JP2960011B2 - Method and apparatus for controlling thickness during acceleration and deceleration in rolling - Google Patents

Method and apparatus for controlling thickness during acceleration and deceleration in rolling

Info

Publication number
JP2960011B2
JP2960011B2 JP8155751A JP15575196A JP2960011B2 JP 2960011 B2 JP2960011 B2 JP 2960011B2 JP 8155751 A JP8155751 A JP 8155751A JP 15575196 A JP15575196 A JP 15575196A JP 2960011 B2 JP2960011 B2 JP 2960011B2
Authority
JP
Japan
Prior art keywords
rolling
speed
deceleration
load fluctuation
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8155751A
Other languages
Japanese (ja)
Other versions
JPH09201609A (en
Inventor
浩一 西村
英樹 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8155751A priority Critical patent/JP2960011B2/en
Publication of JPH09201609A publication Critical patent/JPH09201609A/en
Application granted granted Critical
Publication of JP2960011B2 publication Critical patent/JP2960011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属板を冷間圧延す
るに際して、その圧延速度の加減速時における板厚変動
を効果的に抑制し得る板厚制御方法および制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a thickness of a metal sheet, which can be effectively suppressed when the metal sheet is cold-rolled, when the rolling speed is accelerated or decelerated.

【0002】[0002]

【関連する背景技術】金属板の冷間圧延においてその圧
延速度を加減速した場合、作業ロールと圧延材との間の
油膜厚さ等の変化に伴って該作業ロールと圧延材との摩
擦係数が変化し、その結果、圧延荷重が変動して定常圧
延速度時に比較して大きな板厚変動が生じることが知ら
れている。
[Related Background Art] When the rolling speed is accelerated or decelerated in cold rolling of a metal sheet, the coefficient of friction between the work roll and the rolled material changes with the change in oil film thickness between the work roll and the rolled material. It is known that, as a result, the rolling load fluctuates and a large thickness variation occurs as compared with a steady rolling speed.

【0003】そこで従来、特開平4−367309号公
報に示されるように、圧延速度の加減速時における圧延
荷重変動量を、上記摩擦係数の変化を影響係数とする圧
延荷重変動予測式を用いて予測し、この予測された圧延
荷重変動に対して前記ロールによる圧下位置補正を行う
ことで、その板厚変動を抑制する技術が提唱されてい
る。
[0003] Conventionally, as disclosed in Japanese Patent Application Laid-Open No. Hei 4-367309, the amount of change in the rolling load when the rolling speed is accelerated or decelerated is calculated using a rolling load fluctuation predicting equation using the above-mentioned change in the coefficient of friction as an influence coefficient. A technique has been proposed in which the roll thickness is predicted by correcting the rolling position with respect to the predicted rolling load fluctuation, thereby suppressing the thickness fluctuation.

【0004】[0004]

【発明が解決しようとする課題】ところが上記圧延荷重
予測法の場合には摩擦係数の変化だけを影響係数として
予測式に加えているので、例えば歪み速度が大きく変化
するような圧延の場合、或いは歪み速度の変化に対して
変形抵抗が大きな影響を受けるような圧延材料、例えば
アルミニウムや銅のような金属材料の場合、その圧延荷
重予測精度が非常に悪くなる。この結果、圧延材の加減
速が行われた部分での板厚精度が劣化し、これに伴って
該圧延材の先端部および尾端部における、所謂オフゲー
ジ領域が増長すると言う不具合があった。
However, in the above-mentioned rolling load prediction method, only the change in the coefficient of friction is added to the prediction formula as an influence coefficient. Therefore, for example, in the case of rolling in which the strain rate changes greatly, or In the case of a rolled material whose deformation resistance is greatly affected by a change in strain rate, for example, a metal material such as aluminum or copper, the rolling load prediction accuracy is very poor. As a result, there is a problem that the accuracy of the thickness of the rolled material at the portion where the acceleration or deceleration is performed is deteriorated, and the so-called off-gauge region at the leading end and the tail end of the rolled material is increased accordingly.

【0005】また従来にあっては、既に変化したと思わ
れる圧延荷重変動量を予測して板厚制御を行っているの
で、所定の制御周期分の制御遅れが生じることが否めな
い。つまり圧延荷重予測精度を向上させても、制御遅れ
の分だけ板厚変動が発生し、圧延材の先端オフゲージ長
が増長すると言う問題があった。この点、特開平8−4
7708号公報には、油圧圧下系の制御応答遅れを補償
して圧下精度を向上させる手法が開示される。しかしこ
の手法を採用しても、所定の制御周期、例えば1制御周
期分の制御遅れを修正することができないと言う問題が
あった。
In the prior art, since the thickness control is performed by predicting the rolling load fluctuation amount which is considered to have already changed, it is unavoidable that a control delay of a predetermined control cycle occurs. That is, even if the rolling load prediction accuracy is improved, there is a problem in that the sheet thickness changes due to the control delay and the off-gauge length at the leading end of the rolled material increases. In this regard, Japanese Patent Application Laid-Open No. Hei 8-4
No. 7708 discloses a technique for compensating for a control response delay of a hydraulic pressure reduction system and improving the pressure reduction accuracy. However, even if this method is adopted, there is a problem that a control delay for a predetermined control cycle, for example, one control cycle cannot be corrected.

【0006】本発明はこのような事情を考慮してなされ
たもので、その目的は、歪み速度が大きく変化するよう
な圧延を行う場合であって、圧延速度の加減速時におけ
る板厚精度を十分に確保することができ、オフケージ部
分を少なくすることのできる圧延における板厚制御方法
および制御装置を提供することにある。
[0006] The present invention has been made in view of such circumstances, and its purpose is to perform rolling in which the strain rate is greatly changed, and to reduce the thickness accuracy at the time of acceleration / deceleration of the rolling rate. It is an object of the present invention to provide a method and a device for controlling a thickness of a roll, which can ensure a sufficient thickness and can reduce an off-cage portion.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の本発明
に係る板厚制御方法は、金属板を冷間圧延するに際し
て、圧延速度の加減速時における圧延荷重変動を、摩擦
係数および変形抵抗をそれぞれ影響係数とした圧延荷重
変動予測式を用いて予測し、この予測された圧延荷重変
動量に基づいて圧延機における圧下位置を補正するよう
にしたことを特徴とするものである。
According to a first aspect of the present invention, there is provided a sheet thickness control method according to the present invention, wherein when a metal sheet is cold-rolled, a change in rolling load during acceleration / deceleration of a rolling speed is determined by a coefficient of friction and a deformation. The present invention is characterized in that a rolling load fluctuation prediction equation is set using resistance as an influence coefficient, and a rolling position in a rolling mill is corrected based on the predicted rolling load fluctuation amount.

【0008】つまり従来より採用されていた摩擦係数の
みならず、新たに速度変化(歪み速度変化)に対する変
形抵抗の変動を影響係数として加えた圧延荷重変動予測
式を用いて加減速時における圧延荷重変動量を予測し、
この予測結果に従って圧下装置における圧下位置を補正
することで、歪み速度変化の影響を除去して出側板厚の
変動を抑え、加減速時におけ板厚精度を十分高くするよ
うに圧延することを特徴とするものである。
In other words, the rolling load during acceleration / deceleration is calculated using a rolling load fluctuation predicting equation in which not only the friction coefficient conventionally used but also the fluctuation of deformation resistance with respect to a speed change (strain speed change) is newly added as an influence coefficient. Predict the amount of change,
The rolling position is corrected by correcting the rolling position in the drafting device according to this prediction result, eliminating the effect of the change in the strain rate, suppressing the fluctuation of the outlet side plate thickness, and sufficiently increasing the plate thickness accuracy during acceleration / deceleration. It is assumed that.

【0009】また請求項2に記載の本発明に係る板厚制
御装置は、圧延速度の加減速時における圧延荷重変動量
ΔPを、摩擦係数および変形抵抗をそれぞれ影響係数と
した圧延荷重変動予測式を用いて予測する手段と、上記
圧延荷重変動予測式に基づいて算出された荷重変化予測
量をロールギャップ補正量ΔSkに変換する手段と、こ
の変換されたロールギャップ補正量に従って板厚補償制
御を行う手段とを具備したことを特徴とするものであ
る。
In a second aspect of the present invention, there is provided a sheet thickness control apparatus for predicting a rolling load variation in which a rolling load variation ΔP at the time of acceleration / deceleration of a rolling speed is determined by using a friction coefficient and a deformation resistance as influence coefficients. Means for predicting the load change, a means for converting the load change prediction amount calculated based on the rolling load fluctuation prediction formula into a roll gap correction amount ΔSk, and a sheet thickness compensation control in accordance with the converted roll gap correction amount. And means for performing the operation.

【0010】つまり摩擦係数および変形抵抗をそれぞれ
影響係数とした圧延荷重変動予測式を用いて圧延荷重変
動量ΔPを算出し、この圧延荷重変動量ΔPから求めら
れるロールギャップ補正量ΔSkに従って板厚制御量を
補償することで、簡単な制御系で効果的に板厚精度を高
めるようにしたことを特徴とするものである。更に請求
項3に記載の発明に係る板厚制御方法は、圧延速度制御
に用いる圧延速度指令値を、所定の制御周期後に到達す
ると予測される圧延速度として求め、上記圧延速度指令
をパラメータとした圧延荷重変動予測式を用いて圧延
速度の加減速時における圧延荷重変動を予測し、この予
測された圧延荷重変動量に基づいて圧延機における圧下
位置を補正するようにしたことを特徴とするものであ
る。
That is, the rolling load variation .DELTA.P is calculated using a rolling load variation predicting equation in which the friction coefficient and the deformation resistance are each an influence coefficient, and the thickness control is performed in accordance with the roll gap correction amount .DELTA.Sk obtained from the rolling load variation .DELTA.P. The feature is that the thickness accuracy is effectively increased by a simple control system by compensating the amount. Further plate thickness control method according to the invention of claim 3, rolling speed control
To reach the rolling speed command value used for
Calculated as the predicted rolling speed
Rolling with a rolling force variation prediction expression with a value of the parameter
The rolling load fluctuation at the time of speed acceleration / deceleration is predicted, and the rolling position in the rolling mill is corrected based on the predicted rolling load fluctuation amount.

【0011】つまり圧延荷重変動予測式における圧延速
度パラメータとして、従来一般的に使用されている圧延
速度のフィードバック信号に代えて、その圧延機の圧延
速度制御に使用している速度指令値、つまり所定の制御
周期後に到達させるべき圧延速度(予測圧延速度)を用
いることで、該所定の制御周期後に起こり得る圧延荷重
変動を高精度に予測して圧下制御を行うようにしたこと
を特徴としている。
That is, as a rolling speed parameter in the rolling load fluctuation prediction formula, a speed command value used for controlling the rolling speed of the rolling mill, that is, a predetermined speed command value, instead of a feedback signal of the rolling speed generally used conventionally. The rolling speed (predicted rolling speed) to be reached after the control cycle is used to accurately predict the rolling load fluctuation that may occur after the predetermined control cycle, and the rolling reduction is performed.

【0012】[0012]

【発明の実施の態様】以下、図面を参照して本発明に係
る板厚制御方法および制御装置の第1の実施形態につい
て説明する。図1は圧延機とその板厚制御装置の概略的
な構成を示す模式的なブロック図である。圧延機1は、
上下に対向配置された一対のワークロール2を主体とし
て構成され、上記ワークロール2間に導かれる圧延材3
を所定の圧力で圧延するものである。このワークロール
2間に印加される圧延力は、圧下制御装置4の制御の下
で圧下装置5により加えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a thickness control method and a control apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram showing a schematic configuration of a rolling mill and a thickness control device thereof. The rolling mill 1
A rolled material 3 mainly composed of a pair of work rolls 2 disposed vertically facing each other and guided between the work rolls 2
Is rolled at a predetermined pressure. The rolling force applied between the work rolls 2 is applied by the reduction device 5 under the control of the reduction control device 4.

【0013】尚、図中6はワークロール2間の圧延荷重
Pを検出するロードセルであり、7はワークロール2に
よる圧延速度V(回転数)を検出するパルスジェネレー
タ、8は入側板厚偏差ΔHを計測するX線厚み計、9は
出側板厚偏差Δhを計測するX線厚み計である。このよ
うな圧延機1の作動を制御する板厚制御装置は、AGC
演算部11を主体とする板厚制御システム12と、荷重
変化予測演算部14およびロールギャップ補正演算部1
5を主体とした演算器16とを備えて構成される。板厚
制御システム12におけるAGC演算部11は前記圧延
機1における圧延荷重P,入側板厚偏差ΔH,および出
側板厚偏差Δhの各データに従って該圧延機1を制御す
るべくロールギャップ操作量ΔSaを求めるものであ
る。また圧延速度制御部18は、ワークロール2に対す
る圧延速度の加減速時における圧延速度指令値、即ち、
現時点から所定の制御周期後(1スキャン後)において
達成するべく圧延速度Vsを設定するものである。
In the drawing, reference numeral 6 denotes a load cell for detecting a rolling load P between the work rolls 2, 7 denotes a pulse generator for detecting a rolling speed V (rotational speed) of the work roll 2, and 8 denotes an input side plate thickness deviation ΔH. Is an X-ray thickness gauge for measuring the exit side plate thickness deviation Δh. A thickness control device for controlling the operation of the rolling mill 1 is an AGC.
A thickness control system 12 mainly composed of a calculation unit 11, a load change prediction calculation unit 14, and a roll gap correction calculation unit 1.
And an arithmetic unit 16 mainly composed of the arithmetic unit 5. The AGC calculator 11 in the sheet thickness control system 12 calculates the roll gap operation amount ΔSa to control the rolling mill 1 in accordance with the rolling load P, the incoming side sheet thickness deviation ΔH, and the outgoing side sheet thickness deviation Δh in the rolling mill 1. Is what you want. Further, the rolling speed control unit 18 controls the rolling speed command value at the time of acceleration / deceleration of the rolling speed for the work roll 2, that is,
The rolling speed Vs is set so as to be achieved after a predetermined control cycle (after one scan) from the present time.

【0014】一方、演算器16における荷重変化予測演
算部14は、前記パルスジェネレータ7によって計測さ
れる圧延速度V、または前記圧延速度制御部18により
設定される圧延速度指令値Vsと、上位のプロセスコン
ピュータ13から与えられる板厚値(目標板厚)やその
他の被圧延材の情報とに従って、後述する圧延圧延荷重
変動予測式に基づいて前記圧延機1における圧延荷重変
動量ΔPを予測(算出)する役割を担う。またロールギ
ャップ補正演算部15は上記荷重変化予測演算部14に
て予測された圧延荷重変動量ΔPに基づいて前記ワーク
ロール2間に設定すべきロールギャップ量ΔSを求める
ものである。
On the other hand, the load change prediction calculation unit 14 in the calculator 16 calculates a rolling speed V measured by the pulse generator 7 or a rolling speed command value Vs set by the rolling speed control unit 18 and a higher-order process. According to the plate thickness value (target plate thickness) given from the computer 13 and other information on the material to be rolled, the rolling load fluctuation amount ΔP in the rolling mill 1 is predicted (calculated) based on a rolling rolling load fluctuation prediction formula described later. Play a role. Further, the roll gap correction calculation unit 15 calculates a roll gap amount ΔS to be set between the work rolls 2 based on the rolling load fluctuation amount ΔP predicted by the load change prediction calculation unit 14.

【0015】前記板厚制御システム12は、基本的には
上記AGC演算部11にて求められたロールギャップ操
作量ΔSaを操作量ΔSとして前記圧下制御装置4に出
力するものであるが、ここでは上記演算器16にて求め
られたロールギャップ量ΔSを板厚制御補償量ΔSkと
して入力し、この板厚制御補償量ΔSkを加算器17に
おいて前記ロールギャップ操作量ΔSaに加算すること
で前記圧下制御装置4に対する操作量ΔSを求めてい
る。
The sheet thickness control system 12 basically outputs the roll gap operation amount ΔSa determined by the AGC operation unit 11 as the operation amount ΔS to the rolling-down control device 4. The roll gap amount ΔS obtained by the arithmetic unit 16 is input as a thickness control compensation amount ΔSk, and the thickness control compensation amount ΔSk is added to the roll gap operation amount ΔSa in an adder 17 to thereby perform the rolling-down control. The operation amount ΔS for the device 4 is obtained.

【0016】ここで上記荷重変化予測演算部14、およ
びロールギャップ補正演算部15における演算処理につ
いて説明すると、荷重変化予測演算部14では、基本的
には或る速度域Vでの微小な圧延速度変化に対する微小
な圧延荷重変動を次のようにして予測する。
Here, the calculation processing in the load change prediction calculation section 14 and the roll gap correction calculation section 15 will be described. The load change prediction calculation section 14 basically includes a small rolling speed in a certain speed range V. A small change in the rolling load with respect to the change is predicted as follows.

【0017】[0017]

【数1】 (Equation 1)

【0018】但し、Pは圧延荷重,ΔPは微小圧延荷重
変化量,Vはパルスジェネレータ7によって計測される
圧延速度,ΔVは微小速度変化量である。この発明の第
1の実施形態においては、速度変化に対する圧延荷重変
動の要因として摩擦係数と変形抵抗との2つの要因を考
慮するものとし、速度変化に対する摩擦係数変化と歪み
速度変化に対する変形抵抗変化とをそれぞれ影響係数と
した次式を(1)式から導いている。
Here, P is a rolling load, ΔP is a minute rolling load change amount, V is a rolling speed measured by the pulse generator 7, and ΔV is a minute speed changing amount. In the first embodiment of the present invention, two factors, namely, a friction coefficient and a deformation resistance, are considered as factors of the rolling load variation with respect to the speed change, and the friction coefficient change with respect to the speed change and the deformation resistance change with respect to the strain speed change. The following equations are respectively derived from equation (1), where 影響 and 影響 are the influence coefficients.

【0019】[0019]

【数2】 (Equation 2)

【0020】ちなみに圧延速度変化に対する摩擦係数変
化は図2(a)に示すような関係を有し、また歪み速度変
化に対する変形抵抗変化は図2(b)に示すような関係を
有しており、これらの関係は、例えば次式のように表さ
れる。
Incidentally, the change in the friction coefficient with respect to the change in the rolling speed has a relationship as shown in FIG. 2 (a), and the change in the deformation resistance with respect to the change in the strain speed has a relationship as shown in FIG. 2 (b). These relationships are expressed, for example, by the following equation.

【0021】[0021]

【数3】 (Equation 3)

【0022】但し、Hは入側板厚,hは出側板厚であ
り、R'は偏平ロール径,そしてKm'は速度零[0]時に
おける変形抵抗であって、a,b,c,d,eはそれぞれ定
数である。従ってこのようにして求められる摩擦係数お
よび変形抵抗を前述した予測式に代入すれば、速度変化
に対する圧延荷重変化のモデル式を次のように求めるこ
とができる。
Here, H is the thickness of the entrance side, h is the thickness of the exit side, R 'is the flat roll diameter, and Km' is the deformation resistance at zero speed [0], and a, b, c, d , e are constants. Therefore, by substituting the friction coefficient and the deformation resistance obtained in this way into the above-mentioned prediction formula, the model formula of the rolling load change with respect to the speed change can be obtained as follows.

【0023】[0023]

【数4】 (Equation 4)

【0024】前述した荷重変化予測演算部14は、上述
した如く求められる荷重変動予測式(5)に従って圧延速
度がVである時の微小圧延荷重変動予測量ΔPを算出
(予測)している。そしてロールギャップ補正演算部1
5では、上記の如く算出された微小圧延荷重変化予測量
ΔPを入力し、圧延機1のミル定数をKとしてロールギ
ャップ補正量ΔSkを ΔSk = ΔP/K …(6) として算出している。このロールギャップ補正量ΔSk
が板厚制御システム12のAGC演算部11において求
められたロールギャップ操作量ΔSaに加算され、圧下
制御装置4に対する操作量が ΔS = ΔSa + ΔSk として求められている。この操作量ΔSに従って圧下装
置5が駆動され、前記ワークロール2間のギャップが調
整されて板厚制御がなされる。
The above-mentioned load change prediction calculation unit 14 calculates (predicts) the micro rolling load fluctuation prediction amount ΔP when the rolling speed is V according to the load fluctuation prediction formula (5) obtained as described above. And the roll gap correction calculation unit 1
In step 5, the micro rolling load change predicted amount ΔP calculated as described above is input, and the roll gap correction amount ΔSk is calculated as ΔSk = ΔP / K (6), where the mill constant of the rolling mill 1 is K. This roll gap correction amount ΔSk
Is added to the roll gap operation amount ΔSa calculated in the AGC operation unit 11 of the sheet thickness control system 12, and the operation amount for the rolling reduction control device 4 is calculated as ΔS = ΔSa + ΔSk. The pressing-down device 5 is driven according to the operation amount ΔS, the gap between the work rolls 2 is adjusted, and the plate thickness is controlled.

【0025】以上のように本発明に係る圧延制御方法お
よび制御装置によれば、速度変化に対する圧延荷重変動
の要因として、従来より採用されてきた摩擦係数のみな
らず、変形抵抗をも考慮して、速度変化に対する摩擦係
数変化と歪み速度変化に対する変形抵抗変化とをそれぞ
れ影響係数とした圧延荷重変動予測式を立てている。そ
してこの圧延荷重変化予測式に基づいて、圧延速度が変
化する際の微小速度変化に対する圧延荷重変化量を予測
し、この予測された圧延荷重変化量に従って圧延機1に
おけるワークロール2間の圧下量を補正するものとなっ
ている。
As described above, according to the rolling control method and the control device according to the present invention, not only the friction coefficient conventionally used but also the deformation resistance is taken into account as a factor of the rolling load variation with respect to the speed change. In addition, a rolling load fluctuation prediction formula is established using the friction coefficient change with respect to the speed change and the deformation resistance change with respect to the strain speed change as the influence coefficients. Then, based on the rolling load change prediction formula, a rolling load change amount with respect to a minute speed change when the rolling speed changes is predicted, and the rolling reduction between the work rolls 2 in the rolling mill 1 in accordance with the predicted rolling load change amount. Is to be corrected.

【0026】従って歪み速度が大きく変化するような圧
延の場合や、歪み速度の変化に対して変形抵抗が大きな
影響を受けるような圧延材、例えばアルミニウムや銅等
を圧延するような場合であっても、圧延速度が変化する
際の圧延荷重変動を高精度に予測して板厚制御すること
ができ、板厚精度を高めることができる。この結果、圧
延材3の先端部および尾端部におけるオフゲージ長を短
くすることができる。
Therefore, in the case of rolling in which the strain rate changes greatly, or in the case of rolling a rolled material whose deformation resistance is greatly affected by the change in strain rate, for example, aluminum or copper. In addition, the thickness control can be performed by accurately predicting the rolling load fluctuation when the rolling speed changes, and the thickness accuracy can be improved. As a result, the off-gauge length at the leading end and the tail end of the rolled material 3 can be reduced.

【0027】図3は加速時における板厚変動量につい
て、従来の制御法と本発明による制御法とを対比して示
したものである。この図に示されるように本発明法によ
れば、従来法に比較して加速時における板厚変動の幅
(振幅)を大幅に小さくすることができ、またオフケー
ジの長さも大幅に短縮することができる。従って圧延の
開始時点や終了時点において圧延速度が変化する際、つ
まり加減速時における板厚変動を効果的に抑制すること
ができ、その圧延材3の先端部および尾端部におけるオ
フゲージ長を短くして全体的な板厚精度を高め、歩留り
を向上させることができる。しかも本発明の制御法によ
れば、板厚制御システム12だけによる従来一般的な板
厚制御との干渉を招くことなく、その板厚制御量に補正
を施すことができるので、従来システムに付加的に組み
込むことも可能であり、従来システム自体に組み込むこ
とも可能である等の利点もある。
FIG. 3 shows a comparison between the conventional control method and the control method according to the present invention with respect to the thickness variation during acceleration. As shown in this figure, according to the method of the present invention, the width (amplitude) of the thickness variation during acceleration can be significantly reduced and the length of the off-cage can be significantly reduced as compared with the conventional method. Can be. Therefore, when the rolling speed changes at the start and end of rolling, that is, the thickness variation at the time of acceleration / deceleration can be effectively suppressed, and the off-gauge length at the leading end and the tail end of the rolled material 3 can be shortened. As a result, the overall thickness accuracy can be increased, and the yield can be improved. Further, according to the control method of the present invention, the thickness control amount can be corrected without causing interference with the conventional general thickness control by only the thickness control system 12, so that the control method is added to the conventional system. There is an advantage that it can also be incorporated into the conventional system itself, and so on.

【0028】ところで上述した第1の実施形態において
は、パルスジェネレータ7により求められる圧延速度V
を圧延速度パラメータとした圧延荷重変動予測式に基づ
いて圧延荷重変動量を予測した。しかし上記圧延速度V
に代えて、圧延速度制御部18においてワークロール2
の周速の制御に用いる為の圧延速度指令値Vsを圧延速
度パラメータとする圧延荷重変動予測式を用いて圧延荷
重変動量を予測するようにしても良い。
In the first embodiment, the rolling speed V determined by the pulse generator 7 is used.
The rolling load fluctuation amount was predicted based on the rolling load fluctuation prediction formula using as a rolling speed parameter. However, the above rolling speed V
In place of the work roll 2 in the rolling speed control unit 18.
The rolling load fluctuation amount may be predicted using a rolling load fluctuation prediction formula using the rolling speed command value Vs used for controlling the peripheral speed as a rolling speed parameter.

【0029】この第2の実施形態について説明すると、
現在の圧延状態を示すフィードバック信号としてパルス
ジェネレータ7により求められる圧延速度Vに代えて、
図1に示す圧延速度制御部18にて実行される圧延機1
の速度制御により、その制御周期後(1スキャン後)に
おいて変化するであろう圧延速度を該圧延速度制御部1
8から速度指令値Vsとして求める。そして現時点から
1スキャン後に達していると予測される圧延速度(速度
指令値Vs)を圧延速度パラメータとする圧延荷重変動
予測式に基づき、1スキャン後に圧延速度がΔVだけ変
動した時点での圧延荷重変動量を予測し、その予測値に
従って圧下制御を実行することを特徴としている。
The second embodiment will be described.
Instead of the rolling speed V obtained by the pulse generator 7 as a feedback signal indicating the current rolling state,
Rolling mill 1 executed by rolling speed control unit 18 shown in FIG.
Control the rolling speed that will change after the control cycle (after one scan) by the rolling speed control unit 1.
8 to obtain a speed command value Vs. The rolling load at the time when the rolling speed fluctuates by ΔV after one scan is based on a rolling load fluctuation prediction formula using the rolling speed (speed command value Vs) predicted to have reached one scanning after the current time as the rolling speed parameter. It is characterized in that the amount of fluctuation is predicted, and the reduction control is executed according to the predicted value.

【0030】より具体的には前述した第1の実施形態に
おいては、現時点[To]における圧延速度Voと、その1
制御周期前[T-1]に計測されている圧延速度V-1とか
ら、1制御周期における圧延速度の変化量ΔVを(Vo
−V-1)として求め、この間に変動したであろう圧延荷
重変化量ΔPを予測して圧下制御を実行するものであっ
た。しかしこの第2の実施形態にあっては、圧延速度制
御の下で1制御周期後[T+1]に到達しているであろう圧
延速度V+1を前記圧延速度制御部18からの速度指令値
Vsとして求め、現時点[To]における圧延速度Voとの
差から、今後の1制御周期間における圧延速度の変化量
ΔVを(V+1−Vo)として求め、この間に変動するで
あろう圧延荷重変化量ΔPを前述した予測式に従って予
測する。そしてこの予測した圧延荷重変化量ΔPに従っ
て圧延機1におけるワークロール2間の圧下量を補正す
ることを特徴としている。
More specifically, in the first embodiment described above, the rolling speed Vo at the present time [To] and its rolling speed Vo
From the rolling speed V-1 measured before the control cycle [T-1], the change amount ΔV of the rolling speed in one control cycle is calculated as (Vo
−V-1), and the rolling reduction change ΔP that would have fluctuated during this period is predicted to execute the rolling reduction control. However, in the second embodiment, the rolling speed V + 1, which would have reached [T + 1] after one control cycle under the rolling speed control, is increased by the speed from the rolling speed controller 18. It is determined as the command value Vs, and from the difference with the rolling speed Vo at the present time [To], the change amount ΔV of the rolling speed in the future one control cycle is determined as (V + 1−Vo), and will vary during this period. The rolling load change amount ΔP is predicted according to the above-described prediction formula. Then, the rolling reduction between the work rolls 2 in the rolling mill 1 is corrected in accordance with the predicted rolling load change amount ΔP.

【0031】かくしてこのような予測制御によれば、圧
下量の補正効果が現れる時点での圧延速度の変化を見込
んで、その時点における荷重変化量ΔPを予測して圧下
量補正を行うので、図4(a)に時間経過に伴う圧下位置
の変化を示すように、実際の圧下の動きを理想的な圧下
制御量に近付けることが可能となる。この点、前述した
第1の実施形態による予測制御によれば、パルスジェネ
レータ7により検出される圧延速度の実績値、つまり圧
延速度の変化量ΔVに基づいて現時点における荷重変化
量ΔPを予測して圧下量を補正することになるので、図
4(b)に示すようにその制御周期の分だけ圧下位置の制
御遅れが生じることが否めない。
Thus, according to such a predictive control, a change in the rolling speed at the time when the effect of correcting the reduction amount appears, the load change amount ΔP at that time is predicted, and the reduction amount is corrected. As shown in FIG. 4 (a), the change of the rolling position with the passage of time is shown, so that the actual rolling movement can be made closer to the ideal rolling control amount. In this regard, according to the predictive control according to the first embodiment described above, the present load change amount ΔP is predicted based on the actual value of the rolling speed detected by the pulse generator 7, that is, the rolling speed change amount ΔV. Since the reduction amount is corrected, it is unavoidable that a control delay of the reduction position occurs by the control cycle as shown in FIG. 4B.

【0032】従って第2の実施形態に示すように、圧延
制御部18からの速度指令値Vsを圧延速度パラメータ
として圧延荷重変動を予測するようにすれば、第1の実
施形態に加えてその制御応答遅れを抑えて高精度な板厚
制御を行うことが可能となる。しかも圧延速度を示すフ
ィードバック信号(パルスジェネレータ7からの信号)
に代えて、圧延制御部18から求められる速度指令値V
sを圧延速度パラメータとするだけで、その板厚制御性
を飛躍的に向上させることができる。しかも油圧圧下系
の制御遅れも含めて、これを効果的に改善することが可
能となる。
Therefore, as shown in the second embodiment, if the rolling load fluctuation is predicted using the speed command value Vs from the rolling control unit 18 as a rolling speed parameter, the control is performed in addition to the first embodiment. It is possible to perform a highly accurate thickness control while suppressing a response delay. Moreover, a feedback signal indicating the rolling speed (a signal from the pulse generator 7)
, The speed command value V obtained from the rolling control unit 18
Only by setting s as a rolling speed parameter, the thickness controllability can be drastically improved. In addition, this can be effectively improved including the control delay of the hydraulic pressure reduction system.

【0033】尚、本発明は上述した実施例に限定される
ものではない。例えば圧延速度と摩擦係数の関係、およ
び歪み速度と変形抵抗との関係を前述した式(3)(4)以
外の関係式を用いて表現して、圧延荷重変動予測式を立
てるようにしても良い。また荷重変化の予測に用いる圧
延速度パラメータを、パルスジェネレータ7から求めら
れる圧延速度を採用するか、或いは圧延速度制御部18
から求められる速度指令値を採用するかを、適応的に選
択するようにしても良い。要はその要旨を逸脱しない範
囲で種々変形して実施することができる。
The present invention is not limited to the embodiment described above. For example, the relationship between the rolling speed and the friction coefficient, and the relationship between the strain speed and the deformation resistance are expressed using relational expressions other than the above-mentioned expressions (3) and (4), and the rolling load fluctuation prediction expression may be established. good. The rolling speed parameter used for predicting the load change may be a rolling speed obtained from the pulse generator 7 or a rolling speed control unit 18.
May be adaptively selected to adopt the speed command value obtained from the above. In short, various modifications can be made without departing from the scope of the invention.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、圧
延速度が変化するとき、摩擦係数および変形抵抗を影響
係数とした圧延荷重変動予測式に基づいて板厚変動に対
する補償制御を行うので、歪み速度が大きく変化するよ
うな圧延の場合や、歪み速度の変化に対して変形抵抗が
大きな影響を受ける圧延材を圧延する場合であっても、
圧延速度が変化する際の圧延荷重変動を高精度に予測し
て板厚制御することができ、圧延材の先端部および尾端
部におけるオフケージ部分を短くして全体的な板厚精度
を高め、その歩留りを向上させ得る等の効果が奏せられ
る。
As described above, according to the present invention, when the rolling speed changes, compensation control for the thickness variation is performed based on the rolling load variation prediction formula using the friction coefficient and the deformation resistance as the influence coefficients. In the case of rolling such that the strain rate changes significantly, or even when rolling a rolled material whose deformation resistance is greatly affected by the change in strain rate,
It is possible to control the thickness by predicting the rolling load variation when the rolling speed changes with high accuracy, and to shorten the off-cage part at the leading end and the tail end of the rolled material to increase the overall thickness accuracy, Effects such as improvement of the yield can be obtained.

【0035】また特に請求項3に記載の発明によれば、
圧延速度制御に用いる圧延速度指令値を、所定の制御周
期後に到達すると予測される圧延速度として求め、予測
された圧延速度指令値をパラメータとした圧延荷重変動
予測式を用いて圧延速度の加減速時における圧延荷重変
を予測するので、その変化を先取りした制御遅れのな
い高精度な板厚制御が可能となる。従ってその板厚精度
を更に高め、生産歩留りを飛躍的に向上させることが可
能となる。
According to the third aspect of the present invention,
The rolling speed command value used for rolling speed control is
Calculated as the rolling speed expected to arrive after
Rolling load fluctuation with the specified rolling speed command value as a parameter
Rolling load change during rolling speed acceleration / deceleration using prediction formula
Since the movement is predicted, a high-precision thickness control without a control delay that anticipates the change can be performed. Therefore, it is possible to further increase the accuracy of the thickness of the plate and to dramatically improve the production yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る圧延機における板厚制御装置の一
実施態様を示す概略的なブロック構成図。
FIG. 1 is a schematic block diagram showing an embodiment of a sheet thickness control device in a rolling mill according to the present invention.

【図2】圧延速度と摩擦係数との関係、および歪み速度
と変形抵抗との関係をそれぞれ示す図。
FIG. 2 is a diagram showing a relationship between a rolling speed and a friction coefficient, and a relationship between a strain speed and a deformation resistance.

【図3】加速時における板厚偏差を、本発明法と従来法
とを対比して示す図。
FIG. 3 is a diagram showing the thickness deviation during acceleration by comparing the method of the present invention with the conventional method.

【図4】時間経過に伴う圧下位置の変化を、圧延荷重変
動予測式におけるパラメータとして圧延速度指令値を用
いた場合と、フィードバック信号を用いた場合とを対比
して示す図。
FIG. 4 is a diagram showing a change in a rolling position with time in comparison with a case where a rolling speed command value is used as a parameter in a rolling load fluctuation prediction equation and a case where a feedback signal is used.

【符号の説明】[Explanation of symbols]

1 圧延機 4 圧下制御装置 11 AGC演算部 12 板厚制御システム 14 荷重変化予測演算部 15 ロールギャップ補正演算部 18 圧延速度制御部 REFERENCE SIGNS LIST 1 rolling mill 4 reduction control device 11 AGC operation unit 12 sheet thickness control system 14 load change prediction operation unit 15 roll gap correction operation unit 18 rolling speed control unit

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属板を冷間圧延するに際し、圧延速度
の加減速時における圧延荷重変動を、摩擦係数および変
形抵抗をそれぞれ影響係数とした圧延荷重変動予測式を
用いて予測し、予測された圧延荷重変動量に基づいて圧
下位置補正してなることを特徴とする圧延における加減
速時の板厚制御方法。
When a metal plate is cold-rolled, a rolling load fluctuation at the time of acceleration / deceleration of a rolling speed is predicted by using a rolling load fluctuation prediction equation using a friction coefficient and a deformation resistance as influence coefficients, respectively. A method for controlling a thickness of a roll at the time of acceleration / deceleration in rolling, wherein a rolling position is corrected based on a variation in rolling load.
【請求項2】 圧延速度の加減速時における圧延荷重変
動量ΔPを、摩擦係数および変形抵抗をそれぞれ影響係
数とした圧延荷重変動予測式を用いて予測する手段と、
上記圧延荷重変動予測式に基づいて算出された荷重変化
予測量をロールギャップ補正量ΔSkに変換する手段
と、この変換されたロールギャップ補正量に従って板厚
補償制御を行う手段とを具備したことを特徴とする圧延
における加減速時の板厚制御装置。
2. A means for predicting a rolling load fluctuation amount ΔP at the time of acceleration / deceleration of a rolling speed using a rolling load fluctuation prediction equation using a friction coefficient and a deformation resistance as influence coefficients, respectively.
Means for converting the predicted load change calculated based on the rolling load fluctuation prediction formula into a roll gap correction amount ΔSk, and means for performing sheet thickness compensation control according to the converted roll gap correction amount. Characteristic thickness control device during acceleration / deceleration in rolling.
【請求項3】 金属板を冷間圧延するに際し、圧延速度
制御に用いる圧延速度指令値を、所定の制御周期後に到
達すると予測される圧延速度として求め、この圧延速度
指令値をパラメータとした圧延荷重変動予測式を用いて
圧延速度の加減速時における圧延荷重変動を予測し、予
測された圧延荷重変動量に基づいて圧下位置補正してな
ることを特徴とする圧延における加減速時の板厚制御方
法。
3. The rolling speed in cold rolling a metal plate.
The rolling speed command value used for the control is reached after a predetermined control cycle.
This is calculated as the expected rolling speed
Using Rolling Load Fluctuation Prediction Formula with Command Value as Parameter
A method for controlling a thickness of a roll during acceleration / deceleration in rolling, wherein a rolling load fluctuation during a rolling speed acceleration / deceleration is predicted, and a rolling position is corrected based on the predicted rolling load fluctuation amount.
JP8155751A 1995-11-24 1996-06-17 Method and apparatus for controlling thickness during acceleration and deceleration in rolling Expired - Fee Related JP2960011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155751A JP2960011B2 (en) 1995-11-24 1996-06-17 Method and apparatus for controlling thickness during acceleration and deceleration in rolling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30567895 1995-11-24
JP7-305678 1995-11-24
JP8155751A JP2960011B2 (en) 1995-11-24 1996-06-17 Method and apparatus for controlling thickness during acceleration and deceleration in rolling

Publications (2)

Publication Number Publication Date
JPH09201609A JPH09201609A (en) 1997-08-05
JP2960011B2 true JP2960011B2 (en) 1999-10-06

Family

ID=26483675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155751A Expired - Fee Related JP2960011B2 (en) 1995-11-24 1996-06-17 Method and apparatus for controlling thickness during acceleration and deceleration in rolling

Country Status (1)

Country Link
JP (1) JP2960011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140747A1 (en) * 2020-01-09 2021-07-15 パナソニックIpマネジメント株式会社 Roll press device, and control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140747A1 (en) * 2020-01-09 2021-07-15 パナソニックIpマネジメント株式会社 Roll press device, and control device

Also Published As

Publication number Publication date
JPH09201609A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US8050792B2 (en) Method and device for optimization of flatness control in the rolling of a strip
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
JP2009208115A (en) Method and device for calculating parameter of rolling control, and rolling simulation device
KR20100005115A (en) Strip thickness control system for reverse rolling mill
JP2960011B2 (en) Method and apparatus for controlling thickness during acceleration and deceleration in rolling
KR100398765B1 (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
JPH04111910A (en) Method for controlling shape of rolled stock in multistage rolling mill
JP3016117B2 (en) Manufacturing method of tapered steel plate
JPH08332506A (en) Method for controlling thickness of taper plate
JP3516726B2 (en) Edge drop control method during cold rolling
JP3348540B2 (en) Control method of tandem mill
JP2000190012A (en) Plate shape controlling method and equipment in cold rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JP3036323B2 (en) Rolling mill control method and device
KR100514093B1 (en) control method for buckle and meandering prevention in annealing furnace
JP2001150011A (en) Rolling control method for metal strip
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPH0857510A (en) Method for controlling speed of deflector roll
JPH08150406A (en) Thickness controller for cold tandem mill
JPH11123427A (en) Method for controlling shape of rolled stock and device therefor
JPH05337531A (en) Automatic plate thickness controlling method for rolling machine whose speed is accelerated/decelerated
KR20010028280A (en) Method for predicting cold rolling roll force of ultra thin steel sheet
JP3438871B2 (en) Rolling mill shape control method
JPH0585251B2 (en)
JPH06226316A (en) Method for setting roll gap of rolling mill

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees