JP2963012B2 - Superconducting transistor - Google Patents

Superconducting transistor

Info

Publication number
JP2963012B2
JP2963012B2 JP6229305A JP22930594A JP2963012B2 JP 2963012 B2 JP2963012 B2 JP 2963012B2 JP 6229305 A JP6229305 A JP 6229305A JP 22930594 A JP22930594 A JP 22930594A JP 2963012 B2 JP2963012 B2 JP 2963012B2
Authority
JP
Japan
Prior art keywords
substrate
superconductor
region
insulating layer
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6229305A
Other languages
Japanese (ja)
Other versions
JPH0897477A (en
Inventor
和彦 高橋
順信 善里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP6229305A priority Critical patent/JP2963012B2/en
Publication of JPH0897477A publication Critical patent/JPH0897477A/en
Application granted granted Critical
Publication of JP2963012B2 publication Critical patent/JP2963012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、異方性を有する酸化
物超電導体を用いた超電導トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting transistor using an oxide superconductor having anisotropy.

【0002】[0002]

【従来の技術】転移温度Tcの高いビスマス系酸化物超
電導体、イットリウム系酸化物超電導体、タリウム系酸
化物超電導体等を用いた酸化物超電導トランジスタにお
いては、一定の動作電圧を有し、回路動作の安定性に優
れたトンネル接合が用いられる。このトンネル接合は、
SIS又はSIN(ここで、Sは超電導体層、Iは絶縁
層、Nは常伝導体層)からなる積層構造となっている。
2. Description of the Related Art An oxide superconducting transistor using a bismuth-based oxide superconductor, a yttrium-based oxide superconductor, a thallium-based oxide superconductor or the like having a high transition temperature Tc has a certain operating voltage. A tunnel junction having excellent operation stability is used. This tunnel junction
It has a laminated structure composed of SIS or SIN (here, S is a superconductor layer, I is an insulating layer, and N is a normal conductor layer).

【0003】酸化物超電導体の中で、BiSrCaCu
酸化物(以下、BSCCOと略記する。)、YBaCu
酸化物(以下、YBCOと略記する。)やTlBaCa
Cu酸化物(以下、TBCCOと略記する。)組成の超
電導体は、c軸或いはa(又はb)軸に層状の積層構造
からなる異方性特性を有する。例えば、BSCCOにお
いては、c軸方向に、BiO、SiO、Cu−OとCa
の積層構造をなしており、各層の中でCu−O層が超電
導特性を備える。すなわち、BSCCO膜はN/S/S
/Nの積層構造をとる。
[0003] Among oxide superconductors, BiSrCaCu
Oxide (hereinafter abbreviated as BSCCO), YBaCu
Oxide (hereinafter abbreviated as YBCO) or TlBaCa
A superconductor having a composition of Cu oxide (hereinafter, abbreviated as TBCCO) has anisotropic characteristics having a layered laminated structure on the c-axis or a (or b) axis. For example, in BSCCO, BiO, SiO, Cu-O and Ca
And a Cu—O layer among the layers has superconducting properties. That is, the BSCCO film is N / S / S
/ N.

【0004】従来のトンネル接合を用いた超電導トラン
ジスタは、図5に示すように、Nbを0.02〜0.0
5wt%ドープしたSrTiO3からなる半導体基板1
0上にBSCCO、YBCOやTBCCO組成の超電導
体からなるベース領域11が設けられ、このベース領域
11上に膜厚20〜60ÅのMgO、SrTiO3等か
らなる酸化物絶縁層12を介してAu電極又は超電導体
からなるエミッタ領域13を設けている。
In a conventional superconducting transistor using a tunnel junction, as shown in FIG.
Semiconductor substrate 1 made of SrTiO 3 doped with 5 wt%
A base region 11 made of a superconductor having a composition of BSCCO, YBCO or TBCCO is provided on the base region 11, and an Au electrode is formed on the base region 11 via an oxide insulating layer 12 made of MgO, SrTiO 3 or the like having a thickness of 20 to 60 °. Alternatively, an emitter region 13 made of a superconductor is provided.

【0005】ところで、トンネル接合を形成する場合に
は、超電導薄膜表面は平坦性が良好である方が好まし
い。上述した異方性を有する超電導体の場合、a−b軸
方向に配向した膜より、c軸方向に配向した膜の方が平
坦性は良好である。しかしながら、エネルギーギャップ
では、c軸に配向した膜より、a−b軸に配向した膜の
方が大きい。
When a tunnel junction is formed, the surface of the superconducting thin film preferably has good flatness. In the case of a superconductor having the above-described anisotropy, a film oriented in the c-axis direction has better flatness than a film oriented in the a-b axis direction. However, in the energy gap, a film oriented in the ab axis is larger than a film oriented in the c axis.

【0006】従って、従来のトンネル接合を用いた超電
導トランジスタは、トンネル接合の構造上図5に示すよ
うに、c軸方向に積層した超電導体が用いられている。
そして、エミッタ領域からの準粒子の透過率を向上させ
るために、超電導体層、絶縁層の膜厚を小さくしてい
る。
Therefore, a conventional superconducting transistor using a tunnel junction uses a superconductor laminated in the c-axis direction as shown in FIG. 5 due to the structure of the tunnel junction.
Then, in order to improve the transmittance of the quasiparticles from the emitter region, the thicknesses of the superconductor layer and the insulating layer are reduced.

【0007】[0007]

【発明が解決しようとする課題】上述したように、図5
に示した従来のトンネル接合を用いた超電導トランジス
タにおいては、超電導体層、絶縁層をできるだけ薄くす
る必要がある。しかしながら、超電導体層、絶縁層を薄
くすると超電導層、絶縁層にピンホールが発生し、エミ
ッタとベース領域或いはエミッタとコレクタ領域との間
に短絡が生じ、リーク電流が発生し、理想的な電流・電
圧特性が得られないという問題があった。
As described above, FIG.
In the conventional superconducting transistor using a tunnel junction shown in (1), it is necessary to make the superconductor layer and the insulating layer as thin as possible. However, when the superconductor layer and the insulating layer are thinned, pinholes are generated in the superconducting layer and the insulating layer, a short circuit occurs between the emitter and the base region or between the emitter and the collector region, and a leak current is generated. -There was a problem that voltage characteristics could not be obtained.

【0008】この発明は、上述した従来の問題点を解決
するためになされたものにして、リーク電流を抑制する
と共に、準粒子の透過率を向上させトランジスタ特性を
向上させることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has as its object to suppress leakage current, improve the transmittance of quasiparticles, and improve the transistor characteristics.

【0009】[0009]

【課題を解決するための手段】この発明の超電導トラン
ジスタは、表面に凸部が形成されたSrTiO3基板
と、前記凸部の上面部を除いて凸部の側面部及び基板表
面に所定量のNbをドープすることにより形成されたコ
レクタ領域と、前記凸部の上面部に一部が延在し且つ上
面部上に結晶面が露出するように基板表面上に設けられ
た異方性を有する酸化物超電導体からなるベース領域
と、上記凸部の上面部及び少なくともベース領域の結晶
面を被覆するように設けられた絶縁層と、この絶縁層を
介して設けられた超電導体又は常伝導体からなるエミッ
タ領域と、を備えてなる。
A superconducting transistor according to the present invention comprises an SrTiO 3 substrate having a convex portion formed on the surface thereof, and a predetermined amount of the SrTiO 3 substrate formed on the side surface portion of the convex portion and the substrate surface except for the upper surface portion of the convex portion. A collector region formed by doping with Nb, and anisotropy provided on the substrate surface such that a part thereof extends to the upper surface of the protrusion and a crystal plane is exposed on the upper surface. A base region made of an oxide superconductor, an insulating layer provided so as to cover an upper surface portion of the convex portion and at least a crystal plane of the base region, and a superconductor or a normal conductor provided through the insulating layer. And an emitter region comprising:

【0010】[0010]

【作用】SrTiO3基板に設けた凸部の上面部を除い
て凸部の側面部及び基板表面に所定量のNbをドープす
ることでコレクタ領域を形成しているので、全体の膜厚
が薄くなる凸部の上面部は絶縁体であるSrTiO3
板のままであり、エミッタ領域、コレクタ領域へのダイ
レクトのリーク電流が軽減できる。
The collector region is formed by doping a predetermined amount of Nb on the side surface of the protrusion and the substrate surface except for the upper surface of the protrusion provided on the SrTiO 3 substrate. The upper surface of the convex portion remains the SrTiO 3 substrate, which is an insulator, so that direct leakage current to the emitter region and the collector region can be reduced.

【0011】また、凸部の側面部の全域でエミッタとベ
ース、ベースとコレクタの接合が形成されるので、異方
性超電導体のa−b軸方向の輸送特性が利用でき、準粒
子の透過率が向上し、トランジスタ特性を向上させるこ
とができる。
In addition, since the junction between the emitter and the base and the junction between the base and the collector are formed over the entire area of the side surface of the projection, the transport characteristics of the anisotropic superconductor in the a-b axis direction can be utilized, and the transmission of the quasiparticles can be achieved. Thus, the transistor characteristics can be improved.

【0012】[0012]

【実施例】以下この発明の一実施例を図面を参照して説
明する。図1は、この発明に係る超電導トランジスタを
示す模式的断面図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a superconducting transistor according to the present invention.

【0013】この図1に示すように、SrTiO3(以
下、STOと略記する)基板1の表面部には、凸部2が
イオンミリング又は収束性イオンビーム法などにより形
成されている。この凸部2は例えば、円柱状に形成され
ている。
As shown in FIG. 1, a projection 2 is formed on the surface of a SrTiO 3 (hereinafter abbreviated as STO) substrate 1 by ion milling or a convergent ion beam method. The protrusion 2 is formed, for example, in a columnar shape.

【0014】凸部2の上面部2aを除いて凸部2の側面
部及び基板1表面には、Nbを0.02〜0.05wt
%選択的にドープすることによりSTOを半導体化させ
たコレクタ領域4が形成される。
Except for the upper surface 2a of the protrusion 2, the side surface of the protrusion 2 and the surface of the substrate 1 are coated with 0.02 to 0.05 wt.
The collector region 4 in which the STO is converted into a semiconductor is formed by selectively doping%.

【0015】そして、凸部2の上面部2aに一部が延在
し且つ上面部2a上に結晶面(へき界面)が露出するよ
うに、BSCCO、YBCOやTBCCO組成の異方性
を有する超電導体からなるベース領域4が基板1表面上
に設けられている。
A superconducting material having BSCCO, YBCO or TBCCO composition anisotropy so that a part thereof extends to the upper surface 2a of the convex portion 2 and a crystal plane (a cleavage interface) is exposed on the upper surface 2a. A base region 4 made of a body is provided on the surface of the substrate 1.

【0016】凸部2の上面部2aとベース領域4の結晶
面を含めベース領域4の上面に膜厚は10〜30Å程度
のMgO、SrTiO3からなる絶縁層5が設けられ、
この絶縁層5を介して超電導体又はAuなどの金属から
なるエミッタ領域6が設けられている。
On the upper surface of the base region 4 including the upper surface 2a of the convex portion 2 and the crystal plane of the base region 4, an insulating layer 5 made of MgO or SrTiO 3 having a thickness of about 10 to 30 ° is provided.
An emitter region 6 made of a metal such as a superconductor or Au is provided via the insulating layer 5.

【0017】ところで、上記凸部2の高さをd、ベース
領域4の膜厚をtとすると、エミッタ領域6からコレク
タ領域3に電流が流れるためには、t>dになるように
凸部2の高さ及びベース領域3の膜厚を調整する必要が
ある。すなわち、凸部2の高さよりベース領域3の膜厚
を厚くしている。更に表面及び界面からのダメージを考
慮するとt−d、すなわち、凸部2の高さよりベース領
域の膜厚を300Å以上にする方がよく、このように、
凸部2の高さ及びベース領域3の膜厚が制御されてい
る。この結果、従来の積層タイプに比してベース領域3
の膜厚が厚くなる。
When the height of the convex portion 2 is d and the thickness of the base region 4 is t, a current flows from the emitter region 6 to the collector region 3 so that t> d. 2 and the thickness of the base region 3 need to be adjusted. That is, the film thickness of the base region 3 is larger than the height of the convex portion 2. Further, considering the damage from the surface and the interface, it is better to set the thickness of the base region to 300 ° or more than t−d, that is, the height of the convex portion 2.
The height of the protrusion 2 and the thickness of the base region 3 are controlled. As a result, as compared with the conventional lamination type, the base region 3
Becomes thicker.

【0018】このように、この発明の超電導トランジス
タは、凸部2の上面部の下にはNbがドープされていな
いので、この部分はSTOの絶縁体のままである。この
上に薄い絶縁層を介してエミッタ領域が設けられている
が、基板の絶縁性のために図1の破断矢印で示すエミッ
タ領域からコレクタ領域へのダイレクトのリーク電流は
軽減される。その結果、図4に示すように、図5に示す
従来の構造の超電導トランジスタに比べこの発明の超電
導トランジスタにおいては、I−V特性が改善される。
As described above, in the superconducting transistor of the present invention, since Nb is not doped under the upper surface of the projection 2, this portion remains an STO insulator. An emitter region is provided on this via a thin insulating layer. Due to the insulating property of the substrate, a direct leak current from the emitter region to the collector region indicated by a broken arrow in FIG. 1 is reduced. As a result, as shown in FIG. 4, the IV characteristic of the superconducting transistor of the present invention is improved as compared with the conventional superconducting transistor shown in FIG.

【0019】また、凸部2の側面部の全域でエミッタと
ベース、ベースとコレクタの接合が形成されるので、そ
の接合面積も凸部2の周囲全域となる。そして、図1の
矢印で示す方向に準粒子が輸送され、異方性を有する超
電導体のa−b軸方向の輸送特性を大きく利用すること
ができ、準粒子の透過率を向上させることができる。す
なわち、図3に示すように、図5に示す従来の構造の超
電導トランジスタに比べこの発明の超電導トランジスタ
においては、ベース接地電流増幅率が20%以上向上す
る。
Further, since the junction between the emitter and the base and between the base and the collector is formed over the entire area of the side surface of the projection 2, the junction area is also the entire area around the projection 2. Then, the quasiparticles are transported in the direction indicated by the arrow in FIG. 1, and the transport characteristics of the superconductor having anisotropy in the ab axis direction can be greatly utilized, and the transmittance of the quasiparticles can be improved. it can. That is, as shown in FIG. 3, in the superconducting transistor of the present invention, the grounded base current amplification factor is improved by 20% or more as compared with the superconducting transistor having the conventional structure shown in FIG.

【0020】次に、この発明の超電導トランジスタの製
造例を図2に従い説明する。
Next, an example of manufacturing the superconducting transistor of the present invention will be described with reference to FIG.

【0021】まず、図2(a)に示すように、STO基
板1の表面部にレジスト6でマスクをして、収束性イオ
ンビーム法により基板1表面を加工して円柱状の凸部2
を形成する。この時の加工条件は、加速電圧500〜1
000V、電流密度0.5〜1mA/cm2とした。
First, as shown in FIG. 2A, the surface of the STO substrate 1 is masked with a resist 6 and the surface of the substrate 1 is processed by a convergent ion beam method to form a columnar convex portion 2.
To form The processing conditions at this time are as follows:
000 V and the current density was 0.5 to 1 mA / cm 2 .

【0022】続いて、図2(b)に示すように、凸部2
の上面部2aにレジスト7でマスクをし、イオン注入法
により凸部2の側面部及び基板1表面に、Nbを0.0
2〜0.05wt%選択的にドープし、STOを半導体
化させコレクタ領域4を形成する。この時の加工条件
は、加速電圧500〜1000V、電流密度0.5〜1
mA/cm2とした。
Subsequently, as shown in FIG.
Is masked with a resist 7 on the upper surface 2a of the substrate, and Nb is applied to the side surface of the convex portion 2 and the surface of the substrate 1 by ion implantation.
The collector region 4 is formed by selectively doping 2 to 0.05 wt% to make the STO semiconductor. The processing conditions at this time are: acceleration voltage 500 to 1000 V, current density 0.5 to 1
mA / cm 2 .

【0023】そして、図2(c)に示すように、凸部2
の上面部2aの中央部にレジストを残し、スパッタリン
グ法によりがBSCCO、YBCOやTBCCO組成の
異方性を有する超電導体薄膜をMBE法により形成す
る。このとき、超電導体薄膜の膜厚を凸部2の高さより
300Å以上厚くなるように制御する。そして、リフト
オフにより上面部2aの超電導薄膜を除去し、凸部2の
上面部2aに一部が延在し且つ上面部2a上に結晶面が
露出するように、BSCCO、YBCOやTBCCO組
成の異方性を有する超電導体からなるベース領域4を基
板1の表面上に形成する。
Then, as shown in FIG.
A superconducting thin film having anisotropy of the composition of BSCCO, YBCO or TBCCO is formed by the MBE method by leaving the resist in the central part of the upper surface part 2a. At this time, the thickness of the superconductor thin film is controlled so as to be 300 ° or more greater than the height of the projection 2. Then, the superconducting thin film on the upper surface portion 2a is removed by lift-off, and the difference in BSCCO, YBCO or TBCCO composition is changed so that a part of the superconducting thin film extends on the upper surface portion 2a of the convex portion 2 and a crystal plane is exposed on the upper surface portion 2a. A base region 4 made of an isotropic superconductor is formed on the surface of the substrate 1.

【0024】その後、図2(d)に示すように、凸部2
の上面部2aとベース領域4の結晶面を含めベース領域
4の上面にMgO、SrTiO3からなる絶縁層5をM
BE法により形成する。この加工条件は基板温度を20
0℃以下、成膜速度を0.1nm/min、真空度を1
-8Torrとした。
Thereafter, as shown in FIG.
An insulating layer 5 made of MgO or SrTiO 3 is formed on the upper surface of the base region 4 including the upper surface portion 2a of the
It is formed by the BE method. The processing conditions are such that the substrate temperature is 20
0 ° C. or less, deposition rate 0.1 nm / min, vacuum degree 1
It was set to 0 -8 Torr.

【0025】最後に、この絶縁層5上にAuを電子ビー
ム蒸着により設け、エミッタ領域6を形成することによ
り、この発明の超電導トランジスタが形成される。
Finally, Au is provided on the insulating layer 5 by electron beam evaporation to form the emitter region 6, whereby the superconducting transistor of the present invention is formed.

【0026】[0026]

【発明の効果】以上説明したように、この発明は、ST
O基板に設けた凸部の上面部を除いて凸部の側面部及び
基板表面に所定量のNbをドープすることでコレクタ領
域を形成しているので、エミッタ領域からコレクタ領域
へのダイレクトのリーク電流が軽減できる。
As described above, according to the present invention, the ST
Since the collector region is formed by doping a predetermined amount of Nb on the side surface of the protrusion and the surface of the substrate except for the upper surface of the protrusion provided on the O substrate, direct leakage from the emitter region to the collector region is performed. The current can be reduced.

【0027】また、凸部の側面部の全域でエミッタ領域
とベース領域、ベース領域とコレクタ領域の接合が形成
されるので、異方性を有する超電導体のa−b軸方向の
輸送特性が大きく利用でき、準粒子の透過率が向上し、
トランジスタ特性を向上させることができる。
Further, since the junction of the emitter region and the base region and the junction of the base region and the collector region are formed in the entire region of the side surface of the projection, the superconductor having anisotropy has large transport characteristics in the a-b axis direction. Available, the quasiparticle transmission is improved,
The transistor characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る超電導トランジスタを示す模式
的断面図である。
FIG. 1 is a schematic sectional view showing a superconducting transistor according to the present invention.

【図2】この発明に係る超電導トランジスタの製造例を
工程別に示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of manufacturing a superconducting transistor according to the present invention in each step.

【図3】この発明と従来の超電導トランジスタのI−V
特性図である。
FIG. 3 shows the IV of the present invention and a conventional superconducting transistor.
It is a characteristic diagram.

【図4】この発明と従来の超電導トランジスタのベース
接地電流増幅率を示す特性図である。
FIG. 4 is a characteristic diagram showing a common base current amplification factor of the superconducting transistor of the present invention and a conventional superconducting transistor.

【図5】従来の超電導トランジスタを示す模式的断面図
である。
FIG. 5 is a schematic sectional view showing a conventional superconducting transistor.

【符号の説明】[Explanation of symbols]

1 基板 2 凸部 3 コレクタ領域 4 ベース領域 5 絶縁層 6 エミッタ領域 DESCRIPTION OF SYMBOLS 1 Substrate 2 Convex part 3 Collector region 4 Base region 5 Insulating layer 6 Emitter region

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 39/00 H01L 39/24 H01L 39/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 39/00 H01L 39/24 H01L 39/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に凸部が形成された絶縁性基板と、
前記凸部の上面部を除いて凸部の側面部及び基板表面に
所定量の不純物をドープすることにより半導体化させた
コレクタ領域と、前記凸部の上面部に一部が延在し且つ
上面部上に結晶面が露出するように基板表面上に設けら
れた異方性を有する酸化物超電導体からなるベース領域
と、上記凸部の上面部及び少なくともベース領域の結晶
面を被覆するように設けられた絶縁層と、この絶縁層を
介して設けられた超電導体又は常伝導体からなるエミッ
タ領域と、からなる超電導トランジスタ。
An insulating substrate having a convex portion formed on a surface thereof;
A collector region formed into a semiconductor by doping a side surface portion of the protrusion and the substrate surface with a predetermined amount of impurities except for an upper surface of the protrusion, and a collector region partially extending on the upper surface of the protrusion and having an upper surface A base region made of an anisotropic oxide superconductor provided on the substrate surface such that a crystal surface is exposed on the portion, and an upper surface portion of the convex portion and at least a crystal surface of the base region are covered. A superconducting transistor comprising: an insulating layer provided; and an emitter region made of a superconductor or a normal conductor provided via the insulating layer.
JP6229305A 1994-09-26 1994-09-26 Superconducting transistor Expired - Fee Related JP2963012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6229305A JP2963012B2 (en) 1994-09-26 1994-09-26 Superconducting transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6229305A JP2963012B2 (en) 1994-09-26 1994-09-26 Superconducting transistor

Publications (2)

Publication Number Publication Date
JPH0897477A JPH0897477A (en) 1996-04-12
JP2963012B2 true JP2963012B2 (en) 1999-10-12

Family

ID=16890063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6229305A Expired - Fee Related JP2963012B2 (en) 1994-09-26 1994-09-26 Superconducting transistor

Country Status (1)

Country Link
JP (1) JP2963012B2 (en)

Also Published As

Publication number Publication date
JPH0897477A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
US5416072A (en) Superconducting device having an thin superconducting channel formed of oxide superconducting material
EP0545801B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH05251776A (en) Superconducting element and manufacture thereof
JP2963012B2 (en) Superconducting transistor
JP3120742B2 (en) Superconducting circuit and manufacturing method thereof
US5854493A (en) Superconduting device having an extremely short superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5714767A (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
JP2831967B2 (en) Superconducting element
JP2001257392A (en) Superconducting element and producing method therefor
JP2773503B2 (en) Superconducting field effect element and method for producing the same
JP3281248B2 (en) Superconducting resonant tunneling diode element
JP2909455B1 (en) Superconducting element
JP3282747B2 (en) Superconducting device
JP3241798B2 (en) Method for manufacturing superconducting device
JP3270317B2 (en) Method for manufacturing superconducting device
JP3221037B2 (en) Current modulator
JP2862706B2 (en) Superconducting element
JP3323278B2 (en) Method for manufacturing superconducting device
JP3249370B2 (en) Superconducting device
JP3121940B2 (en) Superconducting base transistor
JP2950958B2 (en) Superconducting element manufacturing method
JP2737499B2 (en) Superconducting field effect element and method for producing the same
JP3232642B2 (en) Current modulator
JPH0738161A (en) Superconductive transistor
JPH06310768A (en) Superconducting base transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees