JP2737499B2 - Superconducting field effect element and method for producing the same - Google Patents

Superconducting field effect element and method for producing the same

Info

Publication number
JP2737499B2
JP2737499B2 JP3342469A JP34246991A JP2737499B2 JP 2737499 B2 JP2737499 B2 JP 2737499B2 JP 3342469 A JP3342469 A JP 3342469A JP 34246991 A JP34246991 A JP 34246991A JP 2737499 B2 JP2737499 B2 JP 2737499B2
Authority
JP
Japan
Prior art keywords
superconducting
field effect
substrate
channel
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3342469A
Other languages
Japanese (ja)
Other versions
JPH05152630A (en
Inventor
孝夫 中村
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3342469A priority Critical patent/JP2737499B2/en
Priority to EP92403227A priority patent/EP0545801B1/en
Priority to US07/983,133 priority patent/US5399546A/en
Priority to CA002084174A priority patent/CA2084174C/en
Priority to DE69218348T priority patent/DE69218348T2/en
Publication of JPH05152630A publication Critical patent/JPH05152630A/en
Priority to US08/354,048 priority patent/US5494891A/en
Application granted granted Critical
Publication of JP2737499B2 publication Critical patent/JP2737499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導電界効果型素子
およびその作製方法に関する。より詳細には、超電導チ
ャネルの作製が容易で、ゲート絶縁層およびゲート電極
がセルフアラインされた超電導電界効果型素子およびそ
の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting field effect element and a method for manufacturing the same. More specifically, the present invention relates to a superconducting field effect element in which a superconducting channel can be easily produced, a gate insulating layer and a gate electrode are self-aligned, and a method for producing the same.

【0002】[0002]

【従来の技術】超電導現象を利用した素子は、従来の半
導体素子に比較して高速であり、消費電力も小さく、飛
躍的に高性能化することができると考えられている。特
に近年研究が進んでいる酸化物超電導体を使用すること
により、比較的高い温度で動作する超電導素子を作製す
ることが可能である。超電導素子としては、ジョセフソ
ン素子がよく知られているが、ジョセフソン素子は2端
子の素子であるので論理回路を構成しようとすると、回
路が複雑になる。そのため、3端子の超電導素子が実用
上有利である。
2. Description of the Related Art It is considered that a device utilizing the superconductivity phenomenon has a higher speed, consumes less power, and can achieve a dramatic improvement in performance as compared with a conventional semiconductor device. In particular, by using an oxide superconductor, which has been studied in recent years, it is possible to manufacture a superconducting element that operates at a relatively high temperature. As a superconducting element, a Josephson element is well known. However, since a Josephson element is a two-terminal element, an attempt to construct a logic circuit complicates the circuit. Therefore, a three-terminal superconducting element is practically advantageous.

【0003】3端子の超電導素子には、近接させて配置
した超電導電極間の半導体に超電導電流を流す超電導近
接効果を利用したものと、超電導チャネルに流れる超電
導電流をゲート電極で制御するものとが代表的である。
どちらの素子も入出力の分離が可能であり、電圧制御型
の素子であって、信号の増幅作用があるという点では共
通している。しかしながら、超電導近接効果を得るため
には、超電導体電極をその超電導体のコヒーレンス長の
数倍(酸化物超電導体の場合数nm)以内の距離に配置し
なければならない。従って、非常に精密な加工が要求さ
れる。それに対し、チャネルが超電導チャネルになって
いる超電導素子は、電流密度が大きく、製造上も超電導
電極を近接させて配置するという微細加工を必要としな
い。
[0003] Three-terminal superconducting elements include those utilizing a superconducting proximity effect in which a superconducting current flows through a semiconductor between superconducting electrodes arranged close to each other, and those controlling a superconducting current flowing in a superconducting channel by a gate electrode. Representative.
Both elements are capable of separating input and output, are voltage-controlled elements, and are common in that they have a signal amplifying action. However, in order to obtain the superconducting proximity effect, the superconductor electrodes must be arranged within a distance of several times the coherence length of the superconductor (several nm in the case of an oxide superconductor). Therefore, very precise processing is required. On the other hand, a superconducting element in which the channel is a superconducting channel has a large current density and does not require fine processing of placing the superconducting electrodes close to each other in manufacturing.

【0004】図2に、超電導チャネルを有する超電導電
界効果型素子の一例の概略図を示す。図2の超電導電界
効果型素子1は、基板5上に配置された酸化物超電導体
による超電導チャネル10と、超電導チャネル10の両端付
近にそれぞれ配置された超電導ソース領域2および超電
導ドレイン領域3と、超電導チャネル10上にゲート絶縁
層7を介して配置されたゲート電極4とを具備する。こ
の超電導電界効果型素子は、超電導ソース領域2および
超電導ドレイン電極3間の超電導チャネル10を流れる超
電導電流をゲート電極4に印加する電圧で制御する。
FIG. 2 is a schematic view showing an example of a superconducting field effect element having a superconducting channel. The superconducting field effect element 1 of FIG. 2 includes a superconducting channel 10 made of an oxide superconductor disposed on a substrate 5, a superconducting source region 2 and a superconducting drain region 3 disposed near both ends of the superconducting channel 10, respectively. A gate electrode 4 disposed on the superconducting channel 10 with a gate insulating layer 7 interposed therebetween. In this superconducting field effect element, a superconducting current flowing through a superconducting channel 10 between a superconducting source region 2 and a superconducting drain electrode 3 is controlled by a voltage applied to a gate electrode 4.

【0005】[0005]

【発明が解決しようとする課題】上記の超電導電界効果
型素子では、超電導チャネル10を流れる電流をゲート電
極4に印加する電圧で制御する。そのため、超電導チャ
ネル10のゲート部分の厚さは5nm程度にしなければなら
ず、また、ゲート絶縁層7の厚さも10〜20nmにしなけれ
ばならない。一方、この極薄の超電導チャネルは、結晶
性がよく、特性が優れた酸化物超電導薄膜で構成されて
いなければならない。
In the superconducting field effect element described above, the current flowing through the superconducting channel 10 is controlled by the voltage applied to the gate electrode 4. Therefore, the thickness of the gate portion of superconducting channel 10 must be about 5 nm, and the thickness of gate insulating layer 7 must be 10 to 20 nm. On the other hand, this ultra-thin superconducting channel must be composed of an oxide superconducting thin film having good crystallinity and excellent characteristics.

【0006】しかしながら、従来は、MgO等の絶縁体基
板上に直接超電導チャネルを形成することが一般的であ
った。そのため、超電導チャネルと基板との間で相互拡
散が発生し、超電導チャネルを構成する酸化物超電導薄
膜中に絶縁体が拡散して、超電導チャネルの特性を損な
うことがあった。
However, conventionally, it has been general to form a superconducting channel directly on an insulating substrate such as MgO. As a result, mutual diffusion occurs between the superconducting channel and the substrate, and the insulator diffuses into the oxide superconducting thin film forming the superconducting channel, which may impair the characteristics of the superconducting channel.

【0007】また、相互拡散が発生しない場合でも超電
導チャネルを構成する酸化物超電導体結晶の内の基板と
接するものは、超電導電流が流れるCu−O面が完全には
形成されていないので超電導性を示さない。従って、超
電導チャネルの実際に超電導電流が流れる部分は、超電
導チャネルを構成する酸化物超電導薄膜の厚さよりもか
なり小さい場合があり、超電導素子の電流容量が制限さ
れることがあった。
[0007] Even when no interdiffusion occurs, the superconducting oxide superconducting crystal which forms a superconducting channel, which is in contact with the substrate, does not have a completely formed Cu-O plane through which the superconducting current flows. Is not shown. Therefore, the portion of the superconducting channel where the superconducting current actually flows may be considerably smaller than the thickness of the oxide superconducting thin film forming the superconducting channel, and the current capacity of the superconducting element may be limited.

【0008】そこで本発明の目的は、上記従来技術の問
題点を解決した超電導電界効果型素子およびその作製方
法を提供することにある。
It is an object of the present invention to provide a superconducting field effect element which solves the above-mentioned problems of the prior art and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明に従うと、基板
と、該基板上に形成された酸化物超電導体で構成された
超電導ソース領域および超電導ドレイン領域と、前記基
板上で該超電導ソース領域および超電導ドレイン領域間
に配置され、酸化物超電導体で構成された超電導チャネ
ルと、該超電導チャネル上にゲート絶縁層を介して配置
され、該超電導チャネルを流れる電流を制御するための
ゲート電圧が印加される常電導体で構成されたゲート電
極とを備える超電導電界効果型素子において、前記超電
導ソース領域および超電導ドレイン領域が絶縁体層で隔
てられ、前記超電導チャネルが該絶縁体層上に配置さ
れ、前記超電導ソース領域および超電導ドレイン領域と
に結合されていることを特徴とする超電導電界効果型素
子が提供される。
According to the present invention, there is provided a substrate, a superconducting source region and a superconducting drain region formed of an oxide superconductor formed on the substrate, and a superconducting source region and a superconducting drain region formed on the substrate. A superconducting channel arranged between the superconducting drain regions and composed of an oxide superconductor, and a gate voltage for controlling a current flowing through the superconducting channel, being disposed on the superconducting channel via a gate insulating layer, are applied. A superconducting field effect element comprising a gate electrode composed of a normal conductor, wherein the superconducting source region and the superconducting drain region are separated by an insulator layer, and the superconducting channel is disposed on the insulator layer; A superconducting field effect element is provided that is coupled to a superconducting source region and a superconducting drain region.

【0010】また、本発明においては、上記本発明の超
電導電界効果型素子を作製する方法として、前記基板上
に前記超電導電界効果型素子の全長にわたる酸化物超電
導薄膜を成膜し、該酸化物超電導薄膜の中央部を除去し
て基板を露出させるとともに該酸化物超電導薄膜を前記
超電導ソース領域および超電導ドレイン領域に分離し、
前記基板の露出した部分に前記超電導ソース領域および
超電導ドレイン領域と高さを揃えて絶縁体層を形成し、
該絶縁体層上に超電導チャネルとなる極めて薄い酸化物
超電導薄膜、ゲート絶縁層となる絶縁体膜およびゲート
電極となる常電導体膜を順に積層した後、ゲート電極お
よびゲート絶縁層を形成する工程を含むことを特徴とす
る方法が提供される。
In the present invention, as a method of manufacturing the superconducting field effect element of the present invention, an oxide superconducting thin film is formed on the substrate over the entire length of the superconducting field effect element. Removing the central portion of the superconducting thin film to expose the substrate and separating the oxide superconducting thin film into the superconducting source region and the superconducting drain region,
Forming an insulator layer on the exposed portion of the substrate at the same height as the superconducting source region and the superconducting drain region,
Forming an extremely thin oxide superconducting thin film serving as a superconducting channel, an insulator film serving as a gate insulating layer, and a normal conductor film serving as a gate electrode on the insulating layer in order, and then forming a gate electrode and a gate insulating layer; There is provided a method comprising:

【0011】[0011]

【作用】本発明の超電導電界効果型素子は、超電導ソー
ス領域および超電導ドレイン領域が絶縁体層で隔てら
れ、超電導ソース領域および超電導ドレイン領域を電気
的に結ぶ超電導チャネルが絶縁体層上に配置されている
ところにその主要な特徴がある。本発明の超電導電界効
果型素子では、超電導チャネルの位置が超電導ソース領
域および超電導ドレイン領域を隔てている絶縁体層上に
自動的に決定される。そのため、超電導チャネルの寸法
が正確になる。
In the superconducting field effect element of the present invention, a superconducting source region and a superconducting drain region are separated by an insulator layer, and a superconducting channel electrically connecting the superconducting source region and the superconducting drain region is arranged on the insulator layer. Where it is has its key features. In the superconducting field effect element according to the present invention, the position of the superconducting channel is automatically determined on the insulator layer separating the superconducting source region and the superconducting drain region. Therefore, the dimensions of the superconducting channel become accurate.

【0012】本発明の方法では、本発明の超電導電界効
果型素子を作製する場合に、最初に基板上に素子の全長
にわたる酸化物超電導薄膜を形成する。この酸化物超電
導薄膜は、超電導ソース領域および超電導ドレイン領域
となるもので、厚さは200 〜300 nmが好ましい。この酸
化物超電導薄膜の中央部付近をエッチングにより除去し
て基板を露出させる。酸化物超電導薄膜の残りの部分
は、超電導ソース領域および超電導ドレイン領域とな
る。このように形成された超電導ソース領域および超電
導ドレイン領域は、元来は単一の酸化物超電導薄膜であ
ったので、特性が揃ったものとなる。
In the method of the present invention, when fabricating the superconducting field effect element of the present invention, first, an oxide superconducting thin film over the entire length of the element is formed on a substrate. This oxide superconducting thin film serves as a superconducting source region and a superconducting drain region, and preferably has a thickness of 200 to 300 nm. The vicinity of the center of the oxide superconducting thin film is removed by etching to expose the substrate. The remaining portion of the oxide superconducting thin film becomes a superconducting source region and a superconducting drain region. Since the superconducting source region and the superconducting drain region thus formed were originally a single oxide superconducting thin film, they have uniform characteristics.

【0013】本発明の方法では、異方性エッチングによ
り上記の加工を行う。この場合、塩素系のエッチングガ
スによる反応性イオンエッチング、Arイオンミリング、
集束イオンビームエッチング等のドライエッチングプロ
セスにより、上記の加工を行うことが好ましい。
In the method of the present invention, the above processing is performed by anisotropic etching. In this case, reactive ion etching with chlorine-based etching gas, Ar ion milling,
It is preferable to perform the above processing by a dry etching process such as focused ion beam etching.

【0014】上記の酸化物超電導薄膜の加工により露出
した基板上に絶縁体層を成膜する。この絶縁体層は、超
電導ソース領域および超電導ドレイン領域と上面が揃う
ように形成する。そのため、例えば絶縁体層をCVD法
で形成し、リフトオフ法または集束イオンビームを使用
して上面を揃えることが好ましい。また、必要に応じて
エッチバックすることも好ましい。
An insulator layer is formed on the substrate exposed by the processing of the oxide superconducting thin film. This insulator layer is formed so that the upper surface is aligned with the superconducting source region and the superconducting drain region. Therefore, for example, it is preferable that the insulator layer be formed by a CVD method and the upper surfaces be aligned using a lift-off method or a focused ion beam. It is also preferable to perform etch-back as needed.

【0015】本発明の方法では、上記のように高さが揃
った絶縁体層、超電導ソース領域および超電導ドレイン
領域上に超電導チャネルとなる極薄の酸化物超電導薄膜
を形成する。この酸化物超電導薄膜は、実質的に平面上
に形成されるので、極めて薄くても容易に形成可能で、
寸法、特に厚さを高い精度で制御可能であり、特性も優
れたものになる。
In the method of the present invention, an ultra-thin oxide superconducting thin film serving as a superconducting channel is formed on the insulator layer, superconducting source region and superconducting drain region having the same height as described above. Since this oxide superconducting thin film is formed substantially on a plane, it can be easily formed even if it is extremely thin,
The dimensions, especially the thickness, can be controlled with high precision, and the characteristics are also excellent.

【0016】また、本発明の方法では、上記の酸化物超
電導薄膜上にゲート絶縁層となる絶縁体膜およびゲート
電極となる常電導体層を連続して形成する。この絶縁体
膜および常電導体層を集束イオンビーム等で加工して、
ゲート絶縁層およびその上に積層されたゲート電極を形
成する。従って、本発明の方法では、ゲート絶縁層およ
びゲート電極がセルフアラインされる。
In the method of the present invention, an insulator film serving as a gate insulating layer and a normal conductor layer serving as a gate electrode are continuously formed on the above-mentioned oxide superconducting thin film. The insulator film and the normal conductor layer are processed by a focused ion beam or the like,
A gate insulating layer and a gate electrode stacked thereover are formed. Therefore, in the method of the present invention, the gate insulating layer and the gate electrode are self-aligned.

【0017】本発明の超電導電界効果型素子には、任意
の酸化物超電導体が使用できるが、Y1Ba2Cu37-X系酸
化物超電導体は安定的に高品質の結晶性のよい薄膜が得
られるので好ましい。また、Bi2Sr2Ca2Cu3x 系酸化物
超電導体は、特にその超電導臨界温度Tc が高いので好
ましい。
Although any oxide superconductor can be used for the superconducting field effect element of the present invention, the Y 1 Ba 2 Cu 3 O 7 -X- based oxide superconductor is stable and has high crystallinity. It is preferable because a good thin film can be obtained. In addition, Bi 2 Sr 2 Ca 2 Cu 3 O x -based oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0018】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following disclosure is merely an example of the present invention, and does not limit the technical scope of the present invention.

【0019】[0019]

【実施例】本発明の方法により、本発明の超電導電界効
果型素子を作製した。図1を参照して、その工程を説明
する。まず、図1(a)に示すようなMgO基板5上に図1
(b)に示すようc軸配向のY1Ba2Cu37-X酸化物超電導
薄膜11を成膜する。成膜方法としては、各種のスパッタ
リング法、MBE法、真空蒸着法、CVD法等任意の方
法が使用可能である。スパッタリング法で成膜を行う際
の主な成膜条件を以下に示す。 基板温度 700℃ スパッタリングガス Ar 90 % O2 10 % 圧力 5×10-2Torr 膜厚 250nm
EXAMPLES The superconducting field effect element of the present invention was manufactured by the method of the present invention. The process will be described with reference to FIG. First, FIG. 1A is placed on an MgO substrate 5 as shown in FIG.
As shown in (b), a c-axis oriented Y 1 Ba 2 Cu 3 O 7 -x oxide superconducting thin film 11 is formed. As the film forming method, any method such as various sputtering methods, MBE method, vacuum evaporation method, CVD method and the like can be used. The main film forming conditions for forming a film by the sputtering method are described below. Substrate temperature 700 ° C Sputtering gas Ar 90% O 2 10% Pressure 5 × 10 -2 Torr Film thickness 250nm

【0020】次に、このY1Ba2Cu37-X酸化物超電導薄
膜11の中央部付近を塩素系のエッチングガスを使用した
反応性イオンエッチング、Arイオンミリング、集束イオ
ンビームエッチング等で除去し、図1(c)に示すよう超
電導ソース領域2および超電導ドレイン領域3を形成す
る。Y1Ba2Cu37-X酸化物超電導薄膜の除去された部分
14には、基板5が露出している。この後、図1(d)に示
すよう、基板5が露出している部分14に絶縁体層50を超
電導ソース領域2および超電導ドレイン領域3と上面が
揃うように形成する。この場合、最初に絶縁体層をCV
D法で形成してから、リフトオフを行うかまたは集束イ
オンビームにより余分な絶縁体層を除去して上面を揃え
る。必要に応じてエッチバックを行って上面を揃えても
よい。
Next, the vicinity of the center of the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film 11 is subjected to reactive ion etching using a chlorine-based etching gas, Ar ion milling, focused ion beam etching, or the like. After removal, a superconducting source region 2 and a superconducting drain region 3 are formed as shown in FIG. Removed portion of Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film
At 14, the substrate 5 is exposed. Thereafter, as shown in FIG. 1D, an insulator layer 50 is formed on the portion 14 where the substrate 5 is exposed, so that the upper surface of the insulator layer 50 is aligned with the superconducting source region 2 and the superconducting drain region 3. In this case, first, the insulator layer is CV
After the formation by the method D, lift-off is performed or an excess insulator layer is removed by a focused ion beam to make the upper surfaces uniform. If necessary, etch back may be performed to align the upper surfaces.

【0021】このように、平坦になった絶縁体層50、超
電導ソース領域2および超電導ドレイン領域3上に図1
(e)に示すよう約5nm厚さのY1Ba2Cu37-X酸化物超電
導薄膜21および約10nmの厚さのMgO層または窒化シリコ
ン(SiN)による絶縁膜17をスパッタリング法で連続し
て形成する。このY1Ba2Cu37-X酸化物超電導薄膜21の
絶縁体層50上の部分が超電導チャネル10となる。続い
て、図1(f)に示すよう、絶縁膜17上に真空蒸着法によ
りAu層24を形成する。最後に、図1(g)に示すよう、Au
層24および絶縁膜17をそれぞれゲート電極4およびゲー
ト絶縁膜7に加工し、本発明の超電導電界効果型素子が
完成する。必要ならば、超電導ソース領域2および超電
導ドレイン領域3上にそれぞれ電極を設けてもよい。
The flattened insulator layer 50, the superconducting source region 2 and the superconducting drain region 3 as shown in FIG.
continuous sputtering insulating film 17 by about 5nm thickness of Y 1 Ba 2 Cu 3 O 7 -X oxide superconductor thin film 21, and about 10nm in thickness of the MgO layer or silicon nitride as shown in (e) (SiN) Formed. The portion of the Y 1 Ba 2 Cu 3 O 7 -X oxide superconducting thin film 21 on the insulator layer 50 becomes the superconducting channel 10. Subsequently, as shown in FIG. 1F, an Au layer 24 is formed on the insulating film 17 by a vacuum evaporation method. Finally, as shown in FIG.
The layer 24 and the insulating film 17 are processed into the gate electrode 4 and the gate insulating film 7, respectively, to complete the superconducting field effect element of the present invention. If necessary, electrodes may be provided on the superconducting source region 2 and the superconducting drain region 3, respectively.

【0022】上記本発明の方法において、図1(c)に示
した工程で、基板5が露出した部分14を清浄にするため
に、1×10-9Torr以下の超高真空中で基板5を350 〜40
0 ℃に加熱する熱処理を行うことも好ましい。また、絶
縁体層50には、、Pr1Ba2Cu3y等、酸化物超電導体と類
似の結晶構造を有する酸化物も使用できる。
In the method of the present invention, in the step shown in FIG. 1C, in order to clean the portion 14 where the substrate 5 is exposed, the substrate 5 is placed in an ultra-high vacuum of 1 × 10 −9 Torr or less. The 350-40
It is also preferable to perform a heat treatment of heating to 0 ° C. Further, for the insulator layer 50, an oxide having a crystal structure similar to that of the oxide superconductor, such as Pr 1 Ba 2 Cu 3 O y , can be used.

【0023】以上のように、本発明の方法で作製された
本発明の超電導電界効果型素子は、超電導チャネルを構
成する酸化物超電導薄膜が、平坦な絶縁体層、超電導ソ
ース領域および超電導ドレイン領域上に形成されている
ので、超電導チャネルが応力を受けず、特性が良好であ
る。また、超電導チャネルの位置が、絶縁体層50により
予め定められるので、寸法、特にチャネル長を正確に決
定することができる。
As described above, in the superconducting field effect element of the present invention produced by the method of the present invention, the oxide superconducting thin film constituting the superconducting channel is composed of a flat insulator layer, a superconducting source region and a superconducting drain region. Since it is formed on the superconducting channel, the superconducting channel is not stressed and has good characteristics. Further, since the position of the superconducting channel is determined in advance by the insulator layer 50, the dimensions, particularly the channel length, can be determined accurately.

【0024】[0024]

【発明の効果】以上説明したように、本発明に従えば、
新規な構成の超電導電界効果型素子およびその作製方法
が提供される。本発明の方法で作製された本発明の超電
導電界効果型素子は、酸化物超電導薄膜で構成された超
電導チャネルの特性が優れ、また、寸法が正確である。
As described above, according to the present invention,
A novel superconducting field effect element and a method for manufacturing the same are provided. The superconducting field effect element of the present invention produced by the method of the present invention has excellent characteristics of a superconducting channel composed of an oxide superconducting thin film and has accurate dimensions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法で本発明の超電導電界効果型素子
を作製する工程を説明する図である。
FIG. 1 is a diagram illustrating a step of producing a superconducting field effect element of the present invention by a method of the present invention.

【図2】超電導電界効果型素子の構成を説明する図であ
る。
FIG. 2 is a diagram illustrating a configuration of a superconducting field effect element.

【符号の説明】[Explanation of symbols]

1 超電導電界効果型素子 2 超電導ソース領域 3 超電導ドレイン領域 4 ゲート電極 5 基板 7 ゲート絶縁層 10 超電導チャネル Reference Signs List 1 superconducting field effect element 2 superconducting source region 3 superconducting drain region 4 gate electrode 5 substrate 7 gate insulating layer 10 superconducting channel

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板と、該基板上に形成された酸化物超
電導体で構成された超電導ソース領域および超電導ドレ
イン領域と、前記基板上で該超電導ソース領域および超
電導ドレイン領域間に配置され、酸化物超電導体で構成
された超電導チャネルと、該超電導チャネル上にゲート
絶縁層を介して配置され、該超電導チャネルを流れる電
流を制御するためのゲート電圧が印加される常電導体で
構成されたゲート電極とを備える超電導電界効果型素子
において、前記超電導ソース領域および超電導ドレイン
領域が絶縁体層で隔てられ、前記超電導チャネルが該絶
縁体層上に配置され、前記超電導ソース領域および超電
導ドレイン領域とに結合されていることを特徴とする超
電導電界効果型素子。
1. An oxidizing device, comprising: a substrate; a superconducting source region and a superconducting drain region formed of an oxide superconductor formed on the substrate; and a superconducting source region and a superconducting drain region on the substrate. A superconducting channel composed of a superconductor, and a normal conductor disposed on the superconducting channel via a gate insulating layer, to which a gate voltage for controlling a current flowing through the superconducting channel is applied. And a superconducting field effect element comprising an electrode, wherein the superconducting source region and the superconducting drain region are separated by an insulator layer, the superconducting channel is disposed on the insulator layer, and the superconducting source region and the superconducting drain region A superconducting field effect element characterized by being coupled.
【請求項2】 請求項1に記載の超電導電界効果型素子
を作製する方法において、前記基板上に前記超電導電界
効果型素子の全長にわたる酸化物超電導薄膜を成膜し、
該酸化物超電導薄膜の中央部を除去して基板を露出させ
るとともに該酸化物超電導薄膜を前記超電導ソース領域
および超電導ドレイン領域に分離し、前記基板の露出し
た部分に前記超電導ソース領域および超電導ドレイン領
域と高さを揃えて絶縁体層を形成し、該絶縁体層上に超
電導チャネルとなる極めて薄い酸化物超電導薄膜、ゲー
ト絶縁層となる絶縁体膜およびゲート電極となる常電導
体膜を順に積層した後、ゲート電極およびゲート絶縁層
を形成する工程を含むことを特徴とする方法。
2. The method for producing a superconducting field effect element according to claim 1, wherein an oxide superconducting thin film over the entire length of the superconducting field effect element is formed on the substrate.
The substrate is exposed by removing a central portion of the oxide superconducting thin film, and the oxide superconducting thin film is separated into the superconducting source region and the superconducting drain region, and the superconducting source region and the superconducting drain region are exposed on the exposed portion of the substrate. An insulator layer is formed with the same height, and an extremely thin oxide superconducting thin film serving as a superconducting channel, an insulator film serving as a gate insulating layer, and a normal conductor film serving as a gate electrode are sequentially stacked on the insulator layer. Forming a gate electrode and a gate insulating layer.
JP3342469A 1991-11-30 1991-11-30 Superconducting field effect element and method for producing the same Expired - Lifetime JP2737499B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3342469A JP2737499B2 (en) 1991-11-30 1991-11-30 Superconducting field effect element and method for producing the same
EP92403227A EP0545801B1 (en) 1991-11-30 1992-11-30 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US07/983,133 US5399546A (en) 1991-11-30 1992-11-30 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
CA002084174A CA2084174C (en) 1991-11-30 1992-11-30 Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing thesame
DE69218348T DE69218348T2 (en) 1991-11-30 1992-11-30 Superconducting device with extremely thin superconducting channel and manufacturing process
US08/354,048 US5494891A (en) 1991-11-30 1994-12-06 Method for manufacturing three-terminal oxide superconducting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342469A JP2737499B2 (en) 1991-11-30 1991-11-30 Superconducting field effect element and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05152630A JPH05152630A (en) 1993-06-18
JP2737499B2 true JP2737499B2 (en) 1998-04-08

Family

ID=18353983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342469A Expired - Lifetime JP2737499B2 (en) 1991-11-30 1991-11-30 Superconducting field effect element and method for producing the same

Country Status (1)

Country Link
JP (1) JP2737499B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486575A (en) * 1987-06-17 1989-03-31 Hitachi Ltd Superconducting device
JPH02130969A (en) * 1988-11-11 1990-05-18 Seiko Epson Corp Production of josephson junction
JP2973423B2 (en) * 1989-03-07 1999-11-08 日本電気株式会社 Superconducting element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05152630A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
US5494891A (en) Method for manufacturing three-terminal oxide superconducting devices
JPH05251776A (en) Superconducting element and manufacture thereof
JPH05251777A (en) Superconducting field-effect type element and manufacture thereof
US5447907A (en) Superconducting device with c-axis channel and a-axis source and drain having a continuous crystal structure
JP2737499B2 (en) Superconducting field effect element and method for producing the same
JPH0714079B2 (en) Oxide superconducting three-terminal device
US5714767A (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
JP2773503B2 (en) Superconducting field effect element and method for producing the same
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP2738144B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JP2909455B1 (en) Superconducting element
JP2614940B2 (en) Superconducting element and fabrication method
JP2647279B2 (en) Manufacturing method of laminated film
JP2680954B2 (en) Superconducting field effect element
JP2691065B2 (en) Superconducting element and fabrication method
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
JP2976904B2 (en) Superconducting field effect element and method for producing the same
JP2641976B2 (en) Superconducting element and fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JPH0613667A (en) Superconducting field-effect element and its manufacture
JPH0555649A (en) Manufacture of superconducting electric field effect element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209