JP2983318B2 - Shape measuring device and measuring method - Google Patents

Shape measuring device and measuring method

Info

Publication number
JP2983318B2
JP2983318B2 JP3066478A JP6647891A JP2983318B2 JP 2983318 B2 JP2983318 B2 JP 2983318B2 JP 3066478 A JP3066478 A JP 3066478A JP 6647891 A JP6647891 A JP 6647891A JP 2983318 B2 JP2983318 B2 JP 2983318B2
Authority
JP
Japan
Prior art keywords
optical system
light
measured
reflected
light component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3066478A
Other languages
Japanese (ja)
Other versions
JPH04301509A (en
Inventor
真下寛治
北林秀也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUNMAKEN
Original Assignee
GUNMAKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUNMAKEN filed Critical GUNMAKEN
Priority to JP3066478A priority Critical patent/JP2983318B2/en
Publication of JPH04301509A publication Critical patent/JPH04301509A/en
Application granted granted Critical
Publication of JP2983318B2 publication Critical patent/JP2983318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、三角測量法の原理を利
用して、プラスチックや軟質金属などから成る被測定物
の表面形状を高精度に測定できるようにした形状測定装
置と形状測定法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring apparatus and a shape measuring method capable of measuring the surface shape of an object to be measured made of plastic, soft metal or the like with high accuracy by utilizing the principle of triangulation. About.

【0002】[0002]

【従来の技術】物体の形状を測定する方法として、接触
式と非接触式とが知られるが、接触式は測定子の接触圧
による被測定物の変形によって正確な測定ができないこ
とがあるばかりでなく、被測定物を傷つけるなどの欠点
がある。このため、光学原理に基づく非接触式の測定方
式が重要性を増しつつある。その種の測定法は格子投影
法と光触針法とに大別され、このうち光触針法として三
角測量法、焦点位置合わせ法、同軸線形変位法などが知
られる。
2. Description of the Related Art As a method for measuring the shape of an object, a contact type and a non-contact type are known. However, the contact type is often unable to perform accurate measurement due to deformation of an object to be measured due to a contact pressure of a probe. In addition, there are drawbacks such as damaging the object to be measured. For this reason, a non-contact measurement method based on the optical principle is becoming increasingly important. Such measurement methods are broadly classified into a grid projection method and an optical stylus method. Among them, a triangulation method, a focus alignment method, a coaxial linear displacement method and the like are known as the optical stylus method.

【0003】ここで、三角測量法による測定例を図9〜
図12により説明する。図中、30は同測定に用いる形
状測定装置であり、その装置本体31の一方には半導体
レーザ等で成るレーザ光源13と、このレーザ光源13
から放射された出射光12を集光するレンズ16とが配
置されて照射光学系10を形成している。又、装置本体
31の他方には、電荷結合素子等で成る検出部26と、
この検出部26への入射光22を集束するためのレンズ
23とが配置され、そのレンズ23の光軸21が照射光
学系10の光軸11と角度θを有して偏角するような収
束光学系20を形成している。
[0003] Here, examples of measurement by the triangulation method are shown in FIGS.
This will be described with reference to FIG. In the figure, reference numeral 30 denotes a shape measuring device used for the measurement, and a laser light source 13 made of a semiconductor laser or the like and a laser light source 13
An illumination optical system 10 is formed by arranging a lens 16 for condensing outgoing light 12 radiated from the lens. Further, on the other side of the device main body 31, a detection unit 26 formed of a charge-coupled device or the like,
A lens 23 for converging the light 22 incident on the detection unit 26 is arranged, and the convergence is such that the optical axis 21 of the lens 23 is deflected at an angle θ with the optical axis 11 of the irradiation optical system 10. An optical system 20 is formed.

【0004】なお、照射光学系10の延長上には被測定
物35が置かれ、その被測定物35が図示せぬ移動機構
によって紙面の直角方向と左右方向とに移動可能とされ
ている。そして、照射光学系の光軸11と被測定物35
の表面との交点を測定点Pとして、その測定点Pにレン
ズ16で集光された出射光12が照射光40として焦点
が合うよう照射されるようになっている。特に、照射光
40は被測定物35の表面で反射されるが、その反射光
45には入射角と同角度で反射する正反射光47と任意
方向に散乱する散乱光46とが含まれる。
An object 35 to be measured is placed on an extension of the irradiation optical system 10, and the object 35 can be moved in a direction perpendicular to the plane of the paper and in a horizontal direction by a moving mechanism (not shown). Then, the optical axis 11 of the irradiation optical system and the DUT 35 are measured.
The point of intersection with the surface is set as a measurement point P, and the emitted light 12 condensed by the lens 16 at the measurement point P is radiated so as to be focused as irradiation light 40. In particular, the irradiation light 40 is reflected on the surface of the object 35, and the reflected light 45 includes specularly reflected light 47 reflected at the same angle as the incident angle and scattered light 46 scattered in an arbitrary direction.

【0005】ここで、照射光学系10の光軸11と測定
点Pにおける接線Hとが成す角α1が、図9のようにα
1=π/2(π=90゜)であるとき、正反射光47は
入射方向へ帰還されるが、散乱光46の一部はレンズ2
3を介して検出部26における検出点Qに集束される。
このとき、検出部26における検出点Qを基準位置と成
し、被測定物35の測定点Pと形状測定装置30との間
隔が初期規定されることになる。
Here, the angle α1 formed by the optical axis 11 of the irradiation optical system 10 and the tangent H at the measurement point P is αα as shown in FIG.
When 1 = π / 2 (π = 90 °), the specularly reflected light 47 is returned in the incident direction, but a part of the scattered light 46 is
The light is converged on the detection point Q in the detection unit 26 via 3.
At this time, the detection point Q in the detection unit 26 is a reference position, and the distance between the measurement point P of the DUT 35 and the shape measuring device 30 is initially defined.

【0006】そして、被測定物35が図9の矢印の如く
変位量Zだけ移動されると、その変位量Zに相応した位
置に被測定物35の測定点P´が変位されることによ
り、その測定点P´にて反射される反射光のうち、照射
光学系10の照射光軸11に対して角度θ´だけ偏角さ
れた収束光学系20の光軸21´に沿う散乱光成分がレ
ンズ23を介して検出部26の検出点Q´に集束され
る。
When the object 35 is moved by a displacement Z as shown by an arrow in FIG. 9, the measuring point P 'of the object 35 is displaced to a position corresponding to the displacement Z. Of the reflected light reflected at the measurement point P ′, a scattered light component along the optical axis 21 ′ of the converging optical system 20 deflected by an angle θ ′ with respect to the irradiation optical axis 11 of the irradiation optical system 10 is The light is focused on the detection point Q ′ of the detection unit 26 via the lens 23.

【0007】なお、その検出点Q´は、検出部26にお
ける検出点Qよりも検出量Sだけ変位した部位に集束さ
れるため、その検出量Sに対する三角比から検出点Qを
基準とする被測定点Pと、検出点Q´による被測定点P
´とを勘案して変位量Zを検知することができる。
Since the detection point Q 'is focused on a portion displaced by the detection amount S from the detection point Q in the detection section 26, the detection point Q' based on the detection point Q is determined from the triangular ratio with respect to the detection amount S. Measurement point P and measured point P by detection point Q '
', The displacement Z can be detected.

【0008】一方、図10に示すように、被測定物35
の測定点Paにおける接線Haが照射光学系10から収
束光学系20にかけて正の傾斜を有するようなとき、す
なわちα2>π/2なる関係の場合、正反射光47aは
照射光学系10よりも外方に反射されることになるが、
図11に示すように、被測定物35の測定点Pbにおけ
る接線Hbが照射光学系10から収束光学系20にかけ
て負の傾斜を有するようなとき、すなわちα3<π/2
なる関係の場合、測定点Pbにおける正反射光47b
が、収束光学系20の光軸21に沿う散乱光46bと略
同一方向に反射され、これがレンズ23を介して検出部
26の正反射結像点Rに結像されることがある。
On the other hand, as shown in FIG.
When the tangent line Ha at the measurement point Pa has a positive slope from the irradiation optical system 10 to the converging optical system 20, that is, in a relationship of α2> π / 2, the specularly reflected light 47a is out of the irradiation optical system 10. Will be reflected towards
As shown in FIG. 11, when the tangent line Hb at the measurement point Pb of the DUT 35 has a negative slope from the irradiation optical system 10 to the converging optical system 20, that is, α3 <π / 2.
In the case of the following relationship, the regular reflection light 47b at the measurement point Pb
Is reflected in substantially the same direction as the scattered light 46 b along the optical axis 21 of the converging optical system 20, and this may be imaged at the regular reflection image point R of the detection unit 26 via the lens 23.

【0009】又、図12に示すように、形状測定装置3
0において、45゜以上の急斜面であるシャドウ部36
をもつ被測定物35´の測定点Pcに、照射光学系10
による照射光40を照射した場合には、照射光学系10
の光軸11と収束光学系20の光軸21とが角度θを有
して偏角されることによって、シャドウ部36で反射光
が遮断されるシャドウ効果を発生することになる。
Further, as shown in FIG.
At 0, the shadow portion 36 is a steep slope of 45 ° or more.
The irradiation optical system 10 is placed at the measurement point Pc of the DUT 35 ′ having
When the irradiation light 40 is irradiated by the irradiation optical system 10
And the optical axis 21 of the converging optical system 20 are deflected with an angle θ, thereby generating a shadow effect in which reflected light is blocked by the shadow section 36.

【0010】[0010]

【発明が解決しようとする課題】このように、三角測量
法の原理を利用した従来の形状測定装置によれば、図1
1のように照射光学系の光軸と被測定物の測定点におけ
る接線Hとの成す角度α3がα3<π/2なる関係の場
合、正反射光成分が検出部に散乱光成分とともに集束さ
れて正反射結像点Rを形成し、その結像点Rが散乱光成
分の検出点Qに対して誤差量Mを発生するため、被測定
物の形状を正確に測定することができないという欠点が
あった。
As described above, according to the conventional shape measuring apparatus utilizing the principle of the triangulation method, FIG.
When the angle α3 between the optical axis of the irradiation optical system and the tangent line H at the measurement point of the object to be measured has a relationship of α3 <π / 2, as in 1, the specular reflected light component is focused on the detection unit together with the scattered light component. The point that the shape of the object to be measured cannot be measured accurately because the image forming point R generates an error amount M with respect to the detection point Q of the scattered light component. was there.

【0011】又、図12のように、収束光学系の光軸に
対して被測定物の測定部が急傾斜を有してシャドウ部に
位置する場合には、シャドウ効果が発現して測定不能に
なるという欠点があった。
Further, as shown in FIG. 12, when the measuring part of the object to be measured is located in the shadow part with a steep inclination with respect to the optical axis of the converging optical system, the shadow effect appears and measurement becomes impossible. Had the disadvantage of becoming

【0012】一方、変調格子縞位相法やモアレトポグラ
ッフィ法等の格子投影法により被測定物の表面形状を測
定する場合には、被測定物の表面に格子縞等を投影して
その画像処理をしなければならないため、その処理機構
が煩雑になるという欠点がある。
On the other hand, when measuring the surface shape of an object to be measured by a grating projection method such as a modulation grating fringe phase method or a moire topography method, the image processing is performed by projecting a lattice fringe or the like onto the surface of the object to be measured. Therefore, there is a disadvantage that the processing mechanism becomes complicated.

【0013】そこで、本発明は三角測量法の原理を利用
して、被測定物の表面形状を広範に亙って精度良く高速
で測定することのできる形状測定装置と形状測定法を提
供することを目的とする。
Accordingly, the present invention provides a shape measuring device and a shape measuring method capable of measuring the surface shape of an object to be measured over a wide range with high accuracy at high speed by utilizing the principle of triangulation. With the goal.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するため、被測定物に対して直線偏光を照射する照射光
学系と、被測定物から入射方向と異なる方向へ反射した
反射光のうち散乱光成分を検出する検出部と、この検出
部に散乱光成分を導くための収束光学系とを含み、その
収束光学系が被測定物からの反射光を正反射光成分と散
乱光成分とに分光して該散乱光成分のみ前記検出部へ入
射させる偏光素子を有して成ることを特徴とする形状測
定装置を提供するものである。
In order to achieve the above object, the present invention provides an irradiation optical system for irradiating a linearly polarized light to an object to be measured, and an optical system for reflecting reflected light from the object to be measured in a direction different from the incident direction. And a converging optical system for guiding the scattered light component to the detecting unit. The converging optical system converts the reflected light from the object to be measured into a specular reflected light component and a scattered light component. And a polarizing element that separates the light into the scattered light component and makes the scattered light component incident on the detection unit.

【0015】特に、本発明は照射光学系の光軸の周囲
に、複数の収束光学系を設けた形状測定装置を提供す
る。
In particular, the present invention provides a shape measuring apparatus provided with a plurality of converging optical systems around the optical axis of an irradiation optical system.

【0016】又、本発明は光源より放射されるレーザ光
を集束しながら所定方向に振動する直線偏光として被測
定物に照射し、その被測定物から入射方向と異なる方向
へ反射する反射光をレンズで集束するとともに、その反
射光を偏光素子に通して正反射光成分と散乱光成分とに
分光し、このうち散乱光成分のみ検出部に入射させて被
測定物の表面形状を測定するようにしたことを特徴とす
る形状測定法を提供するものである。
Further, the present invention irradiates an object to be measured as linearly polarized light oscillating in a predetermined direction while converging laser light emitted from a light source, and reflects reflected light reflected from the object in a direction different from the incident direction. While converging with a lens, the reflected light is passed through a polarizing element to be separated into a specularly reflected light component and a scattered light component, and only the scattered light component is incident on the detection unit to measure the surface shape of the object to be measured. The present invention provides a shape measuring method characterized by the following.

【0017】[0017]

【作用】本発明によれば、被測定物からの反射光を偏光
素子を介して正反射光成分と散乱光成分とに分け、散乱
光成分を被測定物の形状測定に供するようにしているこ
とから、三角測量法の欠点とされる正反射光の影響によ
る検出誤差を解消することができる。
According to the present invention, reflected light from an object to be measured is divided into a specular reflection component and a scattered light component via a polarizing element, and the scattered light component is used for measuring the shape of the object to be measured. Therefore, it is possible to eliminate a detection error due to the effect of specular reflection light, which is a disadvantage of the triangulation method.

【0018】又、照射光学系の光軸の周囲に、複数の収
束光学系を配設したことにより、測定部が急傾斜を有し
て一つの収束光学系が反射光の死角(シャドウ位置)に
あっても、他の収束光学系により被測定物の形状測定を
行うことが可能となることから、三角測量法において発
現するシャドウ効果を解消することができる。
Further, since a plurality of converging optical systems are provided around the optical axis of the irradiation optical system, the measuring section has a steep inclination, and one converging optical system is used as a blind spot (shadow position) of reflected light. However, since the shape of the object to be measured can be measured by another converging optical system, the shadow effect that appears in the triangulation method can be eliminated.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。先ず、図1及び図2において、本発明に係
る形状測定装置の一例を説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, an example of a shape measuring apparatus according to the present invention will be described with reference to FIGS.

【0020】図示するように、本例の形状測定装置70
は、装置本体71の一方に設けられる照射光学系50
と、装置本体71の他方に設けられる収束光学系60と
を備える。このうち、照射光学系50は半導体レーザな
どで成るレーザ光源53をもち、その前方には該レーザ
光源53より放射された出射光52を集光するレンズ5
4と、その出射光52を振動方向が互いに直交する直線
偏光としてのP波82とS波81とに分けるための偏光
面55aをもった偏光素子(偏光ビームスプリッタ5
5)が設置される。又、照射光学系50には、偏光面5
5aを透過するP波82を除き、S波81を被測定物7
5に集光しつつ照射するレンズ56が設けられる。
As shown, the shape measuring device 70 of the present embodiment is
Is the irradiation optical system 50 provided on one side of the apparatus main body 71.
And a converging optical system 60 provided on the other side of the apparatus main body 71. Among them, the irradiation optical system 50 has a laser light source 53 composed of a semiconductor laser or the like, and a lens 5 for condensing outgoing light 52 emitted from the laser light source 53 in front of it.
4 and a polarization element (a polarization beam splitter 5) having a polarization surface 55a for dividing the emitted light 52 into a P wave 82 and an S wave 81 as linearly polarized light whose vibration directions are orthogonal to each other.
5) is installed. The irradiation optical system 50 has a polarization plane 5.
Except for the P-wave 82 that passes through 5a, the S-wave 81 is
5 is provided with a lens 56 for irradiating light while condensing the light.

【0021】一方、収束光学系60は、被測定物75で
反射された反射光85を入射させるためのレンズ63を
備える。特に、そのレンズ63は照射光学系50のレン
ズ56が成す光軸51に対して所定の偏角θを成す光軸
61を形成する。又、収束光学系60には、その光軸6
1に沿って反射光85を散乱光成分86aと正反射光成
分87aとに分ける偏光面65aをもった偏光素子(偏
光ビームスプリッタ65)が設けられる。特に、その偏
光ビームスプリッタ65は、反射光85に含まれる散乱
光86と正反射光87のうち、散乱光86を散乱光成分
86aとして透過する一方、正反射光87をその進行方
向に対して直角方向に向きを変えることができる。つま
り、正反射光87はS波の性質を維持していることから
偏光面65aで屈折され、正反射光成分87aとして除
去されることになる。更に、収束光学系60には、偏光
ビームスプリッタ65を透過した散乱光成分86aを検
出する電荷結合素子等で成る検出部66が設けられる。
そして、その検出部66は散乱光成分86aを入射光6
2として受光し、その受光部を検出点Qとして検知でき
るようになっている。なお、収束光学系60におけるレ
ンズ63と偏光ビームスプリッタ65とは、光軸61に
対して配置順位が逆さであっても一向に構わない。
On the other hand, the converging optical system 60 is provided with a lens 63 for allowing the reflected light 85 reflected by the object 75 to enter. In particular, the lens 63 forms an optical axis 61 having a predetermined declination θ with respect to the optical axis 51 formed by the lens 56 of the irradiation optical system 50. The converging optical system 60 has its optical axis 6
A polarization element (polarization beam splitter 65) having a polarization plane 65a that divides the reflected light 85 into a scattered light component 86a and a regular reflected light component 87a along 1 is provided. In particular, the polarizing beam splitter 65 transmits the scattered light 86 as a scattered light component 86a among the scattered light 86 and the specularly reflected light 87 included in the reflected light 85, and transmits the specularly reflected light 87 in the traveling direction. Can be turned at right angles. That is, since the specular reflection light 87 maintains the property of the S wave, it is refracted by the polarization surface 65a and is removed as the specular reflection light component 87a. Further, the converging optical system 60 is provided with a detection unit 66 including a charge-coupled device for detecting the scattered light component 86a transmitted through the polarization beam splitter 65.
Then, the detection unit 66 converts the scattered light component 86a into the incident light 6
2, and the light receiving portion can be detected as a detection point Q. The lens 63 and the polarization beam splitter 65 in the converging optical system 60 may be arranged in one direction even if the arrangement order is reversed with respect to the optical axis 61.

【0022】ここで、上記のように構成される形状測定
装置70による被測定物75の形状測定法を説明する。
なお、被測定物75、又は形状測定装置70は、図1、
2において図示せぬ移動機構により紙面の直角方向と左
右方向とに移動可能とされている。
Here, a method of measuring the shape of the workpiece 75 by the shape measuring device 70 configured as described above will be described.
In addition, the measured object 75 or the shape measuring device 70 is the same as that shown in FIG.
2, a moving mechanism (not shown) is capable of moving in a direction perpendicular to the plane of the paper and in a left-right direction.

【0023】先ず、レーザ光源53より放射された出射
光52は、レンズ54により集光された後、偏光ビーム
スプリッタ55に入射される。出射光52はその進行方
向に直角なあらゆる方向に振動する成分を有するも、偏
光ビームスプリッタ55により完全に偏光している光
(直線偏光)とされる。特に、その出射光52は偏光面
55aにより屈折されるS波81と、偏光面55aを透
過するP波82に分光される。このうち、直線偏光とし
てのS波81はレンズ56により集光され、そして照射
光80として被測定物75の測定点Pに焦点を合わせて
照射される。
First, the outgoing light 52 emitted from the laser light source 53 is condensed by a lens 54 and then enters a polarizing beam splitter 55. The outgoing light 52 has a component that oscillates in any direction perpendicular to the traveling direction, but is converted into a completely polarized light (linearly polarized light) by the polarization beam splitter 55. In particular, the emitted light 52 is split into an S wave 81 refracted by the polarization plane 55a and a P wave 82 transmitted through the polarization plane 55a. Among them, the S-wave 81 as linearly polarized light is condensed by the lens 56, and is irradiated as the irradiation light 80 while focusing on the measurement point P of the object 75.

【0024】ここで、図2のように、照射光学系50の
光軸51と被測定物75の測定点Pにおける接線Hとの
成す角α1が、α1=π/2なる関係にあるとき、測定
点Pにおける反射光85のうち、正反射光87は光軸5
1に沿う方向に反射され、偏光ビームスプリッタ55へ
と帰還される。なお、正反射光87が偏光ビームスプリ
ッタ55へ帰還されても、光の波動性より出射光52と
の間に可干渉性が発現するに留まり、各々の進行方向及
び各成分等に影響することはない。
Here, as shown in FIG. 2, when the angle α1 formed between the optical axis 51 of the irradiation optical system 50 and the tangent H at the measurement point P of the object 75 has a relationship of α1 = π / 2, Of the reflected light 85 at the measurement point P, the regular reflected light 87 is the optical axis 5
The light is reflected in the direction along 1 and is returned to the polarization beam splitter 55. Even if the specularly reflected light 87 is returned to the polarization beam splitter 55, coherence between the reflected light 87 and the outgoing light 52 is only manifested due to the wave nature of the light, which affects each traveling direction and each component. There is no.

【0025】又、測定点Pにおける反射光85のうち、
収束光学系60の光軸61に沿う方向へ反射された散乱
光86は、レンズ63を介して集束されつつ偏光ビーム
スプリッタ65に入射され、その偏光面65aを透過し
た散乱光成分86aが入射光62として検出部66にお
ける検出点Qに集束される。そして、このとき検出部6
6による検出点Qを基準位置と成し、被測定物75の測
定点Pと形状測定装置70との間隔を初期規定するので
ある。
In the reflected light 85 at the measuring point P,
The scattered light 86 reflected in the direction along the optical axis 61 of the converging optical system 60 is incident on the polarization beam splitter 65 while being focused through the lens 63, and the scattered light component 86a transmitted through the polarization plane 65a is converted into the incident light. As 62, the light is focused on the detection point Q in the detection unit 66. At this time, the detecting unit 6
The detection point Q by 6 is used as a reference position, and the distance between the measurement point P of the measured object 75 and the shape measuring device 70 is initially defined.

【0026】その後、被測定物75が図示せぬ移動機構
により、図2の矢印の如く変位量Zだけ移動されると、
測定点Pが変位量Zに相応した位置である測定点P´に
変位される。この結果、照射光80が測定点P´にて反
射され、その光軸51に対して角度θ´だけ偏角された
光軸61´方向に散乱する散乱光成分がレンズ63と偏
光ビームスプリッタ65を介して検出部66の検出点Q
´に集束されることになる。そして、その検出点Q´
は、検出部66における検出点Qよりも検出量Sだけ変
位した部位に集束されるため、その検出量Sに対する三
角比から検出点Qを基準とする測定点Pと検出点Q´に
よる測定点P´とを勘案して変位量Zを検知することが
できる。
Thereafter, when the object 75 is moved by a displacement Z as shown by an arrow in FIG.
The measurement point P is displaced to a measurement point P 'which is a position corresponding to the displacement Z. As a result, the illuminating light 80 is reflected at the measurement point P ′, and the scattered light component scattered in the direction of the optical axis 61 ′ deviated by an angle θ ′ with respect to the optical axis 51 becomes the lens 63 and the polarizing beam splitter 65. Through the detection point Q of the detection unit 66
′. Then, the detection point Q '
Is focused on a part displaced by the detection amount S from the detection point Q in the detection unit 66, and therefore, a measurement point P based on the detection point Q and a measurement point The displacement amount Z can be detected in consideration of P ′.

【0027】一方、図1のように、照射光学系50の光
軸51と被測定物75の測定点Pにおける接線Hとの成
す角α1が、α1<π/2なる関係にあって、正反射光
87が収束光学系60の光軸61に沿う散乱光86と略
同一方向に反射されるとき、その正反射光87はS波の
性質を維持しているので偏光ビームスプリッタ65の偏
光面65aにより屈折され、光軸61の直角方向へ正反
射光成分87aとして反射されることになる。
On the other hand, as shown in FIG. 1, the angle α1 between the optical axis 51 of the irradiation optical system 50 and the tangent H at the measurement point P of the object 75 has a relationship of α1 <π / 2. When the reflected light 87 is reflected in substantially the same direction as the scattered light 86 along the optical axis 61 of the converging optical system 60, the specular reflected light 87 maintains the property of the S-wave, so that the polarization plane of the polarizing beam splitter 65 The light is refracted by 65a and is reflected as a regular reflection light component 87a in a direction perpendicular to the optical axis 61.

【0028】なお、被測定物75の測定点Pにおける接
線Hが照射光学系50から収束光学系60にかけて正の
傾斜を有するとき、すなわち照射光学系50の光軸51
と被測定物75の測定点Pにおける接線Hとの成す角α
1が、α1>π/2なる関係にあるとき、正反射光87
は照射光学系50より外方に反射されることになる。
When the tangent H at the measurement point P of the object 75 has a positive slope from the irradiation optical system 50 to the converging optical system 60, that is, the optical axis 51 of the irradiation optical system 50
Α between the tangent H at the measurement point P of the object 75 and the measurement point P
1 has a relationship of α1> π / 2, the regular reflection light 87
Is reflected outward from the irradiation optical system 50.

【0029】このように、本例の形状測定装置70によ
れば、照射光学系50において、レーザ光源53より放
射された出射光52を偏光ビームスプリッタ55を介し
てS波81とP波82に分け、このうちS波81を照射
光80として被測定物75に照射する一方、収束光学系
60において、被測定物75からの反射光85を偏光ビ
ームスプリッタ65を介して正反射光成分87a(S
波)と散乱光成分86aとに分け、このうち検出部66
の検出点Qに散乱光成分86aを集束するようにしたた
め、三角測量法の欠点とされる正反射光87の影響によ
る検出部66での誤差量を解消することができる。
As described above, according to the shape measuring apparatus 70 of the present embodiment, in the irradiation optical system 50, the outgoing light 52 emitted from the laser light source 53 is converted into the S-wave 81 and the P-wave 82 via the polarization beam splitter 55. While the S-wave 81 is irradiated on the object 75 as the irradiation light 80, the reflected light 85 from the object 75 is reflected by the converging optical system 60 via the polarizing beam splitter 65 into a regular reflection light component 87 a ( S
Wave) and a scattered light component 86a.
Since the scattered light component 86a is focused on the detection point Q, the error amount in the detection unit 66 due to the influence of the specularly reflected light 87, which is a drawback of the triangulation method, can be eliminated.

【0030】ここで、形状測定装置70を使用し、被測
定物75として直径4mmの略真球なる鋼球を測定した
結果を図3及び図4に示す。なお、図3は横軸を鋼球の
直径とし、縦軸に鋼球の高さをとって図示したものであ
る。又、図4は測定値が鋼球の真理形状から偏差した度
合いを2倍にして±50μmの偏差範囲と併せて図示し
たものである。そして、この測定結果から本実施例の形
状測定装置70を使用して以上のような鋼球の表面形状
を測定した場合、偏差が±50μm以内の精度を有する
ことが判る。
FIGS. 3 and 4 show the results of using a shape measuring device 70 to measure a steel ball having a diameter of about 4 mm, which is a true sphere, as the object 75 to be measured. In FIG. 3, the horizontal axis represents the diameter of the steel ball, and the vertical axis represents the height of the steel ball. FIG. 4 is a graph showing the degree of deviation of the measured value from the true shape of the steel ball by a factor of two, together with a deviation range of ± 50 μm. From the measurement results, it can be seen that when the surface shape of the steel ball as described above is measured using the shape measuring device 70 of the present embodiment, the deviation has an accuracy within ± 50 μm.

【0031】次に、本発明に係る形状測定装置の他の実
施例を説明する。なお、以下の説明において、上記例と
同一の箇所、及び同一の機能を有する部位には同一符号
を付して詳細な説明を省略する。先ず、図5に示す形状
測定装置90は、先の実施例と同一構成とした照射光学
系95の左右に、2つの収束光学系91,92を設けた
例である。
Next, another embodiment of the shape measuring apparatus according to the present invention will be described. In the following description, the same portions as those in the above example and portions having the same functions are denoted by the same reference numerals, and detailed description thereof will be omitted. First, a shape measuring apparatus 90 shown in FIG. 5 is an example in which two converging optical systems 91 and 92 are provided on the left and right of an irradiation optical system 95 having the same configuration as the previous embodiment.

【0032】そして、本例の形状測定装置90によれ
ば、照射光学系95からの照射光が照射される被測定物
75´の測定点Pの傾斜が略45゜以上の急斜面である
場合、収束光学系92では被測定点Pがシャドウ部76
となって形状測定を行うことができないが、他方側に配
置された収束光学系91により測定点Pの形状を計測す
ることが可能となり、シャドウ部76によるシャドウ効
果を解消することができる。
According to the shape measuring apparatus 90 of the present embodiment, when the inclination of the measuring point P of the object 75 ′ to be irradiated with the irradiation light from the irradiation optical system 95 is a steep slope of about 45 ° or more, In the converging optical system 92, the measured point P is
Therefore, the shape measurement cannot be performed, but the shape of the measurement point P can be measured by the converging optical system 91 arranged on the other side, and the shadow effect by the shadow unit 76 can be eliminated.

【0033】なお、図5には収束光学系91,92が二
次元的に配設された状態が示されるが、それらを照射光
軸の周囲に任意の偏角を有して三次元的に配設するよう
にしてもよい。又、本例の形状測定装置90によれば2
つの収束光学系を配設しているが、これを3つ以上にし
ても構わない。
FIG. 5 shows a state in which the converging optical systems 91 and 92 are two-dimensionally arranged. The converging optical systems 91 and 92 are three-dimensionally arranged at an arbitrary angle around the irradiation optical axis. It may be arranged. Further, according to the shape measuring apparatus 90 of this example, 2
Although two converging optical systems are provided, three or more converging optical systems may be provided.

【0034】次に、図6に示す形状測定装置100は、
照射光学系101の偏光ビームスプリッタ55により、
レーザ光源53から放射された出射光52のP波82を
透過させるとともにS波81を反射させ、このうちP波
82を被測定物75の形状測定に適用する構成とした例
である。そして、本例に係る形状測定装置100によれ
ば、収束光学系102の光軸61上に、反射光85のう
ちの正反射光87を正反射光成分87bとして透過する
一方、散乱光86を散乱光成分86bとして屈折する偏
光面106aをもった偏光ビームスプリッタ106が設
置される。
Next, the shape measuring apparatus 100 shown in FIG.
The polarization beam splitter 55 of the irradiation optical system 101
This is an example in which the P-wave 82 of the emitted light 52 emitted from the laser light source 53 is transmitted and the S-wave 81 is reflected, and the P-wave 82 is applied to shape measurement of the DUT 75. Then, according to the shape measuring apparatus 100 according to the present example, the specularly reflected light 87 of the reflected light 85 is transmitted as the specularly reflected light component 87b on the optical axis 61 of the converging optical system 102, while the scattered light 86 is transmitted. A polarization beam splitter 106 having a polarization plane 106a that refracts as the scattered light component 86b is provided.

【0035】又、図7に示す形状測定装置110は、照
射光学系111の光源113に予め直線偏光を発生する
ものを使用した例であり、これによれば照射光学系11
1の光軸51上から偏光ビームスプリッタ55を排除す
ることができる。
The shape measuring apparatus 110 shown in FIG. 7 is an example in which a light source 113 of the irradiation optical system 111 which generates linearly polarized light is used in advance.
The polarization beam splitter 55 can be eliminated from the one optical axis 51.

【0036】更に、図8に示す形状測定装置120は、
収束光学系122における光軸61の被測定物75側に
P波成分とS波成分との変換を行う1/2波長板124
を設置した例である。そして、本例によれば、被測定物
75において反射される波成分と光軸61上における偏
光ビームスプリッタ65の以降で検出される波成分とを
相違させている。
Further, the shape measuring device 120 shown in FIG.
A half-wave plate 124 that converts between a P-wave component and an S-wave component on the object to be measured 75 side of the optical axis 61 in the converging optical system 122.
This is an example in which is installed. Then, according to this example, the wave component reflected by the device under test 75 is different from the wave component detected on the optical axis 61 after the polarization beam splitter 65.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば照射光学系より被測定物に対して所定方向に振
動する直線偏光を照射し、被測定物から収束光学系に反
射する反射光を偏光素子に通して正反射光成分と散乱光
成分とに分け、正反射光成分を除外する一方、散乱光成
分を検出部に入射させて被測定物の形状測定に用いるよ
うにしたことから、三角測量法の欠点とされる正反射光
の影響による検出部での誤差量を解消し、被測定物の測
定部におけるキズ、ゴミ、粗さ等の影響を減少させるこ
とができる。このため、三角測量法を適用した形状測定
装置と形状測定法でありながら、被測定物の形状を精度
よく高速で測定することができる。
As is apparent from the above description, according to the present invention, the object to be measured is irradiated with linearly polarized light oscillating in a predetermined direction from the irradiation optical system, and reflected from the object to the converging optical system. The reflected light is passed through a polarizing element to be divided into a specular reflected light component and a scattered light component, and the specular reflected light component is excluded. On the other hand, the scattered light component is incident on the detection unit and used for shape measurement of the object to be measured. Therefore, it is possible to eliminate the amount of error in the detection unit due to the effect of specular reflection light, which is a drawback of the triangulation method, and to reduce the influence of scratches, dust, roughness, and the like on the measurement unit of the measured object. For this reason, the shape of the object to be measured can be accurately measured at high speed while using the shape measuring device and the shape measuring method to which the triangulation method is applied.

【0038】又、照射光学系の周囲に、所定の偏角を有
して複数の収束光学系を配設していることから、三角測
量法において発現するシャドウ効果を解消し、被測定物
の表面形状が広範に亙って測定可能になる。
Further, since a plurality of converging optical systems are arranged around the irradiation optical system with a predetermined declination, the shadow effect that appears in the triangulation method is eliminated, and Surface morphology can be measured over a wide range.

【0039】しかも、格子投影法のように、被測定物の
表面に格子縞を投影したり、その画像処理を行うなどの
繁雑さがなく、簡易構造にして被測定物の表面形状を高
精度且つ高速にて測定することができる。
Furthermore, unlike the grid projection method, there is no need to project lattice fringes on the surface of the object to be measured or to perform image processing thereof. It can be measured at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる形状測定装置の実施例を示す側
面図
FIG. 1 is a side view showing an embodiment of a shape measuring apparatus according to the present invention.

【図2】同形状測定装置による被測定物の形状測定を説
明する説明図
FIG. 2 is an explanatory view illustrating shape measurement of an object to be measured by the shape measurement device.

【図3】同形状測定装置により被測定物の表面を実測し
た測定値を示す実測図
FIG. 3 is an actual measurement diagram showing measured values obtained by actually measuring the surface of the object to be measured by the same shape measuring apparatus.

【図4】同形状測定装置により被測定物の表面を実測し
た測定値の偏差を示す偏差図
FIG. 4 is a deviation diagram showing deviations of measured values obtained by actually measuring the surface of an object to be measured by the same shape measuring apparatus.

【図5】本発明に係る形状測定装置の第2実施例を示す
側面図
FIG. 5 is a side view showing a second embodiment of the shape measuring apparatus according to the present invention.

【図6】本発明に係る形状測定装置の第3実施例を示す
側面図
FIG. 6 is a side view showing a third embodiment of the shape measuring apparatus according to the present invention.

【図7】本発明に係る形状測定装置の第4実施例を示す
側面図
FIG. 7 is a side view showing a fourth embodiment of the shape measuring apparatus according to the present invention.

【図8】本発明に係る形状測定装置の第5実施例を示す
側面図
FIG. 8 is a side view showing a fifth embodiment of the shape measuring apparatus according to the present invention.

【図9】従来の形状測定装置により傾斜した被測定物の
形状測定を説明する説明図
FIG. 9 is an explanatory view for explaining the shape measurement of an object to be measured inclined by a conventional shape measuring apparatus

【図10】従来の形状測定装置により傾斜した被測定物
の形状測定を説明する説明図
FIG. 10 is an explanatory view for explaining the shape measurement of an object to be measured inclined by a conventional shape measuring apparatus.

【図11】従来の形状測定装置により傾斜した被測定物
の形状測定を説明する説明図
FIG. 11 is an explanatory view illustrating shape measurement of an object to be measured inclined by a conventional shape measurement device.

【図12】三角測量法を使用した形状測定装置に発現す
るシャドウ効果を説明する説明図
FIG. 12 is an explanatory diagram illustrating a shadow effect that appears in a shape measuring device using a triangulation method.

【符号の説明】[Explanation of symbols]

50 照射光学系 52 出射光 53 レーザ光源 54 レンズ 55 偏光ビームスプリッタ 55a 偏光面 56 レンズ 60 収束光学系 62 入射光 63 レンズ 65 偏光ビームスプリッタ 65a 偏光面 66 検出部 70 形状測定装置 71 装置本体 75 被測定物 80 照射光 81 S波 82 P波 85 反射光 86 散乱光 86a 散乱光成分 87 正反射光 87a 正反射光成分 Reference Signs List 50 irradiation optical system 52 outgoing light 53 laser light source 54 lens 55 polarizing beam splitter 55a polarizing surface 56 lens 60 converging optical system 62 incident light 63 lens 65 polarizing beam splitter 65a polarizing surface 66 detecting unit 70 shape measuring device 71 device main body 75 measured Object 80 Irradiation light 81 S wave 82 P wave 85 Reflected light 86 Scattered light 86a Scattered light component 87 Regular reflected light 87a Regular reflected light component

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 11/00-11/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定物に対して直線偏光を照射する照
射光学系と、被測定物から入射方向と異なる方向へ反射
した反射光のうち散乱光成分を検出する検出部と、この
検出部に散乱光成分を導くための収束光学系とを含み、
その収束光学系が被測定物からの反射光を正反射光成分
と散乱光成分とに分光して該散乱光成分のみ前記検出部
へ入射させる偏光素子を有して成ることを特徴とする形
状測定装置。
An irradiation optical system for irradiating the object with linearly polarized light; a detection unit for detecting a scattered light component of reflected light reflected from the object in a direction different from the incident direction; A converging optical system for guiding the scattered light component to
A shape characterized in that the converging optical system has a polarizing element that separates reflected light from the object into a specular reflected light component and a scattered light component and makes only the scattered light component incident on the detection unit. measuring device.
【請求項2】 照射光学系の光軸の周囲に、複数の収束
光学系を設けた請求項1記載の形状測定装置。
2. The shape measuring apparatus according to claim 1, wherein a plurality of converging optical systems are provided around the optical axis of the irradiation optical system.
【請求項3】 光源より放射されるレーザ光を集束しな
がら所定方向に振動する直線偏光として被測定物に照射
し、その被測定物から入射方向と異なる方向へ反射する
反射光をレンズで集束するとともに、その反射光を偏光
素子に通して正反射光成分と散乱光成分とに分光し、こ
のうち散乱光成分のみ検出部に入射させて被測定物の表
面形状を測定するようにしたことを特徴とする形状測定
法。
3. A laser beam emitted from a light source is focused on the object to be measured as linearly polarized light that oscillates in a predetermined direction while being focused, and reflected light reflected from the object in a direction different from the incident direction is focused by a lens. In addition, the reflected light is passed through a polarizing element to be separated into a specular reflected light component and a scattered light component, and only the scattered light component is incident on the detection unit to measure the surface shape of the object to be measured. A shape measuring method characterized by the following.
JP3066478A 1991-03-29 1991-03-29 Shape measuring device and measuring method Expired - Fee Related JP2983318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066478A JP2983318B2 (en) 1991-03-29 1991-03-29 Shape measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066478A JP2983318B2 (en) 1991-03-29 1991-03-29 Shape measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH04301509A JPH04301509A (en) 1992-10-26
JP2983318B2 true JP2983318B2 (en) 1999-11-29

Family

ID=13316930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066478A Expired - Fee Related JP2983318B2 (en) 1991-03-29 1991-03-29 Shape measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2983318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078720B2 (en) 2003-08-12 2006-07-18 Fuji Xerox Co., Ltd. Range finder for measuring three-dimensional geometry of object and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266952B2 (en) * 2008-08-19 2013-08-21 オムロン株式会社 Optical measuring apparatus and measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078720B2 (en) 2003-08-12 2006-07-18 Fuji Xerox Co., Ltd. Range finder for measuring three-dimensional geometry of object and method thereof

Also Published As

Publication number Publication date
JPH04301509A (en) 1992-10-26

Similar Documents

Publication Publication Date Title
JPH0650720A (en) Height measuring method and device
EP0208276A1 (en) Optical measuring device
JP3934051B2 (en) Measurement of surface defects
US5011287A (en) Interferometer object position measuring system and device
JP3768822B2 (en) 3D measuring device
JP2983318B2 (en) Shape measuring device and measuring method
JPH0256604B2 (en)
JPH0447222A (en) Highly accurate position comparator
JPS588444B2 (en) displacement measuring device
JP2861927B2 (en) Method and apparatus for detecting inclination or height of optical multilayer object
JP2949179B2 (en) Non-contact type shape measuring device and shape measuring method
JPH02280313A (en) Detection of inclination or height of optical multiplier object, device therefor and projection aligner
JPH0650243B2 (en) Light wave interferometer
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPH06331329A (en) Non-contact three-dimensional shape measuring device
JP3139862B2 (en) Surface defect inspection equipment
JPH06109435A (en) Surface displacement meter
JPS63223510A (en) Surface shape measuring instrument
JPH1054711A (en) Method of measuring surface shape
JPH06347229A (en) Method and apparatus for measuring shape
JPS5814602B2 (en) KeijiyousokuteiSouchiyoukougakukei
JPH06294610A (en) Method and equipment for optical center of gravity displacement type measurement
JPH0540821A (en) 3-dimensional measuring device
JPH0642944A (en) Surface-roughness measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees