JP2947445B2 - Ion nitriding method for metal members - Google Patents

Ion nitriding method for metal members

Info

Publication number
JP2947445B2
JP2947445B2 JP28595293A JP28595293A JP2947445B2 JP 2947445 B2 JP2947445 B2 JP 2947445B2 JP 28595293 A JP28595293 A JP 28595293A JP 28595293 A JP28595293 A JP 28595293A JP 2947445 B2 JP2947445 B2 JP 2947445B2
Authority
JP
Japan
Prior art keywords
metal member
ion
ion nitriding
plasma
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28595293A
Other languages
Japanese (ja)
Other versions
JPH07118826A (en
Inventor
芳朗 石井
良和 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOOTEINGU SENTAA KK
RAIMUZU KK
Sumitomo Metal Mining Co Ltd
NDK Inc
Original Assignee
NIPPON KOOTEINGU SENTAA KK
RAIMUZU KK
Sumitomo Metal Mining Co Ltd
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOOTEINGU SENTAA KK, RAIMUZU KK, Sumitomo Metal Mining Co Ltd, Nihon Denshi Kogyo KK filed Critical NIPPON KOOTEINGU SENTAA KK
Priority to JP28595293A priority Critical patent/JP2947445B2/en
Publication of JPH07118826A publication Critical patent/JPH07118826A/en
Application granted granted Critical
Publication of JP2947445B2 publication Critical patent/JP2947445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、金属部材の表面粗度
をほとんど変化させることなく均一にイオン窒化する金
属部材のイオン窒化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for ion-nitriding a metal member that uniformly ionizes without substantially changing the surface roughness of the metal member.

【0002】[0002]

【従来の技術】金属部材のイオン窒化方法は、金属の表
面をイオン窒化して表面にその金属の窒化物層を形成
し、金属の表面の耐摩耗性や耐食性を向上させる方法で
あり、減圧窒化雰囲気中でのグロー放電を用いるのが一
般的である。しかし、イオン窒化処理を行うと、処理が
行われた金属部材の表面粗度が悪化し、必要に応じて窒
化処理後当該金属部材の表面を再度研磨しなければなら
なかった。その場合、微細なスリットや孔、溝等を有す
る金属部材においては、研磨がほとんど不可能な部材も
あった。
2. Description of the Related Art The ion nitriding method of a metal member is a method of ion-nitriding the surface of a metal to form a nitride layer of the metal on the surface, thereby improving the wear resistance and corrosion resistance of the metal surface. It is common to use glow discharge in a nitriding atmosphere. However, when the ion nitriding treatment is performed, the surface roughness of the treated metal member deteriorates, and if necessary, the surface of the metal member must be polished again after the nitriding treatment. In such a case, some metal members having fine slits, holes, grooves, etc., are almost impossible to polish.

【0003】そこで、本発明者らは、金属部材の表面粗
度を可及的に平滑に保持したままイオン窒化する方法を
先に提案した(特願平5−27248号)。この方法
は、金属部材を300〜650℃の温度に保持して、ア
ンモニアガスと水素ガスを用い、金属部材の表面に0.
001〜2.0 mA/cm2 の電流密度のグロー放電を行い
イオン窒化することを特徴とするものであるが、このイ
オン窒化法における処理においても特に金属部材の表面
状態を非常に厳密に保持したまま、イオン窒化処理を行
うためには、特に0.5 mA/cm2 以下の電流密度の低い
グロー放電においてイオン窒化することが望ましい。し
かし、このような低い電流密度下では必ずしも窒化層形
成速度が早くない場合があり、長時間例えば10時間以
上の処理時間を必要とする場合があった。
Accordingly, the present inventors have previously proposed a method of performing ion nitriding while keeping the surface roughness of a metal member as smooth as possible (Japanese Patent Application No. 5-27248). According to this method, the metal member is maintained at a temperature of 300 to 650 ° C., and ammonia gas and hydrogen gas are used to cover the surface of the metal member with 0.1 mm.
It is characterized by performing glow discharge at a current density of 001 to 2.0 mA / cm 2 and performing ion nitriding. In this ion nitriding method, the surface condition of the metal member is kept very strict. In order to perform the ion nitriding treatment as it is, it is desirable to perform the ion nitriding particularly in a glow discharge having a low current density of 0.5 mA / cm 2 or less. However, under such a low current density, the nitride layer formation speed may not always be fast, and a long processing time, for example, 10 hours or more may be required.

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記のイ
オン窒化法において、0.5 mA/cm2 以下の電流密度の
低いグロー放電による窒化層形成速度の問題に鑑みて、
低い電流密度下においても金属部材の表面粗度をほとん
ど変化させることなく短時間に窒化処理が可能なイオン
窒化方法を提案しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described ion nitriding method, in view of the problem of a nitride layer forming speed by a glow discharge having a low current density of 0.5 mA / cm 2 or less.
It is an object of the present invention to propose an ion nitriding method capable of performing a nitriding treatment in a short time without substantially changing the surface roughness of a metal member even under a low current density.

【0005】[0005]

【課題を解決するための手段】この発明は、金属部材を
300〜650℃の温度に保持して、アンモニアガスと
水素ガスを用い、金属部材の表面に0.001〜2.0
mA/cm2 の電流密度のグロー放電を行いイオン窒化する
方法において、金属部材の表面粗度をほとんど変化させ
ることなく短時間に窒化処理が可能な窒化処理がなされ
る最適なグロー放電状態をプラズマ発光分光分析法によ
り見い出し、効率的に早い窒化層形成速度を達成するイ
オン窒化する方法であり、その要旨は、金属部材の表面
近傍のグロー放電の発光分光分析を行い、NHラジカル
/窒素分子イオン(N )の発光強度比が10/1以
上となるプラズマ状態でイオン窒化することを特徴と
し、またこのイオン窒化方法におけるNHラジカルと窒
素分子イオン(N )の発光強度は、それぞれ波長3
36nm、391.4nmであることを特徴とするもの
である。
According to the present invention, a metal member is maintained at a temperature of 300 to 650 ° C., and ammonia gas and hydrogen gas are used.
In the method of ion nitriding by glow discharge at a current density of mA / cm 2, the most suitable glow discharge state in which nitriding can be performed in a short time with little change in the surface roughness of the metal member This is a method of ion nitriding that is found by emission spectroscopy and achieves a high nitride layer formation rate efficiently. The gist of this method is to perform emission spectroscopy analysis of glow discharge near the surface of a metal member to obtain NH radicals / nitrogen molecular ions. It is characterized in that ion nitriding is performed in a plasma state in which the emission intensity ratio of (N 2 + ) is 10/1 or more, and the emission intensity of NH radical and nitrogen molecular ion (N 2 + ) in this ion nitriding method is respectively Wavelength 3
36 nm and 391.4 nm.

【0006】[0006]

【作用】この発明において、金属部材の反応温度を30
0〜600℃に限定しているのは、以下に示す理由によ
る。すなわち、金属部材を、窒素イオンと速やかに反応
させ、経済性が成り立つ収率で反応する反応温度まで加
熱するためには金属部材の温度を300〜600℃に加
熱する必要がある。その理由は、300℃未満ではイオ
ン窒化反応が極めて遅く、650℃を超えるといったん
形成された窒化物が分解し、イオン窒化が起こらないと
いう問題が生ずるからである。例えば、S45C構造用
鋼の場合では、550〜600℃が適している。加熱手
段としては、電気加熱、ガス加熱等があるが、電気加熱
が使い易い。加熱源としては、イオン窒化処理を行う真
空チャンバー内に配置するか、その外側に配置して加熱
すると、自動制御システムと組合わせてプログラムされ
た昇温や温度保持が容易にできる。
According to the present invention, the reaction temperature of the metal member is set at 30.
The reason why the temperature is limited to 0 to 600 ° C. is as follows. That is, in order to quickly react the metal member with the nitrogen ions and heat it up to a reaction temperature at which the reaction can be performed with a yield that is economical, the temperature of the metal member needs to be heated to 300 to 600 ° C. The reason is that if the temperature is lower than 300 ° C., the ion nitriding reaction is extremely slow, and if the temperature exceeds 650 ° C., the formed nitride is decomposed, and a problem occurs that ion nitriding does not occur. For example, in the case of S45C structural steel, 550-600 ° C is suitable. Examples of the heating means include electric heating and gas heating, and electric heating is easy to use. When the heating source is placed in a vacuum chamber for performing the ion nitriding process or is placed outside the vacuum chamber and heated, the programmed temperature rise and temperature maintenance can be easily performed in combination with the automatic control system.

【0007】また、イオン窒化ガスとして、アンモニア
ガスと水素ガスを用いるのは、アンモニアガスはNとH
に分解し、直ちにNとHになるためイオン窒化反応
が十分に起こらないが、アンモニアガスはプラズマ化電
流密度が低い範囲においてアンモニアラジカルとして安
定であり、水素ガスは放電によるアンモニアガスのラジ
カル化を安定に行うための補助ガスとして作用するから
である。NH/H体積比は1/100〜2/1がよ
く、1/10〜1/3が好適である。すなわち、NH
/H体積比が2/1以上では、窒素分子イオン(N
)の発光強度が強くなりやすく、目的とするNHラジ
カル/窒素分子イオン(N )の発光強度比が10/
1以上となるプラズマ状態を達成することが不可能であ
り、またNH/H体積比が1/100未満ではイオ
ン窒化反応が十分に起こらないためである。
The reason why ammonia gas and hydrogen gas are used as ion nitriding gas is that ammonia gas is N and H
Decomposed, but immediately N 2 and H 2 to become for ion nitriding reaction does not occur sufficiently, the ammonia gas is stable as ammonia radicals in plasma current density is low range, the hydrogen gas radicals ammonia gas by discharge This is because it acts as an auxiliary gas for stably performing the conversion. The NH 3 / H 2 volume ratio is preferably from 1/100 to 2/1, and more preferably from 1/10 to 1/3. That is, NH 3
/ H 2 When the volume ratio is 2/1 or more, the nitrogen molecular ion (N 2
+ ) Tends to increase, and the desired emission intensity ratio of NH radical / nitrogen molecular ion (N 2 + ) is 10 /
This is because it is impossible to achieve a plasma state of 1 or more, and if the NH 3 / H 2 volume ratio is less than 1/100, the ion nitriding reaction does not sufficiently occur.

【0008】この発明においては、金属部材の表面近傍
のグロー放電の発光分光分析を行い、NHラジカル/窒
素分子イオン(N )の発光強度比が10/1以上と
なるプラズマ状態範囲内において金属部材の表面をイオ
ン窒化することにより、表面状態をほとんど変化させる
ことなく効率的に早い窒化層形成速度においてイオン窒
化することが可能となる。その理由は、以下に示す通り
である。
In the present invention, emission spectroscopy analysis of glow discharge near the surface of the metal member is performed, and the emission intensity ratio of NH radical / nitrogen molecular ion (N 2 + ) is within a plasma state range where the ratio is 10/1 or more. By ion-nitriding the surface of the metal member, it is possible to ion-nitrate efficiently at a high nitride layer formation rate without substantially changing the surface state. The reason is as follows.

【0009】すなわち、NHラジカルはプラズマを用い
た窒化反応において、その反応性の高さを示すプラズマ
種であり、一方、窒素分子イオン(N )あるいは窒
素分子(N)は、イオン窒化される金属部材の表面を
加熱、活性化し、さらにそのスパッタリング作用により
表面粗度を上昇させる効果が強く、したがって、窒素分
子イオン(N )に対するNHラジカルの発光強度比
が高い程、表面状態を変化させずにイオン窒化反応によ
り効率的に窒化層を形成させることが可能となる。具体
的には、NHラジカル/窒素分子イオン(N )の発
光強度比が10/1以上であるプラズマ状態範囲内にお
いて、目的とするイオン窒化反応が可能であるが、発光
強度比が20/1以上ではより表面状態を保持したまま
効率的にイオン窒化反応が可能となる。
That is, NH radicals are plasma species showing high reactivity in the nitridation reaction using plasma, while nitrogen molecular ions (N 2 + ) or nitrogen molecules (N 2 ) are ion-nitrided. The effect of heating and activating the surface of the metal member to be heated and further increasing the surface roughness by its sputtering action is strong. Therefore, the higher the emission intensity ratio of NH radical to nitrogen molecular ion (N 2 + ), the higher the surface state. It is possible to efficiently form a nitrided layer by an ion nitriding reaction without changing the thickness. Specifically, in the plasma state range where the emission ratio of NH radicals / nitrogen molecular ions (N 2 + ) is 10/1 or more, the desired ion nitriding reaction is possible, but the emission intensity ratio is 20%. When the ratio is more than / 1, the ion nitriding reaction can be efficiently performed while maintaining the surface state.

【0010】また、この発明において、金属部材の表面
にかけるプラズマ化電流を0.001〜2.0 mA/cm2
とするのは、この電流密度の範囲においてのみグロー放
電はアンモニアガスおよび水素ガスをプラズマ化するこ
とのみに使用でき、余剰熱を発生させることがないから
である。なお、電流密度が0.001 mA/cm2 未満で
は、プラズマ化を十分に起こすことができず、2.0 m
A/cm2 を超えると金属部材の表面で局部的な過熱状態が
生じたり、スリット内や溝内部に有効なイオン窒化処理
が行われない。
In the present invention, the plasma current applied to the surface of the metal member is set to 0.001 to 2.0 mA / cm 2.
The reason is that the glow discharge can be used only for converting the ammonia gas and the hydrogen gas into plasma only in the range of the current density, and does not generate excess heat. If the current density is less than 0.001 mA / cm 2 , the plasma cannot be sufficiently generated,
If it exceeds A / cm 2 , a local overheating state occurs on the surface of the metal member, or effective ion nitriding treatment is not performed in the slit or the groove.

【0011】プラズマ化のためのグロー放電を発生する
放電は、直流放電、高周波放電のいずれでもよい。イオ
ン窒化を行う真空チャンバーは基本的にグロー放電用電
極、プラズマ化ガス用配管とを備え、真空ポンプに接続
された排気管を備えたものであれば特に限定されない。
The discharge for generating the glow discharge for forming the plasma may be either a DC discharge or a high-frequency discharge. The vacuum chamber for performing ion nitriding is not particularly limited as long as it basically includes an electrode for glow discharge, a pipe for plasma gas, and an exhaust pipe connected to a vacuum pump.

【0012】また、この発明において、プラズマ発光分
光分析法により最適なプラズマ状態を決定するのに用い
るNHラジカルと窒素分子イオン(N )の発光強度
比の測定のために着目するNHラジカルと窒素分子イオ
ン(N )の各々の発光線は、用いるプラズマにおい
て測定されたプラズマ発光スペクトルの中に多数存在す
るが、その中において、それぞれ最も強度の高いものを
用いるのが効果的であることから、この発明ではNHラ
ジカルは波長336nm、窒素分子イオン(N )は
391.4nmとした。なお、窒素分子イオン
(N )の代りに測定される窒素分子(N)の発光
線の中で最も強度の高い発光線の強度を測定に用いても
差支えない。分光器は特に限定されない。
In the present invention, an NH radical used for determining an optimum plasma state by plasma emission spectroscopy and an NH radical focused on for measuring the emission intensity ratio of a nitrogen molecular ion (N 2 + ) are used. There are many emission lines of nitrogen molecular ions (N 2 + ) in the plasma emission spectrum measured in the plasma to be used, and it is effective to use the one having the highest intensity among them. Therefore, in the present invention, the NH radical has a wavelength of 336 nm, and the nitrogen molecular ion (N 2 + ) has a wavelength of 391.4 nm. It should be noted that the intensity of the emission line having the highest intensity among the emission lines of the nitrogen molecule (N 2 ) measured instead of the nitrogen molecule ion (N 2 + ) may be used for the measurement. The spectroscope is not particularly limited.

【0013】この発明において対象とする金属部材の材
料としては、主としてS15CK等の肌焼鋼、S45C
等の構造用鋼、SUP10等のばね鋼、SUJ2等の軸
受鋼、SACM1等の窒化鋼、SKD61等の熱間加工
用鋼、SKD11等の冷間加工用鋼、SKH51等の高
速度鋼、SUS301等の耐熱鋼、SCr20等の機械
部品鋼、SUS410等の耐熱耐酸鋼等、各種ある。
In the present invention, the material of the target metal member is mainly case-hardened steel such as S15CK or S45C.
SUS10, spring steel such as SUP10, bearing steel such as SUJ2, nitrided steel such as SACM1, hot working steel such as SKD61, cold working steel such as SKD11, high speed steel such as SKH51, SUS301 And heat-resistant steel such as SCr20, and heat-resistant and acid-resistant steel such as SUS410.

【0014】なお、この発明で対象とする金属部材の表
面の粗度がイオン窒化処理により変化がほとんどないこ
とが要求される物品としては、押出成形機用スクリュ
ー、撹拌機用スクリュー、プラスチック部品成形用金
型、自動車エンジンバルブ部品、アルミニウム押出用ダ
イス等である。
In the present invention, articles requiring the surface roughness of the metal member to be hardly changed by the ion nitriding treatment include a screw for an extruder, a screw for a stirrer, and a plastic part molding. Molds, automobile engine valve parts, aluminum extrusion dies, and the like.

【0015】[0015]

【実施例】図1はこの発明を実施するためのイオン窒化
装置を示す概略図で、1は真空チャンバー、2は加熱ヒ
ーター、3は直流電極、4は金属部材、5は直流電源、
6は排気管、7は真空ポンプ、8はバルブ、9はノズ
ル、10は導入管、11はバルブ、12はマスフローコ
ントローラー、13は窓、14はレンズ、15は光ファ
イバー、16は分光器である。
1 is a schematic view showing an ion nitriding apparatus for carrying out the present invention, wherein 1 is a vacuum chamber, 2 is a heater, 3 is a DC electrode, 4 is a metal member, 5 is a DC power supply,
6 is an exhaust pipe, 7 is a vacuum pump, 8 is a valve, 9 is a nozzle, 10 is an inlet pipe, 11 is a valve, 12 is a mass flow controller, 13 is a window, 14 is a lens, 15 is an optical fiber, and 16 is a spectroscope. .

【0016】すなわち、真空チャンバー1には、外周壁
に加熱ヒーター2が埋設され、内部に直流電源5に接続
された直流電極3が配置され、下部に排気管6が圧力調
整用バルブ8を介して真空ポンプ7に接続されている。
ガス、NHガス、Arガス等の原料ガスはそれぞ
れマスフローコントローラー12、バルブ11、導入管
10を介してノズル9から真空チャンバー1内に供給さ
れる。窓13は金属部材4の表面近傍のプラズマ発光を
観測するために設けられたもので、石英ガラス製でその
外側には同じく石英ガラス製のレンズ14が設置され、
このレンズの焦点位置に石英ガラス製の光ファイバー1
5の端面が配置され、この光ファイバーの一方は分光器
16の入光スリット部に接続されている。金属部材4は
直流電極3の上面に設置される。
That is, in the vacuum chamber 1, a heater 2 is buried in the outer peripheral wall, a DC electrode 3 connected to a DC power supply 5 is disposed inside, and an exhaust pipe 6 is provided at a lower portion via a pressure adjusting valve 8. Connected to the vacuum pump 7.
Source gases such as H 2 gas, NH 3 gas, and Ar gas are supplied from the nozzle 9 into the vacuum chamber 1 via the mass flow controller 12, the valve 11, and the introduction pipe 10, respectively. The window 13 is provided for observing plasma emission near the surface of the metal member 4, and is made of quartz glass, and a lens 14 made of quartz glass is installed outside the quartz glass.
An optical fiber 1 made of quartz glass is placed at the focal position of this lens.
5, one end of this optical fiber is connected to the light entrance slit of the spectroscope 16. The metal member 4 is installed on the upper surface of the DC electrode 3.

【0017】実施例1 上記図1に示すイオン窒化装置を用いてイオン窒化処理
を行った結果を以下に示す。本実施例では、金属部材と
して表面を鏡面研磨したSKD61鋼の押出成形機用ス
クリュウ4aとSKH51鋼のパンチ4bを使用した。
押出成形機用スクリュウ4aは、直径23mm、長さ5
50mmの棒状、パンチ4bは直径30mm、長さ20
0mmの棒状である。
Example 1 The results of ion nitriding using the ion nitriding apparatus shown in FIG. 1 are shown below. In the present embodiment, a screw 4a for an extruder of SKD61 steel whose surface is mirror-polished and a punch 4b of SKH51 steel were used as metal members.
Extruder screw 4a has a diameter of 23 mm and a length of 5 mm.
50 mm rod shape, punch 4 b has a diameter of 30 mm and a length of 20
It is a 0 mm rod shape.

【0018】まず、真空ポンプ7により真空チャンバー
1内を10−3トールまで排気し、排気を続けながら水
素ガスを1000ml/分で供給し、1トールに維持し
た。同時に加熱ヒーター2で直流電極3と金属部材4
a、4bの表面が530℃に均一化されるまで1時間加
熱した。
First, the inside of the vacuum chamber 1 was evacuated to 10 −3 Torr by the vacuum pump 7, and hydrogen gas was supplied at 1000 ml / min while maintaining the evacuation to maintain 1 Torr. At the same time, the DC electrode 3 and the metal member 4 are heated by the heater 2.
Heating was performed for 1 hour until the surfaces of a and 4b were made uniform at 530 ° C.

【0019】次に、直流電源5からー400Vの電圧を
金属部材に印加して水素ガスによる直流グロー放電プラ
ズマを起こし、真空チャンバー1の内壁と金属部材の表
面を30分間清浄化した。続いて、真空チャンバー1内
に水素ガスを2000ml/分、アナモニアガス500
ml/分導入し、印加電圧ー400Vで水素ガスとアン
モニアガスの直流グロー放電プラズマを発生させた。こ
の時、分光器16により、金属部材表面近傍のプラズマ
発光分光分析にてNHラジカル(発光波長:336n
m)と窒素分子イオン(N )(発光波長:391.
4nm)の発光強度を速やかに測定しながら、印加電圧
を増加させた。この印加電圧の増加により、NHラジカ
ルと窒素分子イオン(N )の発光強度比が増加し、
ー550Vの時に20/1、ー600Vの時に40/1
となり、さらに印加電圧を増加させると発光強度比が急
激に低下し、ー650V以上の印加電圧では10/1以
下の発光強度比となった。
Next, a DC power supply 5 applied a voltage of -400 V to the metal member to generate a DC glow discharge plasma by hydrogen gas, thereby cleaning the inner wall of the vacuum chamber 1 and the surface of the metal member for 30 minutes. Subsequently, 2,000 ml / min of hydrogen gas and 500 g of anammonia gas were introduced into the vacuum chamber 1.
ml / min, and a DC glow discharge plasma of hydrogen gas and ammonia gas was generated at an applied voltage of -400V. At this time, the NH radical (emission wavelength: 336 n) was detected by the spectroscope 16 in plasma emission spectroscopy near the surface of the metal member.
m) and nitrogen molecular ions (N 2 + ) (emission wavelength: 391.
The applied voltage was increased while quickly measuring the emission intensity (4 nm). Due to the increase in the applied voltage, the emission intensity ratio between the NH radical and the nitrogen molecule ion (N 2 + ) increases,
20/1 at -550V, 40/1 at -600V
When the applied voltage was further increased, the luminescence intensity ratio sharply decreased, and when the applied voltage was -650 V or more, the luminescence intensity ratio became 10/1 or less.

【0020】上記の測定終了後速やかに、NHラジカル
と窒素分子イオン(N )の発光強度比が20/1と
なるように印加電圧をー600Vに戻し、その状態でイ
オン窒化処理を実施した。その結果、金属部材4a、4
bの表面温度はプラズマにより若干上昇して2〜3℃だ
け530℃よりも高くなった。この間、プラズマが発生
している直流電極と金属部材の全表面を流れる電流は
0.38Aであり、直流電極と金属部材の全表面積(7
600cm)でその値を割ると、金属部材の表面に流
れる電流密度が計算され、その値は0.05mA/cm
と非常に低い値であることが明らかとなった。また、
この処理条件ではその状態を一定に維持していた。さら
に、金属部材4の表面でプラズマは均一に発生してい
た。また、それぞれの金属部材4間の狭い空間部では強
いプラズマの発生は認められなかった。
Immediately after the completion of the above measurement, the applied voltage is returned to -600 V so that the emission intensity ratio between NH radicals and nitrogen molecular ions (N 2 + ) becomes 20/1, and ion nitriding is performed in that state. did. As a result, the metal members 4a, 4
The surface temperature of b slightly increased due to the plasma, and became higher than 530 ° C. by 2 to 3 ° C. During this time, the current flowing through the entire surface of the DC electrode and the metal member where plasma is generated is 0.38 A, and the total surface area of the DC electrode and the metal member (7
When the value is divided by 600 cm 2 ), the current density flowing on the surface of the metal member is calculated, and the value is 0.05 mA / cm.
It became clear that the value was very low at 2 . Also,
Under these processing conditions, the state was kept constant. Further, the plasma was uniformly generated on the surface of the metal member 4. No strong plasma was generated in a narrow space between the metal members 4.

【0021】そして、イオン窒化処理を1時間継続した
後、プラズマを停止し、ガスの供給と加熱を停止して室
温まで冷却した後、各金属部材を取出し、平均表面粗度
と最大表面粗度(RaとRamax)を表面粗さ計で測
定(JIS B 0601−1982による)した結果
を表1に示す。表1の結果より明らかなごとく、いずれ
の金属部材も処理前後の表面粗度の変化はほとんどな
く、目視的にも表面粗度の変化は観察されなかった。
After the ion nitriding treatment is continued for one hour, the plasma is stopped, the supply of gas and the heating are stopped, and the temperature is cooled to room temperature. Each metal member is taken out, and the average surface roughness and the maximum surface roughness are removed. Table 1 shows the results of measuring (Ra and Ramax) with a surface roughness meter (according to JIS B 0601-1982). As is clear from the results in Table 1, there was almost no change in the surface roughness before and after the treatment of any of the metal members, and no change in the surface roughness was observed visually.

【0022】また、各金属部材を切断、研磨し、断面硬
度分布測定を行った結果を図2、図3に示す。図2はS
KD61鋼の押出成形機用スクリュウの断面硬度分布で
あり、約90μmの拡散層が形成されていることがわか
る。図3はSKH51鋼のパンチの断面硬度分布であ
り、約85μmの拡散層が形成されていることがわか
る。
FIG. 2 and FIG. 3 show the results obtained by cutting and polishing each metal member and measuring the cross-sectional hardness distribution. FIG. 2 shows S
It is a cross-sectional hardness distribution of a screw for an extruder made of KD61 steel, and it can be seen that a diffusion layer of about 90 μm is formed. FIG. 3 is a cross-sectional hardness distribution of the SKH51 steel punch, and it can be seen that a diffusion layer of about 85 μm is formed.

【0023】実施例2 実施例1では、NHラジカルとN イオンの発光強度
比の測定によるイオン窒化処理条件の調査を速やかに実
施した後、連続してイオン窒化処理を行ったが、図4に
示すごとく、プラズマ発生印加電圧と、NHラジカルと
イオンの発光強度比との関係を求め、その関係よ
り求めた条件と同様の処理条件によりイオン窒化処理を
実施することによっても、全く同様のイオン窒化処理状
態を得ることが可能であった。
Example 2 In Example 1, the conditions of the ion nitriding treatment were measured quickly by measuring the emission intensity ratio between NH radicals and N 2 + ions, and then the ion nitriding treatment was performed continuously. As shown in FIG. 4, the relationship between the plasma generation applied voltage and the emission intensity ratio between NH radicals and N 2 + ions is obtained, and ion nitriding is performed under the same processing conditions as the conditions obtained from the relationship. It was possible to obtain completely the same ion nitriding state.

【0024】比較例1 実施例1と同じ装置により同じ金属部材を用い、同様の
条件によりNHラジカルとN イオンの発光強度比の
測定を実施した。その際、印加電圧をー650V以上に
すると、NHラジカルとN イオンの発光強度比は3
/1となり、ー700Vでは2/1となった。この条件
において1時間窒化処理を実施し、窒化処理後、金属部
材の表面粗度と断面硬度分布測定を行なった。表面粗度
の測定結果を表2に示す。表2の結果より明らかなごと
く、両金属部材とも約5〜10倍、表面粗度が増加し、
目視的にも曇りが発生していることが確認され、表面粗
度が増加していることが判明した。また、断面硬度分布
の測定結果より、SKD61鋼の押出成型機用スクリュ
は約100μmの拡散層が、また、SKH51鋼のパン
チは約95μmの拡散層が形成されていることが明かと
なった。これらのことより、比較例1では、実施例1に
比べ表面粗度は大きく増加するにもかかわらず、実施例
1とほぼ同程度の拡散層しか形成されないことが明らか
となった。
Comparative Example 1 The emission intensity ratio between NH radical and N 2 + ion was measured under the same conditions using the same metal member as in Example 1. At this time, when the applied voltage is -650 V or more, the emission intensity ratio between NH radical and N 2 + ion becomes 3
/ 1 at -700V. Under these conditions, a nitriding treatment was performed for one hour. After the nitriding treatment, the surface roughness and the cross-sectional hardness distribution of the metal member were measured. Table 2 shows the measurement results of the surface roughness. As is clear from the results in Table 2, the surface roughness of both metal members increased about 5 to 10 times,
It was visually confirmed that fogging had occurred, and it was found that the surface roughness had increased. Also, the measurement results of the cross-sectional hardness distribution revealed that a screw for an extrusion molding machine of SKD61 steel had a diffusion layer of about 100 μm, and a punch of SKH51 steel had a diffusion layer of about 95 μm. From these facts, it was clarified that, in Comparative Example 1, although the surface roughness was greatly increased as compared with Example 1, only a diffusion layer of almost the same degree as that of Example 1 was formed.

【0025】比較例2 実施例1と同じ装置により同じ金属部材を用い、同様の
条件によりNHラジカルとN イオンの発光強度比の
測定を実施した。その際、印加電圧をー450Vにする
と、プラズマの発光は非常に弱く、NHラジカルとN
イオンの発光強度は殆どノイズレベルであり、測定不
可能であった。この条件において1時間窒化処理を実施
し、窒化処理後、金属部材の断面硬度分布と表面粗度を
測定した。その結果、金属部材の表面粗度は処理前と殆
ど変化が見られなかったものの、断面硬度分布の測定結
果より、約10から15μm程度の拡散層しか形成され
ていないことが明かとなった。また、同処理条件におい
て、12時間処理を実施することにより、実施例1とほ
ぼ同等の拡散層を形成することが可能であり、短時間で
イオン窒化処理を行うことは不可能であることが明らか
となった。
Comparative Example 2 The emission intensity ratio between NH radical and N 2 + ion was measured under the same conditions using the same metal member as in Example 1. At this time, when the applied voltage is -450 V, the plasma emission is very weak, and NH radicals and N 2
The emission intensity of the + ion was almost at the noise level and could not be measured. Under these conditions, a nitriding treatment was performed for one hour, and after the nitriding treatment, the cross-sectional hardness distribution and the surface roughness of the metal member were measured. As a result, although the surface roughness of the metal member hardly changed from that before the treatment, the measurement result of the sectional hardness distribution revealed that only a diffusion layer of about 10 to 15 μm was formed. Further, by performing the processing for 12 hours under the same processing conditions, it is possible to form a diffusion layer substantially equivalent to that of Example 1, and it may not be possible to perform the ion nitriding processing in a short time. It became clear.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上説明したごとく、この発明方法によ
れば、イオン衝撃がおだやかで金属部材の表面をスパッ
タリングすることなく、表面粗度がイオン窒化処理前と
ほとんど変化が生じないイオン窒化処理を短時間で行う
ことができるという優れた効果を奏する。
As described above, according to the method of the present invention, the ion bombardment can be carried out without sputtering the surface of the metal member with a gentle ion bombardment, and the surface roughness does not substantially change from that before the ion nitriding treatment. It has an excellent effect that it can be performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施するためのイオン窒化装置の全
体構成を示す概略図である。
FIG. 1 is a schematic diagram showing an overall configuration of an ion nitriding apparatus for carrying out the present invention.

【図2】この発明の実施例1におけるSKD61鋼の押
出成形機用スクリュウのイオン窒化処理後の断面硬度分
布測定結果を示す図である。
FIG. 2 is a view showing a measurement result of a cross-sectional hardness distribution of an SKD61 steel extruder screw after an ion nitriding treatment in Example 1 of the present invention.

【図3】同上実施例1におけるSKH51鋼のパンチの
イオン窒化処理後の断面硬度分布測定結果を示す図であ
る。
FIG. 3 is a view showing a measurement result of a cross-sectional hardness distribution of the punch of SKH51 steel in Example 1 after ion nitriding.

【図4】この発明の実施例2におけるプラズマ発生印加
電圧と、NHラジカルとN イオンの発光強度比との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a plasma generation applied voltage and an emission intensity ratio between NH radicals and N 2 + ions in Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 加熱ヒーター 3 直流電極 4 金属部材 5 直流電源 6 排気管 7 真空ポンプ 8 バルブ 9 ノズル 10 導入管 11 バルブ 12 マスフローコントローラー 13 窓 14 レンズ 15 光ファイバー 16 分光器 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Heater 3 DC electrode 4 Metal member 5 DC power supply 6 Exhaust pipe 7 Vacuum pump 8 Valve 9 Nozzle 10 Introducing pipe 11 Valve 12 Mass flow controller 13 Window 14 Lens 15 Optical fiber 16 Spectroscope

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 芳朗 千葉県市川市中国分3−18−5 住友金 属鉱山株式会社 中央研究所内 (72)発明者 柳沼 良和 東京都府中市住吉町3−4−6 日本電 子工業株式会社 府中工場内 (56)参考文献 特開 平6−220606(JP,A) 第88回講演大会 講演要旨集 社団法 人表面技術協会(平成5年9月30日)第 113〜114頁 (58)調査した分野(Int.Cl.6,DB名) C23C 8/36 - 8/38 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiro Ishii 3-18-5, Chugoku, Ichikawa-shi, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Yoshikazu Yaginuma 3-4 Sumiyoshicho, Fuchu-shi, Tokyo -6 Inside the Fuchu Plant of Nippon Electronic Industries Co., Ltd. (56) References JP-A-6-220606 (JP, A) 88th Lecture Meeting Abstracts of Japan Society of Human Surface Technology (September 30, 1993) Pages 113-114 (58) Fields investigated (Int. Cl. 6 , DB name) C23C 8/36-8/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属部材を300〜650℃の温度に保
持し、アンモニアガスと水素ガスを用い、金属部材の表
面に0.001〜2.0 mA/cm2 の電流密度のグロー放
電を行いイオン窒化する金属部材のイオン窒化方法にお
いて、該金属部材の表面近傍のグロー放電の発光分光分
析を行い、NHラジカル/窒素分子イオン(N )の
発光強度比が10/1以上となるプラズマ状態でイオン
窒化することを特徴とする金属部材のイオン窒化方法。
1. A glow discharge of a current density of 0.001 to 2.0 mA / cm 2 is performed on the surface of a metal member while maintaining the metal member at a temperature of 300 to 650 ° C. and using an ammonia gas and a hydrogen gas. In the method of ion-nitriding a metal member to be ion-nitrided, emission spectroscopic analysis of glow discharge near the surface of the metal member is performed, and a plasma having an emission ratio of NH radical / nitrogen molecular ion (N 2 + ) of 10/1 or more is obtained. A method for ion-nitriding a metal member, comprising ion-nitriding in a state.
【請求項2】 NHラジカルと窒素分子イオン
(N )の発光強度は、それぞれ波長336nm、3
91.4nmであることを特徴とする請求項1記載の金
属部材のイオン窒化方法。
2. The emission intensities of an NH radical and a nitrogen molecular ion (N 2 + ) are 336 nm and 3 nm, respectively.
The method according to claim 1, wherein the thickness is 91.4 nm.
JP28595293A 1993-10-20 1993-10-20 Ion nitriding method for metal members Expired - Lifetime JP2947445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28595293A JP2947445B2 (en) 1993-10-20 1993-10-20 Ion nitriding method for metal members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28595293A JP2947445B2 (en) 1993-10-20 1993-10-20 Ion nitriding method for metal members

Publications (2)

Publication Number Publication Date
JPH07118826A JPH07118826A (en) 1995-05-09
JP2947445B2 true JP2947445B2 (en) 1999-09-13

Family

ID=17698091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28595293A Expired - Lifetime JP2947445B2 (en) 1993-10-20 1993-10-20 Ion nitriding method for metal members

Country Status (1)

Country Link
JP (1) JP2947445B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005904A (en) * 1998-06-18 2000-01-11 Sumitomo Metal Mining Co Ltd Surface treated steel based cutting tool
JP4510309B2 (en) * 2001-02-21 2010-07-21 ヤンマー株式会社 Fuel injection valve body and gas nitriding method thereof
EP2221389B1 (en) 2007-11-14 2018-01-03 NTN Corporation Method of heat-treating steel and process for producing a machine part.
CN101874125B (en) 2007-11-27 2015-06-10 Ntn株式会社 Machine component and rolling bearing
US8485730B2 (en) 2008-03-27 2013-07-16 Ntn Corporation Rolling bearing
JP6210117B2 (en) * 2016-02-15 2017-10-11 プラズマ電子株式会社 Optical measuring instrument, plasma processing apparatus and combustion apparatus
JP7295511B2 (en) * 2019-02-15 2023-06-21 中日本炉工業株式会社 Plasma nitriding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第88回講演大会 講演要旨集 社団法人表面技術協会(平成5年9月30日)第113〜114頁

Also Published As

Publication number Publication date
JPH07118826A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
US6482476B1 (en) Low temperature plasma enhanced CVD ceramic coating process for metal, alloy and ceramic materials
FR2708624A1 (en) Process for deposition of a protective coating based on amorphous diamond pseudocarbon or on modified silicon carbide
JP2947445B2 (en) Ion nitriding method for metal members
CN109797363A (en) A kind of arc light electron source assisting ion nitriding process
JP3050361B2 (en) Ion nitriding method for metal members
JPS6111319B2 (en)
JP2989746B2 (en) Steel-based composite surface-treated product and its manufacturing method
JP2931173B2 (en) Ion nitriding of metal members
JP2021025063A (en) Method for manufacturing vanadium silicon nitride film coated member, and vanadium silicon nitride film coated member
JPH08296064A (en) Article coated with oxidation and wear resistant film
JPH0813126A (en) Ion-soft nitriding process for metallic member
US11014814B2 (en) Vanadium nitride film, and member coated with vanadium nitride film and method for manufacturing the same
JP2006206959A (en) Method for nitriding aluminum alloy
JPH07118850A (en) Formation of hard film by ion nitriding and plasma cvd
KR20080095667A (en) Surface hardening method for extrusion die
JP4042962B2 (en) Gas / plasma surface processing
JP7304725B2 (en) Vanadium silicitride film-coated member and manufacturing method thereof
JP2001073112A (en) Alloy steel for structure
JP2003064466A (en) Gear cutting tool and surface modifying method
Thomas et al. Electrical measurements and optical emission spectroscopy of silicon–carbon alloys grown by PACVD: correlation with film microstructure
JP2593011B2 (en) Method of manufacturing hard film-coated metal member
JPH04263061A (en) Manufacture of simple metallic mold for molding
JPS60125366A (en) Surface treatment of member
JP2020033599A (en) Boron nitride vanadium film coated member and method for manufacturing the same
JPS6134505B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term