JP2968183B2 - Electric arc melting furnace - Google Patents

Electric arc melting furnace

Info

Publication number
JP2968183B2
JP2968183B2 JP6325809A JP32580994A JP2968183B2 JP 2968183 B2 JP2968183 B2 JP 2968183B2 JP 6325809 A JP6325809 A JP 6325809A JP 32580994 A JP32580994 A JP 32580994A JP 2968183 B2 JP2968183 B2 JP 2968183B2
Authority
JP
Japan
Prior art keywords
electrode
furnace
electric arc
molten metal
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6325809A
Other languages
Japanese (ja)
Other versions
JPH08178533A (en
Inventor
定 木下
潔 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINOSHITA SEISAKUSHO KK
Original Assignee
KINOSHITA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINOSHITA SEISAKUSHO KK filed Critical KINOSHITA SEISAKUSHO KK
Priority to JP6325809A priority Critical patent/JP2968183B2/en
Publication of JPH08178533A publication Critical patent/JPH08178533A/en
Application granted granted Critical
Publication of JP2968183B2 publication Critical patent/JP2968183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Furnace Details (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気弧光式溶解炉、特
に、球状黒鉛鋳鉄鋳物の製造に際しその原料の溶解精錬
に用いる電気アーク炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric arc furnace, and more particularly to an electric arc furnace used for melting and refining raw materials in the production of spheroidal graphite cast iron castings.

【0002】[0002]

【従来の技術】球状黒鉛鋳鉄鋳物の製造において、黒鉛
球状化のためにMg合金を添加するが、この際Mgの一
部は溶湯中のS、Oと反応して、MgS、MgOを生成
し溶湯中に懸濁する。この懸濁した生成物は鋳造に際し
て、ドロス発生、引け巣等の内部欠陥の要因となり、そ
のため押湯など製品に不要な溶湯を必要とし、歩留りを
低下させる。
2. Description of the Related Art In the production of spheroidal graphite cast iron castings, an Mg alloy is added for spheroidizing graphite. At this time, part of Mg reacts with S and O in the molten metal to form MgS and MgO. Suspend in the melt. This suspended product causes internal defects such as dross generation and shrinkage cavities during casting, so that unnecessary molten metal such as a riser is required for the product, and the yield is reduced.

【0003】従って、Mg処理以前に、即ち溶解過程に
おいて脱硫、脱酸を行うことが望ましいが、一般的な溶
解手段として用いられるキューポラや誘導炉等は再溶解
のみで脱硫、脱酸の精錬過程をもたない。本発明者は溶
解の際に精錬を行う方法として既に、特公昭54−38
045号公報「電気弧光炉による鋳鉄の溶解法」等にて
提案している。
Therefore, desulfurization and deoxidation are desirably performed before the Mg treatment, that is, in the melting process. However, cupolas and induction furnaces used as general melting means only use remelting to perform desulfurization and deoxidation refining processes. Have no. The present inventor has already disclosed a method of performing refining during melting, which is disclosed in
No. 045, "Method of melting cast iron by electric arc furnace".

【0004】[0004]

【発明が解決しようとする課題】上記した従来の方法で
は、その当時としてはほぼ所望の操業結果が得られた
が、より高品質の製品でかつ効率の良い操業が要求され
る現状においては次のような問題点がみられる。
In the above-mentioned conventional method, almost the desired operation result was obtained at that time. However, in the present situation where a higher quality product and efficient operation are required, the following method is required. The following problems are observed.

【0005】埋没電極方式であるため、炉の構造にお
いて、電極間隔が狭い場合、各電極側面より原料を通じ
て電流が流れやすく、自動制御による送電の場合、電極
が上昇しスラグ層より離れるため精錬度が阻害され、ま
た、溶解温度が低下し鋳造性を損なう。しかも、送電が
不安定となり、自動化が困難となる。 また、電極間隔が広い場合、炉容量が大きくなると、
連続出湯のため溶湯の温度が低下する。また、アーク電
圧が及びスラグの抵抗に消費されるため電極がスラグ中
に浸漬し、アーク長が短く精錬度を阻害する。更に、電
極がスラグにより浸蝕されるばかりでなく、溶湯中に加
炭され成分調整が困難となる。 炉形が広い場合、かなりの原料が電極直下のアーク雰
囲気を通過せず溶湯に接触し溶解するため精錬度が低
く、鋳造欠陥等の原因となる。
[0005] Because of the buried electrode system, in the furnace structure, when the electrode spacing is small, current flows easily from the side surfaces of each electrode through the raw material. In the case of power transmission by automatic control, the electrode rises and separates from the slag layer, so the refining degree , And the melting temperature is lowered to deteriorate the castability. In addition, power transmission becomes unstable and automation becomes difficult. Also, if the electrode spacing is wide, if the furnace capacity is large,
The temperature of the molten metal drops due to continuous tapping. Further, since the arc voltage and the resistance of the slag are consumed, the electrode is immersed in the slag, and the arc length is short, which impairs the refining degree. Further, not only is the electrode eroded by the slag, but also it is carburized in the molten metal, making component adjustment difficult. When the furnace shape is wide, a considerable amount of raw material does not pass through the arc atmosphere immediately below the electrode but contacts and melts the molten metal, so that the refining degree is low, which causes casting defects.

【0006】本発明は、このような従来技術の問題点を
解決し、より一層操業を安定させると共に溶解過程にお
ける精錬をより有効なものとして、Mg使用量の低減と
鋳造歩留りの向上を図ることができる構造の電気弧光式
溶解炉を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves such problems of the prior art and aims to further reduce the amount of Mg used and improve the casting yield by stabilizing the operation and making the refining in the melting process more effective. It is an object of the present invention to provide an electric arc light melting furnace having a structure capable of performing the following.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、次の通
りである。 (1)電極を直線上に配列した鋳鉄溶解用3相電気弧光
式溶解炉において、3本の電極間隔(中心間)をそれぞ
れ使用電極径の1.6〜2.1倍に設定し、通電を安定
せしめたことを特徴とする電気弧光式溶解炉。 (2)湯溜り部の深さを電極径の0.6〜1.1倍、横
幅を1.6〜2.2倍、長さを5.4〜6.2倍とし、
電極直下の極めて小さい範囲に限定した炉形とし、装入
原料が全てアーク雰囲気にて連続的に安定して溶解精錬
されるようにしたことを特徴とする(1)記載の電気弧
光式溶解炉。
The gist of the present invention is as follows. (1) In a three-phase electric arc melting furnace for melting cast iron in which electrodes are arranged in a straight line, the distance between the three electrodes (center-to-center) is set to 1.6 to 2.1 times the electrode diameter to be used, and electricity is supplied. An electric arc light melting furnace characterized by stabilizing. (2) The depth of the pool is 0.6 to 1.1 times the electrode diameter, the width is 1.6 to 2.2 times, and the length is 5.4 to 6.2 times,
(1) The electric arc light melting furnace according to (1), wherein the furnace shape is limited to an extremely small range immediately below the electrodes, and all the charged materials are continuously and stably melted and refined in an arc atmosphere. .

【0008】[0008]

【作用】本発明の溶解炉では、適正な操業電圧・電流の
範囲にて、適正な電極間隔を上記の所定の範囲内で選ぶ
ことにより、装入原料を介して電極側面より電流が流れ
難くなり、炉底に溜まった溶湯を通じてスラグにアーク
が発生し、周辺の原料が順次溶解され、操業が安定して
行われる。尚、従来における電極間隔は、大体電極径の
1.5倍程度であった。
In the melting furnace of the present invention, by selecting an appropriate electrode interval within the above-mentioned predetermined range within an appropriate operating voltage / current range, current does not easily flow from the electrode side surface via the charged material. An arc is generated in the slag through the molten metal accumulated in the furnace bottom, and the surrounding raw materials are sequentially melted, so that the operation is stably performed. The electrode spacing in the related art was approximately 1.5 times the electrode diameter.

【0009】また、湯溜り部の電極径に対する大きさを
特定することにより、炉床を電極直下に限定したため、
少量の精錬剤(CaOなど)によって溶湯と未溶解原料
との接触を防ぎ、精錬溶湯の汚染を防止できる。また、
短時間に昇温することも可能となる。尚、従来の湯溜り
部の深さ、横幅及び長さについては、それぞれ電極径の
2.4倍、1.2倍及び5.2倍程度であった。
In addition, since the size of the pool is specified with respect to the diameter of the electrode, the hearth is limited to immediately below the electrode.
A small amount of refining agent (CaO or the like) can prevent the molten metal from contacting with the undissolved raw material, thereby preventing contamination of the molten metal. Also,
It is also possible to raise the temperature in a short time. The depth, the width and the length of the conventional pool were about 2.4 times, 1.2 times and 5.2 times the electrode diameter, respectively.

【0010】[0010]

【実施例】次に、図面に示す実施例に基づいて本発明を
説明する。図1〜図3に示すように、適宜の耐火物によ
り構成される炉本体2は、矩形状の湯溜り部を有し、一
方の短辺側に出銑口3を設けている。該炉本体2の湯溜
り部には3本の電極1が直線上に配列されており、図示
していないが適当な3相交流電源に続いている。図にお
いて、4は電極1の周囲に装入される原料、5は装入原
料が溶融して湯溜り部内に溜った溶湯、6は溶湯上に生
成するスラグ、7は電極先端と溶湯間に発生するアーク
を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in the drawings. As shown in FIGS. 1 to 3, a furnace main body 2 made of an appropriate refractory has a rectangular pool, and a tap hole 3 is provided on one short side. Three electrodes 1 are arranged in a straight line in a well portion of the furnace main body 2, and are connected to an appropriate three-phase AC power source (not shown). In the figure, 4 is a raw material charged around the electrode 1, 5 is a molten metal in which the charged raw material is melted and stored in the pool, 6 is a slag generated on the molten metal, and 7 is between the electrode tip and the molten metal. The generated arc is shown.

【0011】このような埋没電極方式のアーク炉におい
ては、電極1の先端と溶湯5間のアーク7によって継続
して原料4を溶融していくが、この溶融を効率良く行う
ためには、電流の安定持続が操業上大きな要素を占め
る。実際の溶解炉の操業では、理論的に解明し難い多く
の問題があり、これを解決するためには多くの経費と時
間を必要とし、多大なリスクを伴うものであるが、特
に、電極が直線上に配列されたアーク炉においては、原
料の連続装入なども影響して通電が安定し難く、適正な
電圧・電流の設定等、現場操業上の手法を凝らして実施
されているけれども、なお、不安定な点があり自動化を
困難にしている。本発明は長年にわたる研究と操業経験
に基づく結果、完成したものである。
In such an arc furnace of the buried electrode system, the raw material 4 is continuously melted by the arc 7 between the tip of the electrode 1 and the molten metal 5. Is a major factor in operation. In actual melting furnace operation, there are many problems that are difficult to elucidate theoretically, and solving them requires a lot of cost and time, and involves a great deal of risk. In arc furnaces arranged on a straight line, it is difficult to stabilize current supply due to the continuous charging of raw materials, etc. In addition, there are unstable points, which makes automation difficult. The present invention has been completed based on years of research and operational experience.

【0012】すなわち、本発明においては、装入原料4
は全てアーク雰囲気帯の精錬領域を通過することが重要
であるとの認識のもとに、電極間隔に着目したもので、
図1に示す直線配置の電極1の相互の間隔(中心間距
離)Sを、使用電極1の直径の1.6〜2.1倍に設定
する。間隔Sが電極径の1.6倍未満では、電極間隔が
狭くなり、電極側面より原料を通じて流れる電流が多く
なり、精錬度を阻害すると共に溶解温度の低下を招く弊
害がある。また、間隔Sが電極径の2.1倍を超える
と、それに応じて炉容量が大きくなり、溶湯の温度低下
を招くと共に、アーク電圧が溶湯及びスラグの抵抗に消
費されて電極がスラグ中に沈積し、アーク長が短く精錬
度を阻害する。しかも、電極がスラグにより浸蝕され、
溶湯中に加炭され成分調整が困難となる弊害も生じる。
尚、間隔Sの好適な範囲は、電極径の1.8〜2.0倍
である。
That is, in the present invention, the charge 4
Focuses on electrode spacing, recognizing that it is important to pass through the refining area in the arc atmosphere zone.
The interval (center-to-center distance) S between the electrodes 1 in the linear arrangement shown in FIG. 1 is set to 1.6 to 2.1 times the diameter of the electrode 1 to be used. If the interval S is less than 1.6 times the electrode diameter, the electrode interval becomes narrow, the current flowing from the electrode side surface through the raw material increases, and there is a problem that the refining degree is hindered and the melting temperature is lowered. Further, if the interval S exceeds 2.1 times the electrode diameter, the furnace capacity increases accordingly, causing a decrease in the temperature of the molten metal, and the arc voltage is consumed by the resistance of the molten metal and the slag, so that the electrode is formed in the slag. Deposits, short arc length, impairs refining. Moreover, the electrodes are eroded by the slag,
There is also an adverse effect that carburization in the molten metal makes it difficult to adjust the components.
Note that a suitable range of the interval S is 1.8 to 2.0 times the electrode diameter.

【0013】また、本発明においては、上記の電極間隔
に加え、装入原料が全てアーク雰囲気帯の精錬領域を通
過するようにするため、炉体の形状を、可及的に電極直
下に精錬領域が限定・縮小されるように考慮することが
好ましい。即ち、炉床における湯溜り部の深さが使用電
極径の0.6〜1.1倍で、湯溜り部の横幅が該電極径
の1.6〜2.2倍、長さが電極径の5.4〜6.2倍
と規定した。
In the present invention, in addition to the above-mentioned electrode spacing, the shape of the furnace body is refined immediately below the electrodes as much as possible so that all the charged materials pass through the refining area in the arc atmosphere zone. It is preferable to consider that the area is limited or reduced. That is, the depth of the pool in the hearth is 0.6 to 1.1 times the electrode diameter used, the width of the pool is 1.6 to 2.2 times the electrode diameter, and the length is the electrode diameter. 5.4 to 6.2 times.

【0014】湯溜り部、即ち炉床の形状寸法をこのよう
に規定したのは、それぞれの深さ、横幅及び長さが、下
限未満であると、円滑な溶解精錬操業を行うことが困難
であり、また、上限を超えると炉形が広くなり、かなり
の原料が電極直下のアーク雰囲気を通過せずに溶湯と接
触し溶解するため、精錬度を阻害し鋳造欠陥等の発生要
因となるからである。尚、湯溜り部の深さ、横幅及び長
さの好適な範囲は、それぞれ電極径の0.8〜1.0
倍、1.8〜2.0倍及び5.4〜6.0倍である。
The reason why the shape and size of the pool, that is, the hearth, is defined in this manner is that if the respective depths, widths and lengths are less than the lower limits, it is difficult to perform a smooth refining operation. Yes, and if it exceeds the upper limit, the furnace shape will be wide, and considerable raw material will contact and melt with the molten metal without passing through the arc atmosphere directly below the electrode, which will inhibit the refining degree and cause casting defects etc. It is. The preferred range of the depth, the width and the length of the well is 0.8 to 1.0 of the electrode diameter, respectively.
Times, 1.8-2.0 times and 5.4-6.0 times.

【0015】(操業例1) 操業条件 ・装入原料:球状黒煙鋳鉄用原料 ・電極:10インチ径の3本を図2の如く直線状に配列 ・電極間隔(S):480mm(電極径の1.9倍) ・溶湯溜り部:深さ(D)200mm(電極径の0.8
倍)、横幅(W)450mm(電極径の1.8倍)、長さ
(L)1500mm(電極径の6倍) ・操業電圧:60V ・電流:8000〜9000Aの範囲で自動制御 ・造滓剤:初期造滓剤としてCaOを各電極下端周辺に
それぞれ4kg投入し、連続CaO投入量を装入原料の
0.4%とした。 ・球化剤:Fe−Si−4%Mg
(Operating example 1) Operating conditions-Charged raw material: raw material for spherical black smoke cast iron-Electrodes: three 10-inch diameter linearly arranged as shown in Fig. 2-Electrode spacing (S): 480 mm (electrode diameter) 1.9 times the size) ・ Molten pool: depth (D) 200 mm (0.8 of electrode diameter)
), Width (W) 450 mm (1.8 times the electrode diameter), length (L) 1500 mm (6 times the electrode diameter)-Operating voltage: 60 V-Current: automatic control in the range of 8000 to 9000 A-Slag making Agent: As an initial slag-making agent, 4 kg of CaO was charged around the lower end of each electrode, and the continuous CaO input was 0.4% of the charged raw material.・ Spheronizing agent: Fe-Si-4% Mg

【0016】以上の連続操業の結果、自動送電が安定し
て実施でき、使用電力850KWH で、時間当たり150
0kgの鋳鉄の溶解が行えた。また、昇温も短時間で行わ
れ、溶湯性状も良く、極微量の球化剤で黒鉛の球状化が
でき、欠陥の少ない鋳鉄が得られた。この本発明の効果
を従来例とを比較して表1に具体的に示す。
As a result of the above continuous operation, automatic power transmission can be carried out stably.
0 kg of cast iron was melted. In addition, the temperature was raised in a short time, the properties of the molten metal were good, the graphite could be spheroidized with a trace amount of spheroidizing agent, and cast iron with few defects was obtained. Table 1 shows the effect of the present invention in comparison with the conventional example.

【0017】[0017]

【表1】 [Table 1]

【0018】(操業例2)電極間隔(S)、溶湯溜り部
の深さ(D)、横幅(W)及び長さ(L)以外の条件
は、操業例1と同様にして操業を行った。即ち、S:電
極径の2.0倍、W:電極径の2倍、D:電極径の1
倍、L:電極径の6.1倍と変えた。その結果、原料投
入時の電流(メータ)の振れが少なくなり、更に自動送
電が安定し、投入時のヒステリシスロスが少なくなり、
電力消費量が560KVA/T から540KVA/T になった。
また、電流の安定が良いため緩衝体の役割も果たし、か
つ、CaO(精錬剤)の使用量も0.3%/Tになっ
た。
(Operation Example 2) The operation was performed in the same manner as in Operation Example 1 except for the electrode spacing (S), the depth (D) of the molten metal pool, the width (W), and the length (L). . S: 2.0 times the electrode diameter, W: twice the electrode diameter, D: 1 times the electrode diameter
Times, L: changed to 6.1 times the electrode diameter. As a result, the fluctuation of the current (meter) at the time of material input is reduced, the automatic power transmission is stabilized, and the hysteresis loss at the time of input is reduced,
The power consumption increased from 560 KVA / T to 540 KVA / T.
In addition, since the current stability was good, it also served as a buffer, and the amount of CaO (refining agent) was 0.3% / T.

【0019】[0019]

【発明の効果】以上の本発明の溶解炉により次のような
効果が期待できる。 通電が安定し、自動運転が継続して行える。 使用電力及び電極消費量が従来に比して低減できる。 精錬剤や球化剤の使用量が従来より減少する。 溶湯精錬度が良好で、かつ、内部欠陥が減少し、押湯
が低減でき、歩留まりも向上する。 溶湯の昇温が速やかに行われる。
According to the melting furnace of the present invention, the following effects can be expected. Electricity is stable and automatic operation can be continued. Power consumption and electrode consumption can be reduced as compared with the conventional case. The amount of refining and sphering agents used is lower than before. The refining degree of the molten metal is good, the internal defects are reduced, the riser can be reduced, and the yield is improved. The temperature of the molten metal is raised quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る溶解炉の一実施例を示す正面断面
図。
FIG. 1 is a front sectional view showing one embodiment of a melting furnace according to the present invention.

【図2】図1の炉の平面図。FIG. 2 is a plan view of the furnace of FIG.

【図3】図1の炉の側面断面図。FIG. 3 is a side sectional view of the furnace of FIG. 1;

【符号の説明】[Explanation of symbols]

1 電極 2 炉本体 3 出銑口 4 装入原料 5 溶湯 6 スラグ 7 アーク DESCRIPTION OF SYMBOLS 1 Electrode 2 Furnace main body 3 Tap hole 4 Charge material 5 Molten metal 6 Slag 7 Arc

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F27B 3/00 - 3/28 F27D 11/08 C21C 1/08 C21C 5/52 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F27B 3/00-3/28 F27D 11/08 C21C 1/08 C21C 5/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極を直線上に配列した鋳鉄溶解用3相
電気弧光式溶解炉において、3本の電極間隔(中心間)
をそれぞれ使用電極径の1.6〜2.1倍に設定し、通
電を安定せしめたことを特徴とする電気弧光式溶解炉。
1. In a three-phase electric arc melting furnace for melting cast iron in which electrodes are arranged in a straight line, an interval between three electrodes (center-to-center).
Are respectively set to 1.6 to 2.1 times the diameter of the electrode used, thereby stabilizing the current supply.
【請求項2】 炉体の湯溜り部の深さを電極径の0.6
〜1.1倍、横幅を1.6〜2.2倍、長さを5.4〜
6.2倍とし、電極直下の極めて小さい範囲に限定した
炉形とし、装入原料が全てアーク雰囲気下にて連続的に
安定して溶解精錬されるようにしたことを特徴とする請
求項1記載の電気弧光式溶解炉。
2. The depth of a basin of a furnace body is set to an electrode diameter of 0.6.
~ 1.1 times, width 1.6 ~ 2.2 times, length 5.4 ~
6. A furnace shape limited to an extremely small area immediately below an electrode, wherein the furnace material is continuously melted and refined in an arc atmosphere. The electric arc light melting furnace as described.
JP6325809A 1994-12-27 1994-12-27 Electric arc melting furnace Expired - Fee Related JP2968183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6325809A JP2968183B2 (en) 1994-12-27 1994-12-27 Electric arc melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6325809A JP2968183B2 (en) 1994-12-27 1994-12-27 Electric arc melting furnace

Publications (2)

Publication Number Publication Date
JPH08178533A JPH08178533A (en) 1996-07-12
JP2968183B2 true JP2968183B2 (en) 1999-10-25

Family

ID=18180844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6325809A Expired - Fee Related JP2968183B2 (en) 1994-12-27 1994-12-27 Electric arc melting furnace

Country Status (1)

Country Link
JP (1) JP2968183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248585A (en) * 2009-04-16 2010-11-04 Kinoshita Seisakusho:Kk Method and apparatus for refining cast iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248585A (en) * 2009-04-16 2010-11-04 Kinoshita Seisakusho:Kk Method and apparatus for refining cast iron

Also Published As

Publication number Publication date
JPH08178533A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
CN104039987B (en) Steel slag reduction method
JPS62227023A (en) Steelmaking apparatus
WO2020217828A1 (en) Method for desulfurization of molten metal
US4032704A (en) Method and apparatus for treating a metal melt
SE8602113L (en) PROCEDURE FOR CONTINUOUS REDUCTION OF MELT METAL SURGICAL BATTLE IN AN ELECTRIC OWNER
JP2968183B2 (en) Electric arc melting furnace
JP2914674B2 (en) Heat dissolution method
US1686207A (en) Direct reduction process for producing carbon binding metals or metal alloys
JP2000017319A (en) Operation of arc furnace
US4412857A (en) Method of smelting ferronickel in ore-smelting electrical furnace under a layer of charge
US1894657A (en) Method and apparatus for refining metals
WO2021241538A1 (en) Operation method of stationary electric furnace
US3522356A (en) Electric furnace corona melting process
JP2003253322A (en) Method for melting stainless steel in electric furnace
US3690867A (en) Electric-arc steelmaking
RU2153023C1 (en) Method of processing raw materials containing manganese with recovery of metals
US852347A (en) Process of producing low-carbon ferro alloys.
JPS635671B2 (en)
US1694536A (en) Electric furnace
JP2000345229A (en) Method for arc-melting cold iron source
JP2023136438A (en) Manufacturing method of ferronickel
JP2000088462A (en) Furnace for molten metal
RU2082764C1 (en) Method of preparation of electric furnace for production of synthetic slag
KR20230128104A (en) Desulfurization method of molten metal
JPS6191315A (en) Operating method of ladle refining furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees