JP2953326B2 - Method of manufacturing gallium nitride based compound semiconductor laser device - Google Patents

Method of manufacturing gallium nitride based compound semiconductor laser device

Info

Publication number
JP2953326B2
JP2953326B2 JP29543394A JP29543394A JP2953326B2 JP 2953326 B2 JP2953326 B2 JP 2953326B2 JP 29543394 A JP29543394 A JP 29543394A JP 29543394 A JP29543394 A JP 29543394A JP 2953326 B2 JP2953326 B2 JP 2953326B2
Authority
JP
Japan
Prior art keywords
gallium nitride
based compound
compound semiconductor
plane
sapphire substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29543394A
Other languages
Japanese (ja)
Other versions
JPH08153931A (en
Inventor
康宜 杉本
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP29543394A priority Critical patent/JP2953326B2/en
Publication of JPH08153931A publication Critical patent/JPH08153931A/en
Application granted granted Critical
Publication of JP2953326B2 publication Critical patent/JP2953326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y≦
1)よりなるレーザ素子の製造方法に係り、特にサファ
イア基板のC面上に窒化ガリウム系化合物半導体がレー
ザ素子の構造となるように積層されたウェーハから半導
体素子の光共振面を形成する方法に関する。
The present invention relates to a gallium nitride compound semiconductor (In X Al Y Ga 1- XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦
More particularly, the present invention relates to a method for forming an optical resonance surface of a semiconductor device from a wafer in which a gallium nitride-based compound semiconductor is laminated on a C-plane of a sapphire substrate so as to have a structure of the laser device. .

【0002】[0002]

【従来の技術】青色〜紫外域にレーザ発振し得る半導体
材料の一つに窒化ガリウム系化合物半導体(InXAlY
Ga1-X-YN、0≦X、0≦Y、X+Y≦1)が知られてい
る。また最近、窒化ガリウム系化合物半導体よりなるダ
ブルへテロ構造の発光ダイオード、が実用化されたこと
により、レーザダイオードが急に注目されるようになっ
た。
2. Description of the Related Art One of semiconductor materials capable of laser oscillation in the blue to ultraviolet region is a gallium nitride-based compound semiconductor (In X Al Y).
Ga 1 -XYN , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) are known. Further, recently, a laser diode having a double heterostructure made of a gallium nitride-based compound semiconductor has been put to practical use.

【0003】窒化ガリウム系化合物半導体を用いたレー
ザ素子は従来より数々の構造が提案されている。例えば
特開平6−283825号公報ではSiドープn型Al
GaN/Siドープn型GaN/MgドープAlGaN
ダブルへテロ構造のレーザダイオードが開示されてお
り、またUSP5,146,465にはAlGaNを活
性層として、AlGaNの多層膜で光共振面を形成した
レーザ素子が開示されている。
[0003] Numerous structures have been proposed for laser devices using gallium nitride-based compound semiconductors. For example, Japanese Patent Application Laid-Open No. 6-283825 discloses a Si-doped n-type Al
GaN / Si doped n-type GaN / Mg doped AlGaN
A laser diode having a double hetero structure is disclosed, and US Pat. No. 5,146,465 discloses a laser device in which an optical resonance surface is formed of an AlGaN multilayer film using AlGaN as an active layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、窒化ガ
リウム系化合物半導体のレーザ素子は未だ実現されてい
ない。その理由は数々あるが、その一つにレーザ素子で
不可欠な光共振面の形成が困難であるという問題があ
る。
However, a gallium nitride based compound semiconductor laser device has not yet been realized. Although there are various reasons, one of them is a problem that it is difficult to form an optical resonance surface indispensable in a laser device.

【0005】一般に窒化ガリウム系化合物半導体はサフ
ァイア基板の上に成長されることが多い。サファイアは
六方晶系という結晶の性質上、劈開性を有していない。
さらに窒化ガリウム系化合物半導体も同じく六方晶系で
あるので劈開性を有していない。一方、赤外、赤色半導
体レーザ素子に使用されるGaAs系の材料は立方晶系
であって劈開性を有しているため、半導体レーザの共振
面は半導体結晶の劈開面が使用される。
In general, a gallium nitride compound semiconductor is often grown on a sapphire substrate. Sapphire does not have cleavage properties due to its hexagonal crystal nature.
Further, gallium nitride-based compound semiconductors are also hexagonal and do not have cleavage. On the other hand, since the GaAs-based material used for the infrared and red semiconductor laser elements is cubic and has cleavage, the cleavage plane of the semiconductor crystal is used as the resonance plane of the semiconductor laser.

【0006】半導体レーザを実現する上で光共振面を形
成することは非常に重要である。ところが前記のように
窒化ガリウム系化合物半導体は劈開性を有していないの
で、劈開面を光共振面とすることができないという欠点
がある。従来、レーザ素子となる窒化ガリウム系化合物
半導体の積層構造は多く提案されているが、実際の光共
振面の形成方法については知られていないのが実状であ
る。そこで、本発明はこのような事情を鑑みて成された
ものであって、その目的とするところは、サファイア基
板の上に窒化ガリウム系化合物半導体がレーザ素子とな
る構造で積層されたウェーハから半導体層に光共振面を
実現できるレーザ素子の製造方法を提供するにある。
To realize a semiconductor laser, it is very important to form an optical resonance surface. However, since the gallium nitride-based compound semiconductor has no cleavage property as described above, there is a disadvantage that the cleavage plane cannot be an optical resonance plane. Conventionally, many laminated structures of gallium nitride-based compound semiconductors to be used as laser elements have been proposed, but the actual method of forming an optical resonance surface is not known. Accordingly, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a semiconductor device having a structure in which a gallium nitride-based compound semiconductor is stacked on a sapphire substrate in a structure to be a laser device. It is an object of the present invention to provide a method for manufacturing a laser device capable of realizing an optical resonance surface in a layer.

【0007】[0007]

【課題を解決するための手段】我々は特定の面方位のサ
ファイア基板の表面に窒化ガリウム系化合物半導体を積
層した後、そのサファイア基板を特定の面方位で割るこ
とによって、窒化ガリウム系化合物半導体層の光共振面
を作製できることを新たに見いだし本発明を成すに至っ
た。即ち、本発明の窒化ガリウム系化合物半導体レーザ
素子の製造方法は、サファイア基板の(0001)面の
表面に窒化ガリウム系化合物半導体をレーザ素子の構造
に積層した後、そのサファイア基板を数1、数2、数
3、数4、数5、数6面(以下特に記載のない限り、前
記六種類の面方位をまとめてM面という。)の内のいず
れかの面方位でかつその分割位置でのサファイア基板の
厚さを150μm以下にして割ることにより半導体レー
ザ素子の光共振面を作製することを特徴とする。
Means for Solving the Problems We deposit a gallium nitride-based compound semiconductor on the surface of a sapphire substrate having a specific plane orientation, and then divide the sapphire substrate by the specific plane orientation to obtain a gallium nitride-based compound semiconductor layer. The present inventors have newly found that an optical resonance surface can be manufactured, and have accomplished the present invention. That is, according to the method of manufacturing a gallium nitride-based compound semiconductor laser device of the present invention, after a gallium nitride-based compound semiconductor is laminated on the surface of the (0001) plane of the sapphire substrate in the structure of the laser device, In any one of the 2, 3, 4, 5, and 6 planes (the above six plane orientations are collectively referred to as an M plane unless otherwise specified) and at the division position thereof. The optical resonance surface of the semiconductor laser device is manufactured by dividing the thickness of the sapphire substrate to 150 μm or less.

【0008】図1にサファイア単結晶の面方位を表すユ
ニットセル図を示す。本発明ではこのユニットセル図の
(0001)面(以下、この面をC面という。)に窒化
ガリウム系化合物半導体を積層する。サファイアのC面
に窒化ガリウム系化合物半導体をC軸方向に配向させて
積層する。窒化ガリウム系化合物半導体は、例えばHD
VPE(ハイドライド気相成長法)、MOVPE(有機
金属気相成長法)、MBE(分子線気相成長法)等の気
相成長法により成長させることができる。また、サファ
イア基板のC面とは(0001)面に完全に一致してい
ることはいうまでもなく、(0001)面よりおよそ±
10゜以内の範囲でオフ角を有するC面であってもよ
い。
FIG. 1 is a unit cell diagram showing the plane orientation of a sapphire single crystal. In the present invention, a gallium nitride-based compound semiconductor is laminated on a (0001) plane (hereinafter, this plane is referred to as a C plane) of the unit cell diagram. A gallium nitride-based compound semiconductor is laminated on the C-plane of sapphire with its orientation oriented in the C-axis direction. Gallium nitride-based compound semiconductors include, for example, HD
It can be grown by a vapor phase growth method such as VPE (hydride vapor phase epitaxy), MOVPE (metal organic vapor phase epitaxy), or MBE (molecular beam vapor phase epitaxy). Also, it goes without saying that the C plane of the sapphire substrate completely coincides with the (0001) plane, and is approximately ±
A C-plane having an off angle within a range of 10 ° or less may be used.

【0009】レーザ素子の構造とするには、基本的にダ
ブルへテロ構造を達成すればよく、例えばInGaN/
AlGaN(活性層/クラッド層)、InGaN/Ga
N、AlGaN/AlGaN等のヘテロ接合でダブルへ
テロ構造を達成することができる。好適には活性層はノ
ンドープn型InXAlYGa1-X-YN(0<X、0≦Y、X
+Y<1)、またはn型ドーパントおよび/またはp型
ドーパントをドープしたn型InXAlYGa1-X-Y
(0<X、0≦Y、X+Y<1)として、活性層を互いに導
電型が異なり活性層よりもバンドギャップの大きい窒化
ガリウム系化合物半導体で挟んだダブルへテロ構造とす
る。活性層を少なくともインジウムとガリウムとを含む
窒化ガリウム系化合物半導体とすることにより、InG
aNのバンド間発光のみでレーザ発光波長を紫〜赤色ま
で変化させることができる。さらに、活性層はn型であ
る方が結晶欠陥の少ない半導体層が得られるのでレーザ
の信頼性が向上する。さらにまたSi、Ge、S等のn
型ドーパント、Zn、Mg、Cd等のp型ドーパントを
ドープするとInGaNのバンド間発光の他に、発光中
心ができるので、発振波長の補正をすることも可能であ
る。
In order to obtain the structure of the laser element, it is basically sufficient to achieve a double hetero structure.
AlGaN (active layer / cladding layer), InGaN / Ga
A double heterostructure can be achieved with a heterojunction such as N or AlGaN / AlGaN. Preferably, the active layer is a non-doped n-type In x Al Y Ga 1 -XYN (0 <X, 0 ≦ Y, X
+ Y <1), or n-type In x Al Y Ga 1-XY N doped with an n-type dopant and / or a p-type dopant
Assuming that (0 <X, 0 ≦ Y, X + Y <1), the active layer has a double hetero structure sandwiched between gallium nitride-based compound semiconductors having different conductivity types and a larger band gap than the active layer. By forming the active layer from a gallium nitride-based compound semiconductor containing at least indium and gallium, InG
The laser emission wavelength can be changed from purple to red only by the interband emission of aN. Further, when the active layer is of the n-type, a semiconductor layer having less crystal defects can be obtained, so that the reliability of the laser is improved. Furthermore, n of Si, Ge, S, etc.
When a p-type dopant such as Zn, Mg, or Cd is doped with a p-type dopant, an emission center is formed in addition to the inter-band emission of InGaN, so that the oscillation wavelength can be corrected.

【0010】例えばレーザ素子の構造には、利得導波型
ストライプ型レーザとしては、電極ストライプ型、メサ
ストライプ型、ヘテロアイソレーション型等を挙げるこ
とができ、またその他、作りつけ導波機構をもつストラ
イプ型レーザとして、埋め込みヘテロ型、CSP型、リ
ブガイド型等を挙げることができる。
For example, in the structure of the laser device, the gain-guided stripe type laser can be an electrode stripe type, a mesa stripe type, a hetero-isolation type, etc., and also has a built-in waveguide mechanism. Examples of the stripe type laser include a buried hetero type, a CSP type, a rib guide type, and the like.

【0011】次に、気相成長法によりサファイア基板の
C面に窒化ガリウム系化合物半導体を積層した後、最上
層のp型窒化ガリウム系化合物半導体層に正電極を形成
する。図2に本発明の一方法による窒化ガリウム系化合
物半導体レーザ素子の斜視図を示す。これは基本的には
メサストライプ型のレーザ素子の構造を示しており、サ
ファイア基板1のC面上にn型の窒化ガリウム系化合物
半導体よりなる第一のクラッド層2とn型の窒化ガリウ
ム系化合物半導体よりなる活性層3と、p型の窒化ガリ
ウム系化合物半導体よりなる第二のクラッド層4とを積
層してダブルへテロ構造とし、第二のクラッド層4の表
面にストライプ状の正電極12と、第一のクラッド層2
の表面に同じくストライプ状の負電極11を形成してい
る。このように、例えばストライプ型レーザを実現する
には導波路として正電極を数μm〜20μm程度の幅で
形成することにより、ストライプに沿って発振を起こす
ことができる。図2では活性層3のレーザ発振領域をハ
ッチングして示している。ここで、正電極を形成する場
合に注意することは、後でサファイア基板をM面で割っ
た際、その分割面の窒化ガリウム系化合物半導体層を光
共振面とするので、窒化ガリウム系化合物半導体の分割
面に対してストライプが垂直となるように電極を形成す
る必要がある。なお、前記のようにサファイアをM面で
割った場合、窒化ガリウム系化合物半導体の光共振面は
六方晶系の
Next, after a gallium nitride-based compound semiconductor is laminated on the C-plane of the sapphire substrate by vapor phase growth, a positive electrode is formed on the uppermost p-type gallium nitride-based compound semiconductor layer. FIG. 2 is a perspective view of a gallium nitride based compound semiconductor laser device according to one method of the present invention. This basically shows the structure of a mesa-stripe type laser element. A first cladding layer 2 made of an n-type gallium nitride-based compound semiconductor and an n-type gallium nitride-based compound semiconductor are formed on a C-plane of a sapphire substrate 1. An active layer 3 made of a compound semiconductor and a second clad layer 4 made of a p-type gallium nitride-based compound semiconductor are laminated to form a double heterostructure, and a stripe-shaped positive electrode is formed on the surface of the second clad layer 4. 12 and the first cladding layer 2
A negative electrode 11 in the form of a stripe is also formed on the surface of. Thus, for example, in order to realize a stripe type laser, oscillation can be generated along the stripe by forming a positive electrode as a waveguide with a width of about several μm to 20 μm. In FIG. 2, the laser oscillation region of the active layer 3 is hatched. Here, when forming the positive electrode, it should be noted that when the sapphire substrate is later divided by the M plane, the gallium nitride-based compound semiconductor layer on the divided surface is used as an optical resonance surface. It is necessary to form the electrodes so that the stripes are perpendicular to the divided plane. When sapphire is divided by the M-plane as described above, the optical resonance surface of the gallium nitride-based compound semiconductor has a hexagonal system.

【数7】 (110) 面となることが多い。## EQU7 ## In many cases, the (110) plane is used.

【0012】次に本発明の最も重要な点である光共振面
の形成方法について述べる。本発明ではサファイアのC
面上に窒化ガリウム系化合物半導体を積層したウェーハ
を、サファイア基板のM面の内のいずれかで割って、窒
化ガリウム系化合物半導体の光共振面を形成する。例え
ば図1において、例えば斜線部で示すサファイア基板の
数3面で割った窒化ガリウム系化合物半導体層と、数3
面と対向する同じく斜線部で示す数6面で割った窒化ガ
リウム系化合物半導体層とで光共振面を形成することが
できる。なおこの共振面は前記のように六方晶系の数7
面となることが多い。
Next, a method of forming an optical resonance surface, which is the most important point of the present invention, will be described. In the present invention, sapphire C
The wafer on which the gallium nitride-based compound semiconductor is laminated is divided by any one of the M planes of the sapphire substrate to form an optical resonance surface of the gallium nitride-based compound semiconductor. For example, in FIG. 1, for example, a gallium nitride-based compound semiconductor layer divided by three surfaces of a sapphire substrate indicated by hatched portions,
The optical resonance surface can be formed by the gallium nitride-based compound semiconductor layer divided by the surface of the gallium nitride-based compound semiconductor, which is also indicated by the hatched portion facing the surface. Note that this resonance surface has a hexagonal number of 7 as described above.
Often a surface.

【0013】ウェーハを割る手段として例えばスクライ
バー、またはダイサーを用いることができる。スクライ
バーを用いた場合、窒化ガリウム系化合物半導体層と対
向するサファイア基板をスクライブする前に基板の厚さ
を150μm以下、さらに好ましくは100μm以下の
厚さに研磨して薄くすることが望ましい。基板を150
μm以下に研磨して薄くすることにより、M面からウェ
ーハを割る際にスクライブラインより真っ直ぐに割れ易
くなり、割れた窒化ガリウム系化合物半導体層面を光共
振面とすることが容易になる。一方、ダイサーで割る場
合には、同じく窒化ガリウム系化合物半導体層と対向す
るサファイア基板側をハーフカットした後、ウェーハを
圧し割ることにより光共振面を形成できる。さらに、ス
クライバーとダイサーとを組み合わせてウェーハを割る
ことも可能である。図3は本発明の一工程で得られるウ
ェーハの模式的な断面図を示している。これはサファイ
ア基板の表面をまずダイサーでハーフカットして、その
ダイシング溝の跡をスクライブした時のウェーハの状態
を示している。サファイア基板に形成された広い溝がダ
イサーでのハーフカットを示しており、ダイサー溝の中
心に入れられた小さな溝がスクライバーによる溝を示し
ている。この図に示すようにダイサーによるハーフカッ
ト、スクライバーでウェーハを割る際には前記のように
サファイア基板の厚さを150μm以下にすることによ
り、窒化ガリウム系化合物半導体層に光共振面を形成す
ることが容易となる傾向にある。なお、ウェーハを割る
には前記スクライブ、ダイシングの後、ローラー等でウ
ェーハを圧し割ることによって簡単に割ることができ
る。
As a means for breaking the wafer, for example, a scriber or a dicer can be used. When a scriber is used, it is desirable to reduce the thickness of the sapphire substrate by polishing to a thickness of 150 μm or less, more preferably 100 μm or less, before scribing the sapphire substrate facing the gallium nitride-based compound semiconductor layer. 150 substrates
When the wafer is polished to a thickness of not more than μm and thinned, the wafer can be easily broken straight from the scribe line when the wafer is split from the M plane, and the broken gallium nitride-based compound semiconductor layer can easily be used as an optical resonance surface. On the other hand, in the case of dividing by a dicer, an optical resonance surface can be formed by half-cutting the sapphire substrate side facing the gallium nitride-based compound semiconductor layer and then pressing and dividing the wafer. Further, it is also possible to crack a wafer by combining a scriber and a dicer. FIG. 3 is a schematic sectional view of a wafer obtained in one step of the present invention. This shows the state of the wafer when the surface of the sapphire substrate is first half-cut with a dicer and the trace of the dicing groove is scribed. A wide groove formed on the sapphire substrate indicates a half cut by the dicer, and a small groove inserted in the center of the dicer groove indicates a groove formed by a scriber. As shown in this figure, when the wafer is cut with a dicer, the optical resonance surface is formed on the gallium nitride based compound semiconductor layer by making the thickness of the sapphire substrate 150 μm or less as described above. Tends to be easier. The wafer can be easily split by pressing and splitting the wafer with a roller or the like after scribing and dicing.

【0014】[0014]

【作用】図1を元に本発明の方法の作用を説明する。サ
ファイア単結晶は窒化ガリウム系化合物半導体と異なり
結晶性が非常に良く、図1に示すようにほぼ正確な六方
晶系を有している。一方、窒化ガリウム系化合物半導体
は六方晶系といえどもサファイア基板の上に必ずしも基
板と一致した結晶形で積層されるわけではない。しかし
サファイアの結晶系が安定しているならば、安定したサ
ファイアの方でウェーハを割ってやることにより、窒化
ガリウム系化合物半導体を安定して割れ易くすることが
可能となり、あたかも窒化ガリウム系化合物半導体で劈
開面を形成したかのような状態にすることができるので
ある。特に、図1の斜線部で示すようにサファイアのM
面は必ず対向するもう一方のM面を有しているため、そ
れらのM面でウェーハを割ることによって、窒化ガリウ
ム系化合物半導体層に対向する光共振面を形成できる。
The operation of the method of the present invention will be described with reference to FIG. A sapphire single crystal has very good crystallinity unlike a gallium nitride-based compound semiconductor, and has a substantially accurate hexagonal system as shown in FIG. On the other hand, a gallium nitride-based compound semiconductor is not always laminated on a sapphire substrate in a crystal form consistent with the substrate, even though it is hexagonal. However, if the crystal system of sapphire is stable, it is possible to break the gallium nitride compound semiconductor easily and easily by cracking the wafer with the stable sapphire, as if it were a gallium nitride compound semiconductor. Thus, it is possible to make a state as if a cleavage plane was formed. In particular, as shown by the hatched portion in FIG.
Since the surfaces always have the other opposing M-plane, the optical resonance surface opposing the gallium nitride-based compound semiconductor layer can be formed by dividing the wafer by these M-planes.

【0015】さらに、サファイア単結晶のM面は、他の
サファイアの面方位、例えばC面、A面(数7面)等に
比べて、割れやすい性質がある。一方、サファイアの上
にレーザ素子の構造に積層される窒化ガリウム系化合物
半導体層の厚さはせいぜい10μm以下でしかなく、こ
れに対しサファイア基板は10倍以上の厚さを有してい
る。このため、割り易いM面でサファイア基板を割る
と、サファイア基板に積層された膜厚の薄い窒化ガリウ
ム系化合物半導体層が、サファイア基板のM面につられ
て割れ、その割れた窒化ガリウム系化合物半導体層面が
劈開面のような状態となり光共振面となる。
Further, the M-plane of the sapphire single crystal has a property that it is more easily broken than the plane orientation of other sapphire, for example, the C-plane and the A-plane (Equation 7). On the other hand, the thickness of the gallium nitride-based compound semiconductor layer laminated on the structure of the laser element on sapphire is at most 10 μm or less, whereas the thickness of the sapphire substrate is 10 times or more. For this reason, when the sapphire substrate is divided at the M-plane which is easy to split, the thin gallium nitride-based compound semiconductor layer laminated on the sapphire substrate is broken along the M-plane of the sapphire substrate, and the cracked gallium nitride-based compound semiconductor is broken. The layer surface becomes like a cleavage plane and becomes an optical resonance plane.

【0016】[0016]

【実施例】図4および図5を元に本発明の方法を詳説す
る。なお、図4は本発明の一方法により得られたレーザ
素子をM面と平行な方向で切断した際の模式断面図を示
しており、図5はウェーハの窒化ガリウム系化合物半導
体層に正電極を形成した際の平面図を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described in detail with reference to FIGS. FIG. 4 is a schematic cross-sectional view of the laser device obtained by one method of the present invention when cut in a direction parallel to the M-plane. FIG. 5 shows a positive electrode on the gallium nitride-based compound semiconductor layer of the wafer. FIG. 3 shows a plan view when forming a pattern.

【0017】C面を主面とする厚さ500μmのサファ
イア基板30の表面にMOVPE法を用いて窒化ガリウ
ム系化合物半導体を積層した。なおサファイア基板はA
面(数7面)がオリエンテーションフラットされた面を
用いた。積層順はサファイア基板表面から順にGaNよ
りなるバッファ層31が200オングストローム、Si
ドープn型GaNよりなるn型コンタクト層32が4μ
m、Siドープn型AlGaNよりなるn型クラッド層
33が0.1μm、ノンドープn型InGaN層よりな
る活性層34が500オングストローム、Mgドープp
型AlGaN層よりなるp型クラッド層35が0.1μ
m、Mgドープp型GaN層よりなるp型コンタクト層
36が0.5μmの膜厚で成長した。
A gallium nitride-based compound semiconductor was laminated on the surface of a sapphire substrate 30 having a thickness of 500 μm and having the C-plane as a main surface by MOVPE. The sapphire substrate is A
A plane (Equation 7) having an orientation flat was used. The lamination order is such that the buffer layer 31 made of GaN is 200 angstrom, Si
The n-type contact layer 32 made of doped n-type GaN has a thickness of 4 μm.
m, n-type cladding layer 33 made of Si-doped n-type AlGaN is 0.1 μm, active layer 34 made of non-doped n-type InGaN layer is 500 Å, Mg-doped p-type.
The p-type cladding layer 35 composed of the AlGaN layer has a thickness of 0.1 μm.
A p-type contact layer 36 of m, Mg-doped p-type GaN layer was grown to a thickness of 0.5 μm.

【0018】次に最上層であるp型コンタクト層36の
表面に所定のストライプ形状のマスクを形成し、p型コ
ンタクト層36、p型クラッド層35、活性層34、n
型クラッド層33の一部をエッチングして取り除き負電
極11を形成すべきn型コンタクト層32を露出させ
た。
Next, a mask having a predetermined stripe shape is formed on the surface of the uppermost p-type contact layer 36, and the p-type contact layer 36, the p-type cladding layer 35, the active layer 34, and the n-type
A part of the mold clad layer 33 was removed by etching to expose the n-type contact layer 32 where the negative electrode 11 was to be formed.

【0019】エッチング後、マスクを除去し、再度所定
の形状のマスクを形成して、n型コンタクト層32に2
0μmの幅で負電極11、p型コンタクト層36に2μ
mの幅で正電極12をそれぞれ形成した。正電極12形
成時のウェーハの表面を示す平面図を図5に示してい
る。正電極12、負電極11をウェーハのオリエンテー
ションフラット面、A面に平行な方向で形成すると、図
5の破線に示すようにA面に垂直な方向でウェーハを割
ると、自動的にM面からウェーハを割ることができる。
After the etching, the mask is removed, and a mask having a predetermined shape is formed again.
The negative electrode 11 has a width of 0 μm and the p-type contact layer 36 has a width of 2 μm.
The positive electrode 12 was formed with a width of m. FIG. 5 is a plan view showing the surface of the wafer when the positive electrode 12 is formed. When the positive electrode 12 and the negative electrode 11 are formed in a direction parallel to the orientation flat surface of the wafer and the A surface, when the wafer is divided in a direction perpendicular to the A surface as shown by a broken line in FIG. The wafer can be broken.

【0020】次に、窒化ガリウム系化合物半導体層を形
成していない方のサファイア基板面を研磨して基板の厚
さを90μmにした。研磨後、ウェーハをスクライバー
にセットして、研磨したサファイア基板表面をスクライ
ブした。スクライブ方向はA面に平行な方向と、図5の
破線に示すようにA面に垂直な方向としてスクライブし
た。
Next, the surface of the sapphire substrate on which the gallium nitride-based compound semiconductor layer was not formed was polished to a thickness of 90 μm. After polishing, the wafer was set on a scriber, and the polished sapphire substrate surface was scribed. The scribing direction was a direction parallel to the plane A and a direction perpendicular to the plane A as shown by the broken line in FIG.

【0021】スクライブ後、ウェーハをローラーで圧し
割りウェーハを700μm角のチップに分割した。この
チップは図4に示すような構造を有しており、A面に垂
直な方向で割った面がレーザ素子の光共振面とされてい
る。次に分割されたチップをヒートシンクに設置し、そ
れぞれの電極をワイヤーボンドした後、液体窒素温度で
レーザ発振を試みたところ、しきい値電流密度1.5k
A/cm2で発振波長390nmのレーザ発振が確認され
た。
After scribing, the wafer was pressed with a roller to split the wafer into 700 μm square chips. This chip has a structure as shown in FIG. 4, and a plane divided by a direction perpendicular to the plane A is an optical resonance plane of the laser element. Next, the divided chips were placed on a heat sink, and after wire bonding each electrode, laser oscillation was attempted at liquid nitrogen temperature.
Laser oscillation having an oscillation wavelength of 390 nm at A / cm 2 was confirmed.

【0022】[0022]

【発明の効果】以上説明したように、本発明では初めて
具体的な方法で光共振面の形成方法を示しているので、
劈開性のないサファイア基板上に積層した窒化ガリウム
系化合物半導体層より劈開面と同様の光共振面が得られ
てレーザ発振が可能となる。このため同一半導体材料を
用いて紫外〜赤色までの半導体レーザが実現可能となり
その産業上の利用価値は非常に大きい。
As described above, in the present invention, for the first time, a method for forming an optical resonance surface is shown by a specific method.
An optical resonance surface similar to the cleavage plane is obtained from the gallium nitride-based compound semiconductor layer laminated on the sapphire substrate having no cleavage, and laser oscillation becomes possible. For this reason, semiconductor lasers from ultraviolet to red can be realized using the same semiconductor material, and the industrial use value thereof is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 サファイア単結晶の面方位を表すユニットセ
ル図。
FIG. 1 is a unit cell diagram showing a plane orientation of a sapphire single crystal.

【図2】 本発明の一実施例によるレーザ素子の斜視
図。
FIG. 2 is a perspective view of a laser device according to one embodiment of the present invention.

【図3】 本発明の方法の一工程で得られるウェーハの
模式断面図。
FIG. 3 is a schematic sectional view of a wafer obtained in one step of the method of the present invention.

【図4】 本発明の一実施例によるレーザ素子をM面と
平行な方向で切断した際の模式断面図。
FIG. 4 is a schematic cross-sectional view when the laser device according to one embodiment of the present invention is cut in a direction parallel to the M-plane.

【図5】 正電極を形成した際のウェーハの表面を示す
平面図。
FIG. 5 is a plan view showing a surface of a wafer when a positive electrode is formed.

【符号の説明】[Explanation of symbols]

1、30・・・・サファイア基板 2・・・・第一のクラッド層 3、34・・・・活性層 4・・・・第二のクラッド層 31・・・・バッファ層31 32・・・・n型コンタクト層32 33・・・・n型クラッド層 35・・・・p型クラッド層35 36・・・・p型コンタクト層 11・・・・負電極 12・・・・正電極 1, 30 sapphire substrate 2 first cladding layer 3, 34 active layer 4 second cladding layer 31 buffer layer 31 32 · N-type contact layer 32 33 ··· n-type cladding layer 35 ··· p-type cladding layer 35 36 ··· p-type contact layer 11 ··· negative electrode 12 ··· positive electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 サファイア基板の(0001)面の表面
に窒化ガリウム系化合物半導体をレーザ素子の構造に積
層した後、そのサファイア基板を 【数1】 (100) 【数2】 (100) 【数3】 (010) 【数4】 (100) 【数5】 (010) 【数6】 (010) 面のうちのいずれかの面方位で、かつその分割位置での
サファイア基板の厚さを150μm以下にして割ること
により半導体レーザ素子の光共振面を作製することを特
徴とする窒化ガリウム系化合物半導体レーザ素子の製造
方法。
After laminating a gallium nitride-based compound semiconductor on the surface of a (0001) plane of a sapphire substrate in a structure of a laser device, the sapphire substrate is expressed by the following formula: (010) (4) (100) (5) (010) (6) The thickness of the sapphire substrate at any one of the plane orientations and at the division position is set to 150 μm. A method for manufacturing a gallium nitride-based compound semiconductor laser device, characterized in that an optical resonance surface of the semiconductor laser device is manufactured by dividing as follows.
JP29543394A 1994-11-30 1994-11-30 Method of manufacturing gallium nitride based compound semiconductor laser device Expired - Fee Related JP2953326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29543394A JP2953326B2 (en) 1994-11-30 1994-11-30 Method of manufacturing gallium nitride based compound semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29543394A JP2953326B2 (en) 1994-11-30 1994-11-30 Method of manufacturing gallium nitride based compound semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH08153931A JPH08153931A (en) 1996-06-11
JP2953326B2 true JP2953326B2 (en) 1999-09-27

Family

ID=17820542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29543394A Expired - Fee Related JP2953326B2 (en) 1994-11-30 1994-11-30 Method of manufacturing gallium nitride based compound semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2953326B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557011B2 (en) 1995-03-30 2004-08-25 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JPH08316582A (en) * 1995-05-19 1996-11-29 Nec Corp Semiconductor laser
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
JP3537977B2 (en) * 1996-12-27 2004-06-14 日亜化学工業株式会社 Method of manufacturing nitride semiconductor laser device
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
US6051849A (en) 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
JP4070893B2 (en) * 1998-09-22 2008-04-02 三菱電機株式会社 Manufacturing method of semiconductor device
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6653663B2 (en) 1999-12-06 2003-11-25 Matsushita Electric Industrial Co., Ltd. Nitride semiconductor device
US6380108B1 (en) 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
JP2005252245A (en) * 2004-02-03 2005-09-15 Showa Denko Kk Gallium nitride-based compound semiconductor wafer
JP2006171102A (en) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd Manufacturing method of optical compensation plate

Also Published As

Publication number Publication date
JPH08153931A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP3436128B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
US8062959B2 (en) Method of manufacturing semiconductor element
JP3491538B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
US8022427B2 (en) Nitride-based semiconductor device and method of manufacturing the same
JP3822976B2 (en) Semiconductor device and manufacturing method thereof
KR100563176B1 (en) Semiconductor substrate and semiconductor device
JP2953326B2 (en) Method of manufacturing gallium nitride based compound semiconductor laser device
EP1513234A1 (en) Multibeam semiconductor laser, semiconductor light- emitting device and semiconductor device
US20090262771A1 (en) Semiconductor laser device and method of manufacturing the same
JP2002009004A (en) Method of manufacturing nitride semiconductor, nitride semiconductor device, method of manufacturing the same semiconductor light emitting device and its manufacturing method
JP2009081374A (en) Semiconductor light-emitting device
US7939929B2 (en) Semiconductor laser device and method of fabricating semiconductor laser device
US20150155684A1 (en) Method for manufacturing semiconductor laser device
JP3460581B2 (en) Method for growing nitride semiconductor and nitride semiconductor device
US6456638B1 (en) High-power short-wavelength semiconductor light emitting device having active layer with increased indium content
US7183585B2 (en) Semiconductor device and a method for the manufacture thereof
JP4043087B2 (en) Nitride semiconductor device manufacturing method and nitride semiconductor device
JP3467981B2 (en) Method of forming light emitting end face of semiconductor light emitting element, method of manufacturing semiconductor light emitting element, semiconductor light emitting element, method of forming end face of nitride III-V compound semiconductor layer, method of manufacturing semiconductor device, and semiconductor device
JP2004047918A (en) Manufacturing method of nitride semiconductor laser element
US20060209395A1 (en) Semiconductor laser and method for manufacturing the same
JP4097343B2 (en) Manufacturing method of nitride semiconductor laser device
JP4644955B2 (en) Nitride semiconductor device fabrication method
JPH1027939A (en) Nitride semiconductor laser element
JP2000101193A (en) Nitride semiconductor laser element
JPH09219560A (en) Manufacture of nitride semiconductor light emitting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees