JP2980195B2 - Method and apparatus for measuring rebar diameter - Google Patents

Method and apparatus for measuring rebar diameter

Info

Publication number
JP2980195B2
JP2980195B2 JP8002117A JP211796A JP2980195B2 JP 2980195 B2 JP2980195 B2 JP 2980195B2 JP 8002117 A JP8002117 A JP 8002117A JP 211796 A JP211796 A JP 211796A JP 2980195 B2 JP2980195 B2 JP 2980195B2
Authority
JP
Japan
Prior art keywords
camera
intersection
rebar
coordinates
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8002117A
Other languages
Japanese (ja)
Other versions
JPH09189526A (en
Inventor
裕 内村
俊和 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP8002117A priority Critical patent/JP2980195B2/en
Publication of JPH09189526A publication Critical patent/JPH09189526A/en
Application granted granted Critical
Publication of JP2980195B2 publication Critical patent/JP2980195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鉄筋径の計測方法及び装
置に関し、とくに鉄筋コンクリート構造物等の鉄筋を用
いる建設工事において配筋した鉄筋の径を計測する方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the diameter of a reinforcing bar, and more particularly to a method and an apparatus for measuring the diameter of a reinforcing bar arranged in a construction work using a reinforcing bar such as a reinforced concrete structure.

【0002】[0002]

【従来の技術】鉄筋コンクリート構造物等の鉄筋を用い
る建設工事では、施工品質を確保するため、設計仕様に
従った本数及び間隔で鉄筋を配筋する必要があり、建設
工事の期間中に施工業者の自主検査、施主の立合い検
査、及び官庁の立合い検査等の施工検査が繰返し実施さ
れている。これらの施工検査のうち鉄筋の種類、径、本
数、継手長さ等の各種検査(以下、鉄筋の配筋検査とい
うことがある。)は、従来人間による目視による検査が
行なわれていた。
2. Description of the Related Art In construction work using reinforcing bars such as reinforced concrete structures, it is necessary to arrange reinforcing bars at the number and intervals according to design specifications in order to secure construction quality. Construction inspections such as self-inspection, owner's inspection, and government's inspection are repeatedly conducted. Among these construction inspections, various inspections such as the type, diameter, number, and joint length of reinforcing bars (hereinafter, also referred to as reinforcing bar arrangement inspection) have been conventionally performed by visual inspection by a human.

【0003】[0003]

【発明が解決しようとする課題】しかし上記目視による
鉄筋の配筋検査では、多数の鉄筋に1本ずつ物差しをあ
てて鉄筋径を計測する等の煩雑な作業が必要である。工
事期間中に行なわれる施工検査は回数も多く、その段取
り、立合い、記録作成のために多大な労力がかかってい
る。省力化の観点から施工検査の簡単化、とくに鉄筋の
配筋検査の自動化が強く望まれていた。
However, in the above-described visual inspection of reinforcing bars, it is necessary to perform a complicated operation such as measuring a diameter of a reinforcing bar by placing a ruler on a large number of reinforcing bars one by one. There are many construction inspections performed during the construction period, and a great deal of labor is required for setting up, standing up, and creating records. From the viewpoint of labor saving, there has been a strong demand for simplification of construction inspections, in particular, automation of reinforcing bar arrangement inspection.

【0004】そこで本発明の目的は、鉄筋の配筋検査の
自動化に適する鉄筋径の計測方法及び装置を提供するに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for measuring a diameter of a rebar suitable for automating a rebar arrangement inspection of a rebar.

【0005】[0005]

【課題を解決するための手段】本発明者は画像処理技
術、とくにスリット光投影法による三次元位置計測方法
に注目した。ここでスリット光とは、図9に符号4で示
すように、光源5からシート状に放射される平面スリッ
ト光のことである。
Means for Solving the Problems The present inventor paid attention to an image processing technique, in particular, a three-dimensional position measuring method by a slit light projection method. Here, the slit light refers to planar slit light emitted from the light source 5 in a sheet shape, as indicated by reference numeral 4 in FIG.

【0006】スリット光投影法では、図9に示すよう
に、地表の所定光源座標Sの光源5からスリット光4を
対象物1aに向けて放射し、地表の所定カメラ座標Oc
カメラ7でスリット光4と交差する光軸向きからスリッ
ト光4と対象物1aとの交差位置を撮影し、対象物1aで反
射した反射光によりスリット光4と対象物1aとの交差断
面の一部周縁の像(以下、交差点群の像ということがあ
る。)が含まれる画像Idを作成する。図9のカメラ7は
スリット光4のみ透過するフィルタ6を有する。図9中
のXYZ軸は、カメラ座標Ocを原点とし、カメラ座標
cから光源座標Sへ向う直線をX軸とし、カメラ7の
光軸をY軸とした地表三次元直交座標系の座標軸を表
す。UV軸はカメラ画像Id上における二次元直交座標系
の座標軸を表す。符号RPはスリット光4の光束内の1
本のビームが対象物1a上につくるXYZ座標(Rx、Ry、R
z)の交差点を表し、符号Pはカメラ画像Id上におけるU
V座標(P u、Pv)の交差点RPの像を表す。以下説明の都
合上、交差点RPと像Pとの関係からスリット光投影法
の計測原理を説明する。
In the slit light projection method, as shown in FIG.
Then, the slit light 4 is emitted from the light source 5 at the predetermined light source coordinates S on the ground surface.
Radiates toward the object 1a, and the predetermined camera coordinates O on the ground surfacecof
The camera 7 slips from the direction of the optical axis that intersects the slit light 4.
The intersection of the light 4 and the object 1a is photographed, and
Intersection break of slit light 4 and object 1a due to reflected light
An image of a part of the surface (hereinafter sometimes referred to as an intersection group image)
You. Image I containing)dCreate The camera 7 in FIG.
It has a filter 6 that transmits only the slit light 4. In FIG.
XYZ axes are camera coordinates OcIs the origin and the camera coordinates
OcFrom the camera to the light source coordinates S as the X axis,
Shows the coordinate axes of the ground surface three-dimensional rectangular coordinate system with the optical axis as the Y axis.
You. UV axis is camera image Id2D Cartesian Coordinate System
Represents the coordinate axis. Sign RPIs 1 in the luminous flux of the slit light 4
XYZ coordinates (Rx, Ry, R
z), And the symbol P indicates the camera image IdU above
V coordinate (P u, Pv) Intersection RPRepresents the image of The capital of the explanation below
Joint RPLight projection method from the relationship between
The measurement principle will be described.

【0007】図10は、カメラ7のレンズ中心をカメラ
座標Ocとし、XYZ座標系のXZ軸をUV座標系のU
V軸と平行にし、Z軸(V軸)方向から見たXY平面及
びU軸を示す。符号Lはカメラ座標Ocと光源座標Sと
の間の距離を表し、符号fはカメラ7の焦点距離を表
す。図10に示すように、対象物1aがXYZ座標系でR
PからRP'へ移動すると、その移動が対象物1aとカメラ
7とを結ぶ直線上の移動でない限り、カメラ画像Id上の
像もUV座標系でPからP'に移動する。カメラ座標Oc
と光源座標Sとの間の距離L、X軸に対するカメラ光軸
の傾斜角α(図10では90度)、X軸に対するスリット
光4の傾斜角βを既知とすれば、カメラ座標Ocと対象
物1aとを結ぶ線とカメラ光軸とのなす角度γPから点
P、S、Ocを頂点とする三角形が一意に決まる。ここ
で角度γPは式(1)で定まり、式(2)、(3)により交差点R
PのX座標Rx、Y座標Ryが算出できる。また交差点RP
Z座標Rzは、図11に示す2つの斜線で示す三角形が相
似形であることから、式(4)で算出できる。但し、像P
の座標(Pu、Pv)から交差点RPの座標(Rx、Ry、Rz)への
変換方法は、式(2)(3)(4)による方法に限定されない。
FIG. 10 shows a camera centered on the lens of the camera 7.
Coordinates OcAnd the XZ axis of the XYZ coordinate system is defined as U in the UV coordinate system.
An XY plane parallel to the V axis and viewed from the Z axis (V axis) direction
And U-axis. Symbol L indicates camera coordinates OcAnd the light source coordinates S
And the symbol f indicates the focal length of the camera 7.
You. As shown in FIG. 10, the object 1a is R in the XYZ coordinate system.
PTo RP 'Move to the object 1a and the camera
Camera image I unless the movement is on a straight line connectingdupper
The image also moves from P to P 'in the UV coordinate system. Camera coordinates Oc
L between camera and light source coordinates S, camera optical axis with respect to X axis
Angle of inclination α (90 degrees in FIG. 10), slit with respect to X axis
If the inclination angle β of the light 4 is known, the camera coordinates OcAnd target
Angle γ between the line connecting object 1a and the optical axis of the cameraPFrom the point
RP, S, OcIs uniquely determined. here
At the angle γPIs determined by equation (1), and the intersection R is calculated by equations (2) and (3).
PX coordinate ofx, Y coordinate RyCan be calculated. Also at intersection RPof
Z coordinate RzAre the triangles shown by two diagonal lines in FIG.
Since it is similar, it can be calculated by equation (4). However, the image P
Coordinates (Pu, Pv) To intersection RPCoordinates (Rx, Ry, RzTo)
The conversion method is not limited to the method using the equations (2), (3), and (4).

【0008】[0008]

【数1】 tanγP=Pu/f=Rx/Ry ………………………………(1) 1/tanβ=(L−Rx)/Ry=L/Ry−Rx/Ry Ry=L/{(1/tanβ)+(Rx/Ry)}=L/{(1/tanβ)+(Pu/f)} =f・L/{(f/tanβ)+Pu)} ………………………………(2) Rx=tanγP・Ry=Pu・(Ry/f) =Pu・L/{(f/tanβ)+Pu)} ………………………………(3) Rz=Ry・(Pv/f)=Pv・(Ry/f) =Pv・L/{(f/tanβ)+Pu)} ………………………………(4)[Number 1] tanγ P = P u / f = R x / R y .................................... (1) 1 / tanβ = (L-R x) / R y = L / R y -R x / R y R y = L / {(1 / tanβ) + (R x / R y)} = L / {(1 / tanβ) + (P u / f)} = f · L / {( f / tan β) + P u )} (2) R x = tanγ P · R y = P u · (R y / f) = P u · L / {(f / Tanβ) + P u )} ……………………… (3) R z = R y · (P v / f) = P v · (R y / f) = P v · L / {(f / tanβ) + P u )} ………………………… (4)

【0009】以上交差点群の像のうち1点の像PのUV
座標(Pu、Pv)から対象物1a上の対応交差点RPのXYZ
座標(Rx、Ry、Rz)を算出する方法について説明したが、
この方法は他の像のUV座標から対応交差点のXYZ座
標を算出する場合にも同様に適用できる。こうしてスリ
ット光投影法によれば、カメラ画像Id上の交差点群の像
の二次元座標から対象物1aの対応交差点群の三次元座標
すなわち対象物1aとスリット光4との断面形状が算出で
きる。しかし鉄筋の配筋検査では、鉄筋の断面形状を計
測するだけでは足りず、鉄筋径を計測する必要がある。
本発明者はスリット光投影法により鉄筋径を計測する技
術を開発し、本発明の完成に至ったものである。
The UV of the image P at one point among the images of the intersection group
Coordinates (P u, P v) from the corresponding intersection R P on the object 1a XYZ
Although the method of calculating the coordinates (R x , R y , R z ) has been described,
This method can be similarly applied to the case where the XYZ coordinates of the corresponding intersection are calculated from the UV coordinates of another image. Thus, according to the slit light projection method, the cross-sectional shape of the camera image I three-dimensional coordinate i.e. objects corresponding intersection group of the object 1a from the two-dimensional coordinates of the intersection group of the image on the d 1a and the slit light 4 can be calculated . However, in the rebar arrangement inspection, it is not enough to measure the cross-sectional shape of the rebar, and it is necessary to measure the rebar diameter.
The present inventor has developed a technique for measuring the rebar diameter by the slit light projection method, and has completed the present invention.

【0010】図1を参照するに、本発明の鉄筋径の計測
方法は、配筋された鉄筋1に臨む所定撮影位置Tに回転
軸r1の回りに回転自在な取付台9と該取付台9上の一対
の所定保持位置S0及びOc0にそれぞれ所定傾斜角β及
びα(図10参照)で取付けた平面スリット光4の光源
5及びカメラ7と該カメラ7に取付けられスリット光4
のみ透過するフィルタ6とを有する撮像装置10を設け、
カメラ7の所定傾斜角αを鉄筋1とスリット光4との交
差位置が撮影できるものとし;回転軸r1の角度位置θr1
を変えながらスリット光4を鉄筋1と異なる交差位置で
交差させ且つスリット光4と鉄筋表面との交差点群をカ
メラ7で撮影し;各交差位置において、所定撮影位置T
の対地三次元座標と一対の所定保持位置S0及びOc0
回転軸r1の角度位置θr1とから対地三次元座標系におけ
る光源座標S及びカメラ座標Ocを定め、カメラ画像Id
上の交差点群の像P1〜Pn及びその重心点P0(図3
(C)参照)の二次元座標(Pu、Pv)を求め、二次元座標(P
u、Pv)と光源座標S及びカメラ座標Ocと所定傾斜角α
及びβとからスリット光投影法により二次元座標(Pu、P
v)に対応する対応交差点群RP1〜RPn及び対応重心点R
P0の三次元座標(Rx、Ry、Rz)を算出し;異なる交差位置
で算出した対応重心点RP0を結ぶ重心軸χを定め、各交
差位置で算出した対応交差点群RP1〜RPnを重心軸χに
垂直な投影面σ上へ正射影した投影点群S1〜Snにより
投影画像ISを作成し、投影点群S1〜Snを結んだ連結曲
線上の各点における曲率を算出し、連結曲線のうち曲率
一定部分の曲率半径から各交差位置における鉄筋断面の
径を求めてなるものである。
[0010] Referring to FIG. 1, the measurement method of the reinforcing bar diameter of the present invention, rotatable mount 9 and base with said mounting about an axis of rotation r 1 to a predetermined photographing position T facing the reinforcing bars 1 that are Haisuji The light source 5 and camera 7 of the plane slit light 4 attached to the pair of predetermined holding positions S 0 and O c0 on the reference numeral 9 at predetermined inclination angles β and α (see FIG. 10), respectively, and the slit light 4 attached to the camera 7
An imaging device 10 having a filter 6 that only transmits light;
The predetermined inclination angle α of the camera 7 shall intersections of rebar 1 and the slit light 4 can be captured; angular position of the rotary shaft r 1 theta r1
The slit light 4 intersects the reinforcing bar 1 at different intersections while changing the intersection, and a group of intersections between the slit light 4 and the reinforcing bar surface is photographed by the camera 7;
The light source coordinates S and the camera coordinates O c in the ground three-dimensional coordinate system are determined from the three-dimensional ground coordinates of the above, a pair of predetermined holding positions S 0 and O c0 and the angular position θ r1 of the rotation axis r 1 , and the camera image I d
The images P 1 to P n of the upper intersection group and the center of gravity P 0 thereof (FIG. 3
(C), two-dimensional coordinates (P u , P v ) are obtained, and the two-dimensional coordinates (P
u , Pv ), the light source coordinates S, the camera coordinates Oc, and the predetermined inclination angle α.
And β from the two-dimensional coordinates (P u , P
v ) corresponding intersection groups R P1 to R Pn and corresponding centroids R
P0 of the three-dimensional coordinates (R x, R y, R z) was calculated; defines a central axis χ connecting the corresponding center of gravity R P0 calculated in different intersections, corresponding intersection groups R P1 ~ calculated at each intersection position R Pn to create a projection image I S by the central axis projected point cloud orthogonally projected to the vertical projection plane on σ in χ S 1 ~S n, each of the coupling curve connecting the projected point cloud S 1 to S n The curvature at the point is calculated, and the diameter of the cross section of the reinforcing bar at each intersection is obtained from the radius of curvature of a constant curvature portion of the connection curve.

【0011】また図1を参照するに、本発明の鉄筋径の
計測装置は、配筋した鉄筋1と交差可能に傾斜して平面
スリット光4を発光する光源5と、スリット光4のみ透
過するフィルタ6が取付けられ且つスリット光4と鉄筋
1との交差位置が撮影可能に傾斜したカメラ7と、光源
5とカメラ7が所定保持位置S0及びOc0に取付けられ
た取付台9と、取付台9が固定された回転軸r1とを有す
る撮像装置10;回転軸r1の角度位置θr1を検出して出力
する回転角度計12;対地三次元座標系における撮像装置
10の撮影位置Tと所定保持位置S0及びOc0とスリット
光4及びカメラ光軸の傾斜角β及びα(図10参照)と
を記憶する記憶装置14;カメラ画像Id上における交差点
群の像P1〜Pn及びその重心点P0(図3(C)参照)の
二次元座標(Pu、Pv)を求めて出力する画像処理装置16;
記憶した撮影位置T及び保持位置S0及びOc0と角度計1
2の出力する角度位置θr1とに基づき対地三次元座標系
での光源座標S及びカメラ座標Ocを算出し、光源座標
S及びカメラ座標Ocと画像処理装置16の出力する二次
元座標(Pu、Pv)と記憶した傾斜角β及びαとに基づきス
リット光投影法により二次元座標(Pu、Pv)に対応する対
応交差点群RP1〜RPn及び対応重心点RP0の三次元座標
(Rx、Ry、Rz)を算出する座標算出手段19;異なる対応重
心点RP0を結んだ重心軸χを算出する重心軸算出手段2
0;対応交差点群RP1〜RPnを重心軸χに垂直な投影面
σ上へ正射影した投影点群S1〜Snにより投影画像IS
作成する投影図作成手段21;並びに投影点群S1〜Sn
結んだ連結曲線上の各点における曲率を算出し、前記曲
線のうち曲率一定部分の曲率半径を求める曲率算出手段
22を備えてなるものである。
Referring to FIG. 1, a rebar diameter measuring apparatus according to the present invention is configured such that a light source 5 that emits planar slit light 4 and that is inclined so as to intersect with a reinforcing bar 1 arranged therein, and that only the slit light 4 is transmitted. A camera 7 to which a filter 6 is attached and at which the intersection of the slit light 4 and the reinforcing bar 1 is tilted so as to be capable of photographing; a mounting table 9 on which the light source 5 and the camera 7 are mounted at predetermined holding positions S 0 and O c0 ; the imaging device 10 and a rotary shaft r 1 which platform 9 is fixed; imaging apparatus in ground three-dimensional coordinate system; rotation angle meter 12 which detects the angular position theta r1 of the rotation axis r 1 output
10 shooting position T and the predetermined holding position S 0 and O c0 and the slit inclination angle of the light 4 and the optical axis of the camera β and α (see FIG. 10) storing stores the device 14; intersection groups on the camera image I d An image processing device 16 for obtaining and outputting the two-dimensional coordinates (P u , P v ) of the images P 1 to P n and their center of gravity P 0 (see FIG. 3C);
The stored photographing position T and the holding position S 0 and O c0 and angle meter 1
The light source coordinates S and the camera coordinates O c in the ground three-dimensional coordinate system are calculated based on the angular position θ r1 output by 2 and the light source coordinates S and the camera coordinates O c and the two-dimensional coordinates output from the image processing device 16 ( P u , P v ) and the stored inclination angles β and α, and the corresponding intersection groups R P1 to R Pn and the corresponding centroid points R P0 corresponding to the two-dimensional coordinates (P u , P v ) by the slit light projection method. 3D coordinates
Coordinate calculating means 19 for calculating (R x , R y , R z ); centroid axis calculating means 2 for calculating a centroid axis ん だ connecting different corresponding centroid points R P0
0; the corresponding intersection groups R P1 to R projection drawing creation means Pn to create a projection image I S by the central axis projected point cloud orthogonally projected to the vertical projection plane on σ in χ S 1 ~S n 21; and projection point calculating a curvature at each point on the coupling curve connecting the group S 1 to S n, the curvature calculating means for determining the radius of curvature of the curvature constant portion of the curve
22.

【0012】[0012]

【発明の実施の形態】図1の撮像装置10の取付台9に
は、それぞれ回転軸r1と直角であり且つ互いに直角であ
る2つの回転軸r2、r3を有する姿勢制御装置が取付けら
れ、姿勢制御装置上の所定保持位置S0に所定傾斜角β
で光源5が取付けられ、所定保持位置Oc 0に所定傾斜角
αでカメラ7が取付けられている。回転軸r2、r3の角度
位置の調節により取付台9上における光源5及びカメラ
7の保持位置S0及びOc0が調節できる。保持位置S0
びOc0、傾斜角β及びα、カメラの焦点距離fは記憶装
置14に記憶する。光源5は例えば単波長のレーザ光をス
リット光4として投光する投光器とすることができ、カ
メラ7にはその波長のスリット光4のみを透過する干渉
フィルタ6が装着されている。
The mount 9 of the imaging apparatus 10 of the embodiment of the invention Figure 1 is a respectively rotary shaft r 1 perpendicular and attached posture control device having two rotation axes r 2, r 3 are orthogonal to each other At a predetermined holding position S 0 on the attitude control device,
And the camera 7 is mounted at a predetermined holding position O c 0 at a predetermined inclination angle α. By adjusting the angular positions of the rotation axes r 2 and r 3 , the holding positions S 0 and O c0 of the light source 5 and the camera 7 on the mounting table 9 can be adjusted. The holding positions S 0 and O c0 , the inclination angles β and α, and the focal length f of the camera are stored in the storage device 14. The light source 5 can be, for example, a light projector that emits a single-wavelength laser beam as the slit light 4, and the camera 7 is provided with an interference filter 6 that transmits only the slit light 4 of that wavelength.

【0013】本発明の計測方法の流れ図を示す図2を参
照するに、まずステップ201で撮像装置10を所定撮影位
置Tに設置する。所定撮影位置Tの対地三次元座標は予
め測量等により計測しておくことができる。例えば図1
では、取付台9と回転軸r1との交点位置が所定撮影位置
Tとなるように撮像装置10を設置している。設置に際
し、撮像装置10の回転軸r1を計測対象の鉄筋1の軸線と
交差する向きと平行にし、回転軸r1の角度位置の調節に
よりスリット光4が鉄筋1の軸線上の異なる位置で交差
するようにする。所定撮影位置Tは記憶装置14に記憶す
る。図1の符号15は記憶装置14に必要なデータを入力す
る入力装置を示す。
Referring to FIG. 2 showing a flowchart of the measuring method according to the present invention, first, in step 201, the imaging device 10 is set at a predetermined photographing position T. The three-dimensional coordinates of the predetermined shooting position T with respect to the ground can be measured in advance by surveying or the like. For example, FIG.
In the intersection position between the mount 9 and the rotary shaft r 1 is placed an imaging device 10 to a predetermined photographing position T. Upon installation, in parallel with a direction intersecting the rotation axis r 1 of the imaging device 10 with the axis of the reinforcing bar 1 to be measured, in modulating different locations slit light 4 of the axis of the reinforcing bar 1 by the angular position of the rotary shaft r 1 Make them cross. The predetermined photographing position T is stored in the storage device 14. Reference numeral 15 in FIG. 1 denotes an input device for inputting necessary data to the storage device 14.

【0014】ステップ202において撮像装置10の回転軸r
1を回転させ、回転軸r1の角度位置θr1を回転角度計12
で検出して座標算出手段19に入力する。座標算出手段19
は、記憶装置14に記憶した所定撮影位置Tの対地三次元
座標と、取付位置S0、Oc0と、角度位置θr1とに基づ
き、対地三次元座標系における光源座標S及びカメラ座
標Ocを算出する(ステップ203)。
In step 202, the rotation axis r of the imaging device 10
1 and rotate the angular position θ r1 of the rotation axis r 1
And inputs it to the coordinate calculation means 19. Coordinate calculation means 19
Is a light source coordinate S and a camera coordinate O c in a three-dimensional ground coordinate system based on the three-dimensional ground coordinates of the predetermined photographing position T stored in the storage device 14, the mounting positions S 0 and O c0, and the angular position θ r1. Is calculated (step 203).

【0015】ステップ204において光源5から鉄筋1に
対してスリット光4を投光し、鉄筋表面におけるスリッ
ト光4の反射光をカメラ7で撮影する(図3(A)参
照)。図3(B)はカメラ7で撮影したアナログ画像Ig
一例を示し、アナログ画像Igのデジタル化により図3
(C)のカメラ画像Idを得る。但しカメラ7から直接デジ
タル化されたカメラ画像Idを出力させることができる。
カメラ画像Idはピクセル(画素)の行列として扱うこと
ができ、画像上の像の座標をピクセル行列中の像対応ピ
クセルの位置として容易に検出できる。ステップ205で
カメラ画像Idを画像処理装置16に入力し、画像Id上の交
差点群の像P1〜PnのUV座標(Pui、Pvi)を求め、更に
重心点P0のUV座標(Pu0、Pv0)を求める。ここで重心
点P0の座標(Pu0、Pv0)とは、例えば図3(C)に示すよ
うに、交差点群の像のUV座標(Pui、Pvi)の総計(Σ
Pui、ΣPvi)を全交差点像の総数nで除したもの(ΣPui
/n、ΣPvi/n)である。
In step 204, the slit light 4 is projected from the light source 5 to the reinforcing bar 1, and the reflected light of the slit light 4 on the reinforcing bar surface is photographed by the camera 7 (see FIG. 3A). FIG. 3 (B) shows an example of an analog image I g obtained by the camera 7, FIG. 3 by digitization of an analog image I g
(C) A camera image Id is obtained. However it is possible to output a camera image I d that is directly digitized by the camera 7.
Camera image I d it can be treated as a matrix of pixels (pixel), can be easily detected coordinates of the image on the image as the position of the image corresponding pixels in the pixel matrix. Enter the camera image I d to the image processing apparatus 16 at step 205, UV coordinates of the image P 1 to P n of the intersection set of the image I d (P ui, P vi ) seeking further UV centroid point P 0 Find the coordinates (P u0 , P v0 ). Here, the coordinates (P u0 , P v0 ) of the center of gravity point P 0 are, for example, as shown in FIG. 3C, the total (Σ) of the UV coordinates (P ui , P vi ) of the image of the intersection group.
P ui , ΣP vi ) divided by the total number n of all intersection images (ΣP ui
/ N, ΣP vi / n).

【0016】ステップ206では、座標算出手段19によ
り、交差点群の像P1〜PnのUV座標(Pui、Pvi)及び重
心点P0のUV座標(Pu0、Pv0)に基づき、ステップ203の
光源座標S及びカメラ座標Ocと、記憶装置14の傾斜角
β及びαとから、スリット光投影法により、UV座標(P
ui、Pvi)に対応する対応交差点群RP1〜RPnのXYZ座
標、及びUV座標(Pu0、Pv0)に対応する対応重心点RP0
のXYZ座標を算出する。回転軸r1を回転させながらス
テップ202〜206のサイクルを繰返し、各交差位置におい
て対応交差点群RP1〜RPn、対応重心点RP0のXYZ座
標を算出する。ステップ207は、ステップ202〜206が一
回以上繰返されることを示す。
In step 206, the coordinate calculating means 19 calculates the coordinates (P ui , P vi ) of the intersection group images P 1 to P n and the UV coordinates (P u0 , P v0 ) of the center of gravity P 0 . From the light source coordinates S and camera coordinates O c in step 203, and the inclination angles β and α of the storage device 14, UV coordinates (P
ui , P vi ), corresponding XYZ coordinates of corresponding intersection groups R P1 to R Pn , and corresponding centroid points R P0 corresponding to UV coordinates (P u0 , P v0 ).
Is calculated. While rotating the rotary shaft r 1 repeat cycle of steps 202-206, the corresponding intersection groups R P1 to R Pn, the XYZ coordinates of the corresponding center of gravity R P0 is calculated at each intersection. Step 207 indicates that steps 202 to 206 are repeated one or more times.

【0017】ステップ208では、重心軸算出手段20によ
り、異なる交差位置で算出した対応重心点RP0を結ぶ重
心軸χを求める。図4は、2つの対応重心点RP0及びR
Q0のXYZ座標から、2点を結ぶ重心軸χが算出できる
ことを示す。重心軸χは鉄筋1の軸線と実質上平行であ
り、重心軸χから鉄筋1の軸線と垂直な投影面σ(図4
参照)が求められる(ステップ209)。なお一旦重心軸
χ及び投影面σを算出した後は、ステップ208〜209を省
略することができる。
In step 208, the center-of-gravity axis calculating means 20 obtains a center-of-gravity axis を connecting the corresponding center-of-gravity points R P0 calculated at different intersection positions. FIG. 4 shows two corresponding centroid points R P0 and R P0.
This shows that the center of gravity axis χ connecting the two points can be calculated from the XYZ coordinates of Q0 . The center of gravity axis χ is substantially parallel to the axis of the reinforcing bar 1, and the projection plane σ perpendicular to the axis of the reinforcing bar 1 from the center of gravity χ (FIG. 4)
(See step 209). Once the center of gravity axis 重 and the projection plane σ are calculated, steps 208 to 209 can be omitted.

【0018】ステップ210では、投影図作成手段21によ
り、各交差位置で算出した対応交差点群RP1〜RPnを投
影面σ上に正射影した投影点群S1〜Snにより投影画像
ISを作成し、ステップ211で投影点群S1〜Snを結んだ
連結曲線を算出する。連結曲線が幅をもつ場合は、必要
に応じて細線化等の画像処理を施すことができる。図5
(A)は円柱状の鋼製鉄筋1に対するカメラ画像Idを示
し、図5(B)はそのカメラ画像Idから作成した投影画像
ISを示す。図5(B)に示すように、投影点群S1〜Sn
結んだ連結曲線により鉄筋1の断面像を表すことができ
る。
In step 210, the projection map creating means 21 projects the corresponding intersection groups R P1 to R Pn calculated at the respective intersection positions onto the projection plane σ by using the projection point groups S 1 to S n.
Create a I S, to calculate the coupling curve connecting the projected point cloud S 1 to S n in step 211. If the connecting curve has a width, image processing such as thinning can be performed as necessary. FIG.
(A) shows the camera image I d cylindrical for steel rebar 1, FIG. 5 (B) projection image created from the camera image I d
Shows the I S. As shown in FIG. 5 (B), can represent a cross-sectional image of the reinforcing bar 1 by coupling curve connecting the projected point cloud S 1 to S n.

【0019】ステップ212において、曲率算出手段22に
より連結曲線上の各点における曲率を算出し、ステップ
213で連結曲線のうち曲率が一定となる部分から曲率半
径を求めることにより、鉄筋径を推定する。曲率算出方
法の一例を図5(C)に表す。図5(C)は、図5(B)の連
結曲線上の各点Saについて、曲線上の一端S1からの曲
線に沿った距離laと、各点Saでの接線方向と一端S1
での接線方向とのなす角度θa(以下、偏角ということ
がある。)との関係のグラフ(以下、偏角グラフという
ことがある。)を表す。このグラフ上の各点の接線の傾
きから、連結曲線上の各点での曲率が求められる。円弧
部分の曲率は一定となるので、偏角グラフにおいて曲率
一定部分を検出することにより、その部分の曲率半径か
ら鉄筋径が求められる。
In step 212, the curvature at each point on the connection curve is calculated by the curvature calculating means 22.
At 213, the radius of curvature is determined from the portion of the connection curve where the curvature is constant, thereby estimating the rebar diameter. FIG. 5C shows an example of a curvature calculation method. FIG. 5 (C) for each point S a on coupling curve of FIG. 5 (B), the distance l a along the curve from the end S 1 on the curve, tangential and end at each point S a S 1
And a graph (hereinafter, sometimes referred to as a declination graph) showing a relationship with an angle θ a (hereinafter, sometimes referred to as a declination angle) formed with a tangential direction in the above. From the slope of the tangent to each point on this graph, the curvature at each point on the connection curve is determined. Since the curvature of the circular arc portion is constant, the diameter of the rebar is obtained from the radius of curvature of the portion by detecting the constant curvature portion in the argument graph.

【0020】図2のステップ214では算出した座標、曲
率半径を例えば記憶装置14に記憶し、ステップ215で終
了を判断し、終了しない場合はステップ202へ戻って他
の交差位置での計測を繰返す。終了する場合はステップ
216へ進み、記憶した曲率半径から鉄筋径の変化を検討
する。例えば鉄筋1をネジ筋とする場合は、記憶した鉄
筋断面の径のうち最大値及び最小値からネジ筋の山断面
及び谷断面の径を求めることができる。
In step 214 of FIG. 2, the calculated coordinates and radius of curvature are stored in, for example, the storage device 14, and the end is determined in step 215. If not, the process returns to step 202 to repeat the measurement at another intersection position. . Step to end
Proceed to 216 to examine the change in the rebar diameter from the stored radius of curvature. For example, when the reinforcing bar 1 is a threaded bar, the diameters of the crest section and the valley section of the threaded bar can be obtained from the maximum value and the minimum value among the stored diameters of the reinforcing bar section.

【0021】図1では、角度計12と記憶装置14と画像処
理装置16に接続されたコンピュータ18を設け、座標算出
手段19、重心軸算出手段20、投影図作成手段21、及び曲
率算出手段22をコンピュータ18上のプログラムにより構
成している。また予め配筋径を含む設計図をコンピュー
タ18に記憶し、本発明の鉄筋径計測装置で計測した鉄筋
径と設計図上の鉄筋径とを比較して不適合箇所を発見す
ることにより、配筋検査の自動化を図ることができる。
配筋検査の自動化により、検査に対する事前準備の段取
り、記録作成の手間等を大幅に削減できる。図1の符号
22は、不適合箇所を表示するモニタを示す。
In FIG. 1, a computer 18 connected to a goniometer 12, a storage device 14, and an image processing device 16 is provided, and a coordinate calculating means 19, a center-of-gravity axis calculating means 20, a projection drawing creating means 21, and a curvature calculating means 22 are provided. Is constituted by a program on the computer 18. Further, the design drawing including the reinforcing bar diameter is stored in the computer 18 in advance, and the reinforcing bar diameter measured by the reinforcing bar diameter measuring apparatus of the present invention is compared with the reinforcing bar diameter on the design drawing to find a non-conforming portion, whereby the reinforcing bar is arranged. Inspection can be automated.
By automating the arrangement of bar arrangements, it is possible to greatly reduce the time required for preparation for the inspection and preparation of records. 1 in FIG.
Reference numeral 22 denotes a monitor that displays a nonconforming part.

【0022】こうして本発明の目的である「鉄筋の配筋
検査の自動化に適する鉄筋径の計測方法及び装置」の提
供が達成できる。
In this manner, the object of the present invention, that is, the provision of the "method and apparatus for measuring the diameter of a rebar suitable for automating the rebar arrangement of the rebar" can be achieved.

【0023】[0023]

【実施例】図6(A)は、断面像が円弧部分と直線部分と
からなる異形鉄筋1を計測対象とする場合の投影画像IS
を示し、図6(B)はその偏角グラフを示す。図6の異形
鉄筋について鉄筋径を計測する場合は、連結曲線を構成
する投影点S1〜Snのうち、直線部分に属する投影点を
除外した円弧部分の投影点のみから鉄筋径を求める必要
がある。図6(B)では、偏角グラフの接線の傾きが零で
ある部分に対応する連結曲線を直線部分と判断し、接線
の傾きが零以外である連結曲線の部分から曲率半径を求
めて異形鉄筋1の径としている。
FIG. 6A shows a projected image I S in the case where the deformed reinforcing bar 1 whose cross-sectional image is composed of an arc portion and a straight line portion is to be measured.
FIG. 6B shows the argument graph. When measuring the reinforcing bar diameter for deformed bars of Figure 6, of the projection point S 1 to S n which constitutes the coupling curve, necessary to obtain the reinforcing bar diameter only projected point excluded arc portion projected points belonging to the linear portion There is. In FIG. 6 (B), the connection curve corresponding to the portion where the slope of the tangent line of the argument graph is zero is determined to be a straight line portion, and the radius of curvature is calculated from the portion of the connection curve where the slope of the tangent line is other than zero. The diameter of the reinforcing bar 1 is used.

【0024】図7は、複数の鉄筋1を膨径継手で繋いだ
接続鉄筋に対して鉄筋径の計測を行なうことにより、継
手長さを求める本発明の実施例を示す。すなわち、本発
明の鉄筋径計測装置の回転軸r1を鉄筋の接続方向と交差
する向きと平行とし、平面スリット光4を継手部分及び
その両側の鉄筋1と交差させ、各交差位置で求めた対応
重心点RP0の三次元座標と鉄筋断面の径とを順次記憶
し、記憶した鉄筋断面の径の継手部分に対応する対応重
心点RP0を検出することにより継手位置及び継手長さを
求める。継手部分は、例えば順次記憶した鉄筋断面の径
の不連続な変化から検出することができる。図8は、複
数の鉄筋1を重ね継手により繋いだ接続鉄筋に対して継
手長さを求める本発明の実施例を示す。
FIG. 7 shows an embodiment of the present invention in which a joint length is obtained by measuring the diameter of a reinforcing bar for a connecting reinforcing bar in which a plurality of reinforcing bars 1 are connected by an expanded joint. That is, the rotation axis r 1 rebar diameter measuring apparatus of the present invention is parallel to the direction intersecting with the connecting direction of the rebar, the planar slit light 4 are crossed with the joint portion and the reinforcing bar 1 on both sides thereof, it was determined at each intersection The three-dimensional coordinates of the corresponding center of gravity point R P0 and the diameter of the reinforcing bar cross section are sequentially stored, and the joint position and the joint length are determined by detecting the corresponding center of gravity point R P0 corresponding to the joint having the stored reinforcing bar cross section diameter. . The joint portion can be detected, for example, from a discontinuous change in the diameter of the reinforcing bar cross section stored sequentially. FIG. 8 shows an embodiment of the present invention in which a joint length is determined for a connecting reinforcing bar in which a plurality of reinforcing bars 1 are connected by a lap joint.

【0025】以上鉄筋1が1本の場合の鉄筋径計測につ
いて説明したが、図1に示すように、本発明の鉄筋径の
計測方法及び装置は、格子状に組まれた複数の鉄筋1の
鉄筋径を同時に計測することが可能である。また水平方
向に配筋した鉄筋(横筋)だけでなく、鉛直方向に配筋
した複数本の鉄筋(縦筋)の鉄筋径を計測することも可
能である。
As described above, the measurement of the rebar diameter in the case where the number of the rebars 1 is one has been described. As shown in FIG. It is possible to measure the rebar diameter simultaneously. It is also possible to measure not only the reinforcing bars (horizontal bars) arranged in the horizontal direction but also the diameters of a plurality of reinforcing bars (vertical bars) arranged in the vertical direction.

【0026】[0026]

【発明の効果】以上説明したように、本発明の鉄筋径の
計測方法は、平面状スリット光の光源とカメラとが取付
けられた取付台及び該取付台が固定された回転軸を有す
る撮像装置を鉄筋に臨む所定撮影位置に設け、回転軸の
角度位置を変えながらスリット光を鉄筋と異なる交差位
置で交差させ且つスリット光と鉄筋表面との交差点群を
カメラで撮影し、各交差位置においてカメラ画像上の交
差点群の像及びその重心点の二次元座標を求め且つスリ
ット光投影法により二次元座標に対応する対応交差点群
及び対応重心点の三次元座標を算出し、異なる交差位置
で算出した対応重心点を結ぶ重心軸を定め、対応交差点
群を重心軸に垂直な投影面上へ正射影した投影点群によ
り投影画像を作成し、投影点群を結ぶ連結曲線上の各点
の曲率を算出し、連結曲線のうち曲率一定部分の曲率半
径から鉄筋断面の径を求めるので、以下の顕著な効果を
奏する。
As described above, the method of measuring the diameter of a rebar according to the present invention is directed to an imaging apparatus having a mounting base on which a light source for planar slit light and a camera are mounted, and a rotating shaft to which the mounting base is fixed. Is provided at a predetermined photographing position facing the rebar, the slit light intersects the rebar at a different intersection position while changing the angular position of the rotation axis, and an intersection group between the slit light and the rebar surface is photographed by a camera. The image of the intersection group on the image and the two-dimensional coordinates of the center of gravity thereof were obtained, and the three-dimensional coordinates of the corresponding intersection group and the corresponding center of gravity corresponding to the two-dimensional coordinates were calculated by the slit light projection method, and calculated at different intersection positions. Determine the centroid axis connecting the corresponding centroid points, create a projection image by projecting the orthogonal intersection points onto the projection plane perpendicular to the centroid axis, create a projection image, and calculate the curvature of each point on the connecting curve connecting the projection point groups. Calculate, Since determining the diameter of the reinforcing bar section from a curvature radius of the curvature constant part of the binding curve, a marked effect below.

【0027】(イ)鉄筋径の自動計測が可能となり、また
計測した鉄筋径と設計図上の鉄筋径とを比較することに
より、鉄筋の配筋検査における不適合箇所の発見の自動
化を図ることができる。 (ロ)鉄筋検査の自動化により、事前準備の段取り、記録
作成の手間等を大幅に削減することができる。 (ハ)鉄筋の継手長さの計測に利用することができる。
(A) Automatic measurement of the reinforcing bar diameter is enabled, and by comparing the measured reinforcing bar diameter with the reinforcing bar diameter on the design drawing, it is possible to automate the discovery of a nonconforming portion in the reinforcing bar arrangement inspection. it can. (B) The automation of rebar inspection can greatly reduce the preparation for preparations and the time and labor for creating records. (C) It can be used for measuring the joint length of a reinforcing bar.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図であるFIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、本発明の計測方法の流れ図の一例である。FIG. 2 is an example of a flowchart of a measurement method of the present invention.

【図3】は、交差点群及び重心点の二次元座標の算出方
法の説明図である。
FIG. 3 is an explanatory diagram of a method of calculating two-dimensional coordinates of an intersection group and a center of gravity.

【図4】は、重心軸の算出方法の説明図である。FIG. 4 is an explanatory diagram of a method of calculating a center of gravity axis.

【図5】は、円柱状の鉄筋の鉄筋径計測方法の説明図で
ある。
FIG. 5 is an explanatory diagram of a method of measuring a reinforcing bar diameter of a cylindrical reinforcing bar.

【図6】は、異形鉄筋の鉄筋径計測方法の説明図であ
る。
FIG. 6 is an explanatory diagram of a method of measuring a reinforcing-bar diameter of a deformed reinforcing bar.

【図7】は、膨径継手の継手長さ計測の説明図である。FIG. 7 is an explanatory diagram of the joint length measurement of the expanded joint.

【図8】は、重ね継手の継手長さ計測の説明図である。FIG. 8 is an explanatory diagram of joint length measurement of a lap joint.

【図9】は、スリット光投影法の説明図であるFIG. 9 is an explanatory diagram of a slit light projection method.

【図10】は、スリット光投影法によるXY座標の算出
方法の説明図である。
FIG. 10 is an explanatory diagram of a calculation method of XY coordinates by a slit light projection method.

【図11】は、スリット光投影法によるZ座標の算出方
法の説明図である。
FIG. 11 is an explanatory diagram of a method of calculating a Z coordinate by a slit light projection method.

【符号の説明】[Explanation of symbols]

1…鉄筋 1a…対象物 2…鉄筋格子 4…平面スリット光 5…光源 6…フィルタ 7…カメラ 9…取付台 10…撮像装置 12…回転角度計 14…記憶装置 15…入力装置 16…画像処理装置 18…コンピュータ 19…座標算出手段 20…重心軸算出手段 21…投影図作成手段 22…曲率算出手段 25…モニタ。 DESCRIPTION OF SYMBOLS 1 ... Reinforcing bar 1a ... Object 2 ... Reinforcing bar grid 4 ... Slit plane light 5 ... Light source 6 ... Filter 7 ... Camera 9 ... Mounting stand 10 ... Imaging device 12 ... Rotation angle meter 14 ... Storage device 15 ... Input device 16 ... Image processing Apparatus 18 Computer 19 Coordinate calculation means 20 Center-of-gravity axis calculation means 21 Projection diagram creation means 22 Curvature calculation means 25 Monitor.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 11/00 - 11/30 102 E04G 21/12 105 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) G01B 11/00-11/30 102 E04G 21/12 105

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】配筋された鉄筋に臨む所定撮影位置に回転
軸の回りに回転自在な取付台と該取付台上の一対の所定
保持位置にそれぞれ所定傾斜角で取付けた平面スリット
光の光源及びカメラと該カメラに取付けられ前記スリッ
ト光のみ透過するフィルタとを有する撮像装置を設け、
前記カメラの所定傾斜角を前記鉄筋と前記スリット光と
の交差位置が撮影できるものとし;前記回転軸の角度位
置を変えながら前記スリット光を前記鉄筋と異なる交差
位置で交差させ且つ前記スリット光と鉄筋表面との交差
点群を前記カメラで撮影し;前記各交差位置において、
前記所定撮影位置の対地三次元座標と前記一対の所定保
持位置と前記回転軸の角度位置とから対地三次元座標系
における光源座標及びカメラ座標を定め、カメラ画像上
の交差点群の像及びその重心点の二次元座標を求め、前
記二次元座標と前記光源及びカメラ座標と前記所定傾斜
角とからスリット光投影法により前記二次元座標に対応
する対応交差点群及び対応重心点の三次元座標を算出
し;異なる前記交差位置で算出した対応重心点を結ぶ重
心軸を定め、前記各交差位置で算出した対応交差点群を
前記重心軸に垂直な投影面上へ正射影した投影点群によ
り投影画像を作成し、前記投影点群を結んだ連結曲線上
の各点における曲率を算出し、前記曲線のうち曲率一定
部分の曲率半径から前記各交差位置における鉄筋断面の
径を求めてなる鉄筋径の計測方法。
1. A mounting base rotatable around a rotation axis at a predetermined photographing position facing a reinforcing bar arranged, and a light source for planar slit light mounted at a predetermined inclination angle on each of a pair of predetermined holding positions on the mounting base. And an imaging device having a camera and a filter attached to the camera and transmitting only the slit light,
It is assumed that a predetermined inclination angle of the camera can be photographed at an intersection position between the rebar and the slit light; the slit light intersects at a different intersection position with the rebar while changing the angular position of the rotation axis, and intersects with the slit light. The intersection group with the rebar surface is photographed by the camera;
The light source coordinates and the camera coordinates in the three-dimensional coordinate system with respect to the ground are determined from the three-dimensional coordinates of the predetermined shooting position with respect to the ground, the pair of predetermined holding positions, and the angular position of the rotation axis, and the image of the intersection group on the camera image and the center of gravity thereof The two-dimensional coordinates of a point are obtained, and the three-dimensional coordinates of a corresponding intersection group and a corresponding centroid point corresponding to the two-dimensional coordinates are calculated from the two-dimensional coordinates, the light source and camera coordinates, and the predetermined inclination angle by a slit light projection method. A center-of-gravity axis connecting the corresponding center-of-gravity points calculated at the different intersection positions is determined, and a projection image is formed by a projection point group obtained by orthogonally projecting the corresponding intersection group calculated at the respective intersection positions onto a projection plane perpendicular to the center-of-gravity axis. A reinforcing bar that is created and calculates a curvature at each point on a connection curve connecting the projection point group, and obtains a diameter of a cross section of the reinforcing bar at each intersection position from a radius of curvature of a constant curvature portion of the curve. Method of measurement.
【請求項2】請求項1の計測方法において、前記連結曲
線上の各点について前記曲線上の一端からの前記曲線に
沿った距離及び前記各点での接線方向と前記一端での接
線方向とのなす角度を算出し、前記距離に対する前記角
度のグラフを求め、前記グラフの接線の傾きから前記連
結曲線上の各点での曲率を算出してなる鉄筋径の計測方
法。
2. The measuring method according to claim 1, wherein each of the points on the connection curve has a distance from one end on the curve along the curve, a tangential direction at each point, and a tangential direction at the one end. A method for measuring the diameter of a reinforcing bar, comprising: calculating an angle between the distance and the distance; obtaining a graph of the angle with respect to the distance;
【請求項3】請求項2の計測方法において、前記グラフ
の接線の傾きが零以外である前記連結曲線の部分の曲率
半径から前記鉄筋断面の径を求めてなる鉄筋径の計測方
法。
3. The method according to claim 2, wherein the rebar cross-sectional diameter is obtained from a radius of curvature of a portion of the connection curve in which a tangent of the graph has a slope other than zero.
【請求項4】請求項1、2又は3の計測方法において、
前記鉄筋をネジ筋とし、前記各交差位置で求めた鉄筋断
面の径を順次記憶し、前記記憶した鉄筋断面の径のうち
最大値及び最小値から前記ネジ筋の山断面及び谷断面の
径を求めてなる鉄筋径の計測方法。
4. The measuring method according to claim 1, 2 or 3,
The rebar is a thread, and the diameter of the rebar cross-section obtained at each of the intersection positions is sequentially stored, and the diameters of the thread cross-section and the valley cross-section of the rebar are calculated from the maximum and minimum values of the stored rebar cross-section diameters. The required method for measuring the reinforcing bar diameter.
【請求項5】請求項1、2又は3の計測方法において、
前記鉄筋を複数の鉄筋が膨径継手で繋がれた接続鉄筋と
し、前記各交差位置で求めた対応重心点の三次元座標と
鉄筋断面の径とを順次記憶し、前記記憶した鉄筋断面の
径の継手部分に対応する前記対応重心点の三次元座標を
検出することにより継手位置及び継手長さを求めてなる
鉄筋径の計測方法。
5. The measuring method according to claim 1, 2 or 3,
The rebar is a connecting rebar in which a plurality of rebars are connected by a bulging joint, and the three-dimensional coordinates of the corresponding center of gravity and the diameter of the rebar cross-section obtained at each intersection are sequentially stored, and the stored rebar cross-section diameter is stored. A method for measuring the diameter of a reinforcing bar, wherein a joint position and a joint length are obtained by detecting three-dimensional coordinates of the corresponding center of gravity point corresponding to the joint portion of (1).
【請求項6】配筋した鉄筋と交差可能に傾斜して平面ス
リット光を発光する光源と、前記スリット光のみ透過す
るフィルタが取付けられ且つ前記スリット光と前記鉄筋
との交差位置が撮影可能に傾斜したカメラと、前記光源
とカメラが所定保持位置に取付けられた取付台と、前記
取付台が固定された回転軸とを有する撮像装置;前記回
転軸の角度位置を検出して出力する回転角度計;対地三
次元座標系における前記撮像装置の撮影位置と前記所定
保持位置と前記スリット光及びカメラ光軸の傾斜角とを
記憶する記憶装置;カメラ画像上における交差点群の像
及びその重心点の二次元座標を求めて出力する画像処理
装置;前記記憶した撮影位置及び保持位置と前記角度計
出力の角度位置とに基づき対地三次元座標系での光源及
びカメラ座標を算出し、該光源及びカメラ座標と前記画
像処理装置出力の二次元座標と前記記憶した傾斜角とに
基づきスリット光投影法により前記二次元座標に対応す
る対応交差点群及び対応重心点の三次元座標を算出する
座標算出手段;異なる前記対応重心点を結んだ重心軸を
算出する重心軸算出手段;前記対応交差点群を前記重心
軸に垂直な投影面上へ正射影した投影点群により投影画
像を作成する投影図作成手段;並びに前記投影点群を結
んだ連結曲線上の各点における曲率を算出し、前記曲線
のうち曲率一定部分の曲率半径を求める曲率算出手段を
備えてなる鉄筋径の計測装置。
6. A light source which emits planar slit light inclined so as to be able to intersect with a reinforcing bar arranged, and a filter which transmits only the slit light are attached, and an intersection position between the slit light and the reinforcing bar can be photographed. An imaging device having a tilted camera, a mounting base on which the light source and the camera are mounted at a predetermined holding position, and a rotation axis to which the mounting base is fixed; a rotation angle for detecting and outputting an angular position of the rotation axis A storage device for storing the photographing position of the image pickup device in the three-dimensional coordinate system with the ground, the predetermined holding position, the slit light, and the inclination angle of the optical axis of the camera; and the image of the intersection group on the camera image and the center of gravity thereof. An image processing apparatus for obtaining and outputting two-dimensional coordinates; calculating light source and camera coordinates in a three-dimensional ground system based on the stored shooting position and holding position and the angular position output by the goniometer. Then, based on the light source and camera coordinates, the two-dimensional coordinates of the output of the image processing device, and the stored inclination angle, the three-dimensional coordinates of the corresponding intersection group and the corresponding centroid point corresponding to the two-dimensional coordinates by the slit light projection method. Coordinate calculating means for calculating; Center-of-gravity axis calculating means for calculating a center-of-gravity axis connecting different corresponding center-of-gravity points; Producing a projection image from a group of projection points obtained by orthogonally projecting the corresponding intersection group onto a projection plane perpendicular to the center-of-gravity axis A projection drawing creating means for calculating; and a curvature calculating means for calculating a curvature at each point on a connection curve connecting the projection point group and obtaining a radius of curvature of a constant curvature portion of the curve. .
【請求項7】請求項6の計測装置において、前記角度計
と記憶装置と画像処理装置に接続されたコンピュータを
設け、前記座標算出手段と前記重心軸算出手段と前記投
影図作成手段と前記曲率算出手段を前記コンピュータ上
のプログラムとしてなる鉄筋径の計測装置。
7. The measuring device according to claim 6, further comprising a computer connected to said goniometer, storage device and image processing device, wherein said coordinate calculating means, said center-of-gravity axis calculating means, said projection drawing creating means, and said curvature are provided. A rebar diameter measuring device, wherein the calculating means is a program on the computer.
JP8002117A 1996-01-10 1996-01-10 Method and apparatus for measuring rebar diameter Expired - Lifetime JP2980195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002117A JP2980195B2 (en) 1996-01-10 1996-01-10 Method and apparatus for measuring rebar diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002117A JP2980195B2 (en) 1996-01-10 1996-01-10 Method and apparatus for measuring rebar diameter

Publications (2)

Publication Number Publication Date
JPH09189526A JPH09189526A (en) 1997-07-22
JP2980195B2 true JP2980195B2 (en) 1999-11-22

Family

ID=11520416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002117A Expired - Lifetime JP2980195B2 (en) 1996-01-10 1996-01-10 Method and apparatus for measuring rebar diameter

Country Status (1)

Country Link
JP (1) JP2980195B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412092B2 (en) * 2008-11-18 2014-02-12 株式会社大林組 Bar arrangement information acquisition apparatus and bar arrangement information acquisition method
JP2010151577A (en) * 2008-12-25 2010-07-08 Shimizu Corp Device and method for inspecting arrangement of reinforcing bar
JP5586414B2 (en) * 2010-10-21 2014-09-10 株式会社大林組 Bar arrangement information acquisition apparatus and bar arrangement information acquisition method
JP5867210B2 (en) * 2011-07-15 2016-02-24 株式会社大林組 Reinforcing bar standard identification device and reinforcing bar standard information creation device
JP6079087B2 (en) * 2012-09-20 2017-02-15 株式会社大林組 Reinforcing bar standard identification device and reinforcing bar standard information creation device
JP6083091B2 (en) * 2013-06-18 2017-02-22 株式会社竹中工務店 Reinforcing bar inspection support device and program
CN104613859A (en) * 2015-02-05 2015-05-13 交通运输部公路科学研究所 Electromagnetic sensing principle based inspection component of concrete reinforcement detector
CN105180763B (en) * 2015-10-09 2018-02-16 浙江交工集团股份有限公司 Concrete structure reinforcing bars protective layer thickness detects environment calibration device and operating method
JP6564693B2 (en) * 2015-11-25 2019-08-21 オリンパス株式会社 Imaging apparatus, imaging apparatus control method, and determination program
JP7327872B2 (en) 2018-05-14 2023-08-16 エスアールアイ インターナショナル Computerized inspection system and method
US10810734B2 (en) * 2018-07-02 2020-10-20 Sri International Computer aided rebar measurement and inspection system
JP6813808B2 (en) * 2018-12-28 2021-01-13 日本電気株式会社 POS terminal device
JP2020134393A (en) * 2019-02-22 2020-08-31 株式会社フジタ System and method for inspecting layout of reinforcement
DE102019008821A1 (en) * 2019-12-18 2021-06-24 Mitutoyo Corporation Method and device for determining the two-point size of a workpiece
CN111780665B (en) * 2020-07-17 2021-09-21 江苏远荣智能装备有限公司 Method for positioning reinforcing mesh

Also Published As

Publication number Publication date
JPH09189526A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP2980195B2 (en) Method and apparatus for measuring rebar diameter
Fawzy 3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy
US6922234B2 (en) Method and apparatus for generating structural data from laser reflectance images
US7206080B2 (en) Surface shape measurement apparatus, surface shape measurement method, surface state graphic apparatus
US20150116691A1 (en) Indoor surveying apparatus and method
CN105115560B (en) A kind of non-contact measurement method of cabin volume of compartment
JP2019144191A (en) Image processing system, image processing method and program for inspecting structure such as bridge
JP4743771B2 (en) Section data acquisition method, system, and section inspection method
Ahmadabadian et al. Clustering and selecting vantage images in a low-cost system for 3D reconstruction of texture-less objects
CN111145345A (en) Tunnel construction area three-dimensional model construction method and system
JP3690581B2 (en) POSITION DETECTION DEVICE AND METHOD THEREFOR, PLAIN POSITION DETECTION DEVICE AND METHOD THEREOF
JP2007147522A (en) Photogrammetry and photogrammetry program
Georgantas et al. An accuracy assessment of automated photogrammetric techniques for 3D modeling of complex interiors
CN112254670A (en) 3D information acquisition equipment based on optical scanning and intelligent vision integration
Hosseininaveh et al. A low-cost and portable system for 3D reconstruction of texture-less objects
JP2021039013A (en) Wall crack measuring machine and measuring method
JP2003130642A (en) Telemetry and telemeter
JPH1019562A (en) Surveying equipment and surveying method
JP2980194B2 (en) Method and apparatus for measuring reinforcing bar position and posture
JP2896539B2 (en) How to detect unique information such as object position and angle
JP2005140550A (en) Three dimensional model preparation method
Martínez et al. Non-contact 3D measurement of buildings through close range photogrammetry and a laser distance meter
CN114663486A (en) Building height measurement method and system based on binocular vision
KR100457080B1 (en) Method for surveying the characteristics of joint on rock slope using image
Kattan et al. 3D modelling and visualization of large building using photogrammetric approach