling the fluidized bed surface temperature to 900 ° C. to 1000 ° C., and thermally decomposing and removing nitrous oxide. .
JP4313310A 1992-11-24 1992-11-24 Furnace desulfurization and denitration method for pressurized fluidized bed boiler Expired - Fee Related JP2994887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4313310A JP2994887B2 (en) 1992-11-24 1992-11-24 Furnace desulfurization and denitration method for pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313310A JP2994887B2 (en) 1992-11-24 1992-11-24 Furnace desulfurization and denitration method for pressurized fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH06159614A JPH06159614A (en) 1994-06-07
JP2994887B2 true JP2994887B2 (en) 1999-12-27

Family

ID=18039685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313310A Expired - Fee Related JP2994887B2 (en) 1992-11-24 1992-11-24 Furnace desulfurization and denitration method for pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP2994887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178195B (en) * 2022-07-12 2023-07-07 中国石油大学(华东) Pressurized bubbling fluidized bed cold die experimental device

Also Published As

Publication number Publication date
JPH06159614A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
RU2123637C1 (en) Boiler with pressure inner circulating fluidized layer, electric generating system and furnace with fluidized bed
CN101653682A (en) Boiler-rear flue gas desulphurization and synergism device of circulating fluid bed boiler and desulphurization and synergism method
US4843981A (en) Fines recirculating fluid bed combustor method and apparatus
CN202884903U (en) Biomass circulating fluidized bed combustion equipment with low nitrogen oxide emission
CN105387453A (en) Grate-fired furnace with smoke recycling and superfine coal dust reburning and burning technology of grate-fired furnace
CN103041686A (en) NOx removing device and method by means of exhaust gas recycle and ammonia agent spray
CN106731585A (en) A kind of coke oven flue gas dry-type desulphurization device, the dust removal integrated system and method for coke oven flue gas dry type desulfurizing
WO1999023431A1 (en) Fluidized bed gasification combustion furnace
EP0431163B1 (en) Composite circulation fluidized bed boiler
CN101280920B (en) Fluidization-suspension combined combustion boiler
CA1271945A (en) Fines recirculating fluid bed combustor method and apparatus
CN104759204B (en) The associating demercuration dearsenization device of a kind of boiler smoke and removal methods thereof
US20020174646A1 (en) Zero NOx gaseous passivation process
CN101910724B (en) Burner and method for implementing an oxycombustion
CN203043834U (en) Device for removing NOx through smoke recycling and ammonia agent jetting
JP2994887B2 (en) Furnace desulfurization and denitration method for pressurized fluidized bed boiler
JP3504324B2 (en) Pressurized internal circulation type fluidized bed boiler
CN1566749A (en) Method of fluidizing wind at high pressure using steam to replace air
CN205909309U (en) Burn oxygen boosting low NOx burner of HPF desulfurization process result sulphur foam
KR101594799B1 (en) Ash Separation Apparatus and Solid Fuel Chemical Looping Combustor Using This
Shang An overview of fluidized-bed combustion boilers
CN111102566A (en) Clean power generation method by blending and burning coal slime in large circulating fluidized bed boiler
CN111102564A (en) Clean power generation method for mixed-burning coal slime based on bed temperature and bed pressure control
Chowdhury Emission control alternatives for electric utility power plants
JP2726742B2 (en) Operating method of fluidized bed combustion device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990922

LAPS Cancellation because of no payment of annual fees