JP2931173B2 - Ion nitriding of metal members - Google Patents

Ion nitriding of metal members

Info

Publication number
JP2931173B2
JP2931173B2 JP2724893A JP2724893A JP2931173B2 JP 2931173 B2 JP2931173 B2 JP 2931173B2 JP 2724893 A JP2724893 A JP 2724893A JP 2724893 A JP2724893 A JP 2724893A JP 2931173 B2 JP2931173 B2 JP 2931173B2
Authority
JP
Japan
Prior art keywords
metal member
ion nitriding
gas
plasma
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2724893A
Other languages
Japanese (ja)
Other versions
JPH06220606A (en
Inventor
芳朗 石井
良和 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Sumitomo Metal Mining Co Ltd
NDK Inc
Original Assignee
RAIMUZU KK
Sumitomo Metal Mining Co Ltd
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12215779&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2931173(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by RAIMUZU KK, Sumitomo Metal Mining Co Ltd, Nihon Denshi Kogyo KK filed Critical RAIMUZU KK
Priority to JP2724893A priority Critical patent/JP2931173B2/en
Publication of JPH06220606A publication Critical patent/JPH06220606A/en
Application granted granted Critical
Publication of JP2931173B2 publication Critical patent/JP2931173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は複雑な表面形状の金属部
材や、表面に細密な溝を有する金属部材の表面を均一に
イオン窒化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for uniformly ion-nitriding the surface of a metal member having a complicated surface shape or a metal member having fine grooves on the surface.

【0002】[0002]

【従来の技術】金属の表面をイオン窒化して表面にその
金属の窒化物の層を形成し、金属の表面の耐摩耗性や耐
食性を向上することは公知である。この方法を用いてク
ランクピンやクランクなどの微細な凹凸のない比較的単
純な形状の金属部材の表面をイオン窒化処理することは
できる。
2. Description of the Related Art It is known that the surface of a metal is ion-nitrided to form a nitride layer of the metal on the surface, thereby improving the wear resistance and corrosion resistance of the metal surface. Using this method, the surface of a metal member having a relatively simple shape, such as a crankpin or a crank, having no fine irregularities can be subjected to ion nitriding.

【0003】しかし、微細なスリットや孔や溝を有する
金属部材、或は異種の形状の金属部材を同時にイオン窒
化処理しようとすると、プラズマが金属部材の特定の部
分に局在し、プラズマの分布が一様でなくなるので、イ
オン窒化処理が金属部材の表面に均一に行われなかった
り、局部的な過熱が起こって、金属部材の表面が異常な
温度になり金属部材を損なうという場合がある。
However, when a metal member having fine slits, holes or grooves, or a metal member having a different shape is to be simultaneously subjected to the ion nitriding treatment, the plasma is localized in a specific portion of the metal member, and the plasma distribution is reduced. Is not uniform, the ion nitriding treatment may not be performed uniformly on the surface of the metal member, or local overheating may occur, resulting in an abnormal temperature on the surface of the metal member, which may damage the metal member.

【0004】又、金属部材の温度は表面の電流密度によ
り大きく影響され、金属部材の形状、原料ガスの混合
比、処理時の圧力、印加電圧等の影響を受けるので、作
業者による手動制御を必要とする場合も多く、自動制御
に困難な面もあった。
Also, the temperature of the metal member is greatly affected by the current density on the surface, and is affected by the shape of the metal member, the mixing ratio of the raw material gas, the pressure during processing, the applied voltage, and the like. In many cases, automatic control is difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明は、複雑な表面
形状の金属部材や、表面に細密な溝を有する金属部材、
異種の形状の金属部材の同時イオン窒化処理が、表面均
一に行え、イオン窒化処理を自動制御できる金属部材の
イオン窒化処理法を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a metal member having a complicated surface shape, a metal member having fine grooves on its surface,
It is an object of the present invention to provide an ion nitriding method for a metal member in which simultaneous ion nitriding of metal members having different shapes can be performed uniformly on the surface and the ion nitriding can be automatically controlled.

【0006】[0006]

【課題を解決するための手段】本発明は、金属部材を
熱手段により300〜650℃の温度に維持しながら
アンモニアガスと水素ガスを用い、金属部材の表面に対
して0.001〜2.0mA/cm2の電流密度グロー
放電を行い金属部材の表面をイオン窒化することを特
徴とする。
According to the present invention, a metal member is added.
While maintaining the temperature of 300-650 ° C by heat means ,
Glow discharge is performed at a current density of 0.001 to 2.0 mA / cm 2 on the surface of the metal member using ammonia gas and hydrogen gas, and the surface of the metal member is ion-nitrided.

【0007】本発明において対象とする金属部材の材料
としては、主としてS15CKなどの肌焼鋼、S45C
などの構造用鋼、SUP10などのばね鋼、SUJ2な
どの軸受鋼、SACMなどの窒化鋼、SKD61などの
熱間加工用鋼、SKD11などの冷間加工用鋼、SKH
51などの高速度鋼、SUS301などの耐熱鋼、SC
r20などの機械部品用鋼、SUS410などの耐熱耐
酸鋼など種々ある。
In the present invention, the material of the target metal member is mainly case-hardened steel such as S15CK or S45C.
Structural steel such as SUP10, spring steel such as SUP10, bearing steel such as SUJ2, nitrided steel such as SACM, hot working steel such as SKD61, cold working steel such as SKD11, SKH
High speed steel such as 51, heat resistant steel such as SUS301, SC
There are various types such as steel for machine parts such as r20 and heat-resistant and acid-resistant steel such as SUS410.

【0008】本発明で対象とする金属部材の表面が複雑
な形状を有する物としては、押し出し成型器用スクリュ
ウ、撹拌機用スクリュウ、機械部品成型用金型、自動車
用ギヤ、エンジン部品等がある。又、スリットを有する
金属部材としてはアルミニウム押し出し用各種ダイスが
ある。
[0008] Examples of the object having a complicated surface of the metal member of the present invention include a screw for an extruder, a screw for a stirrer, a mold for forming a mechanical part, a gear for an automobile, and an engine part. There are various dies for extruding aluminum as metal members having slits.

【0009】[0009]

【作用】本発明においては、後述するように低電流密度
でのグロー放電がアンモニアガスと水素ガスのプラズマ
化のみに使用され、余計な熱を殆ど発生させることがな
い。そのため、金属部材と窒素イオンを速やかに反応さ
せ、経済性が成り立つ収率で反応する反応温度、即ち3
00〜650℃の温度に、金属部材を外部から加熱手段
を用いて加熱し且つ維持する必要がある。金属部材の温
度が300℃未満ではイオン窒化反応が極めて遅く、6
50℃を越えると一旦形成された窒化物が分解し、イオ
ン窒化が起こらないという問題がある。例えばS45C
構造用鋼の場合では550〜600℃が適している。加
熱手段としては電気加熱、ガス加熱などがあるが、電気
加熱が使い易い。加熱源としてはイオン窒化処理を行う
真空チャンバー内に配置するか、その外側に配置して加
熱することで、自動制御システムと組み合わせてプログ
ラムされた昇温や温度維持が容易にできる。
SUMMARY OF] The onset Oite to Ming, low current density as described below
Discharge of ammonia gas and ammonia gas plasma
Is used only to produce unnecessary heat.
No. Therefore, the reaction temperature at which the metal member reacts quickly with the nitrogen ions and reacts in a yield that achieves economic efficiency , that is, 3
Heating means for externally heating a metal member to a temperature of 00 to 650 ° C.
Must be heated and maintained using Temperature of metal parts
If the temperature is lower than 300 ° C., the ion nitriding reaction is extremely slow,
If the temperature exceeds 50 ° C., the nitride once formed is decomposed, and there is a problem that ion nitriding does not occur. For example, S45C
In the case of structural steel, 550-600 ° C is suitable. Examples of the heating means include electric heating and gas heating, and electric heating is easy to use. The heating source can be placed in a vacuum chamber for performing the ion nitriding treatment or placed outside the heating chamber, and can be heated and maintained at a programmed temperature easily in combination with an automatic control system.

【0010】本発明において、イオン窒化のためのガ
スとして、アンモニアガスと水素ガスを用いる。通常
ンモニアガスはNとHに分解し、N2とH2に直ちになる
ためイオン窒化反応が充分おこらないが、本発明の低い
電流密度の範囲においてはアンモニアガスはイオン窒化
反応に有効なアンモニアラジカルとして安定であり、
放電によるアンモニアガスのラジカル化を安定に行う
ための補助ガスとして水素ガスを使用する
In the present invention, as a gas for ion nitriding, Ru using ammonia gas and hydrogen gas. Normal A <br/> ammonia gas, is decomposed into N and H, but immediately made for ion nitriding reaction to N 2 and H 2 is not sufficiently occur, lower the invention
Ammonia gas is ion-nitrided in the current density range.
It is stable as a valid ammonia radical to the reaction, this
Hydrogen gas is used as an auxiliary gas for stably performing the radicalization of ammonia gas by the discharge of the gas.

【0011】本発明で用いるアンモニアガスと水素ガス
の割合は、NH 3 /H 2 体積比で1/100以上であれば
よく、1/10〜2/1の範囲が好適である。NH 3
2 体積比が1/100未満では、イオン窒化反応が充
分に起こらない。尚、アンモニアガスと水素ガスの他
に、Arガス等の不活性ガスをプラズマを安定化させる
ために添加することもできる。
Ammonia gas and hydrogen gas used in the present invention
Is 1/100 or more in terms of NH 3 / H 2 volume ratio
The range of 1/10 to 2/1 is suitable. NH 3 /
If the H 2 volume ratio is less than 1/100, the ion nitriding reaction is not sufficient.
Does not happen in minutes. In addition, other than ammonia gas and hydrogen gas
In addition, an inert gas such as an Ar gas can be added to stabilize the plasma.

【0012】金属部材の表面に対して、かけるプラズマ
化電流を0.001〜2.0mA/cm2とするのは、こ
の電流密度の範囲においてのみグロー放電はアンモニア
ガス及び水素ガスをプラズマ化することにのみ使用で
き、余計な熱を殆ど発生させることがないからである。
電流密度が0.001mA/cm2未満ではプラズマ化を
充分起こすことができず、2.0mA/cm2を超える
と、金属部材の表面で局部的な過熱状態を生じたり、ス
リット内や溝内部に有効なイオン窒化処理が行われない
のでよくない。
The reason why the plasma current to be applied to the surface of the metal member is 0.001 to 2.0 mA / cm 2 is that the glow discharge converts ammonia gas and hydrogen gas into plasma only in this current density range. This is because it can be used only in particular and hardly generates unnecessary heat.
When the current density is less than 0.001 mA / cm 2 , the plasma cannot be sufficiently generated. When the current density exceeds 2.0 mA / cm 2 , a local overheating state occurs on the surface of the metal member, or the inside of the slit or the inside of the groove is formed. This is not preferable because an effective ion nitriding treatment is not performed.

【0013】本発明ではプラズマ化のためのグロー放電
を発生する放電は直流放電でも高周波放電でもよい。本
発明でイオン窒化を行う真空チャンバーには基本的にグ
ロー放電用電極、プラズマ化ガス用配管とを備え、真空
ポンプに接続された排気管を備えたものであればどのよ
うな形式のものでもよい。
In the present invention, the discharge for generating the glow discharge for forming the plasma may be a DC discharge or a high-frequency discharge. The vacuum chamber for performing ion nitriding in the present invention basically includes a glow discharge electrode, a plasma gas pipe, and any type of apparatus provided with an exhaust pipe connected to a vacuum pump. Good.

【0014】[0014]

【実施例】【Example】

実施例1 図1に本発明の実施例に用いた外熱炉型イオン窒化装置
の概略図を示す。真空チャンバー1には外壁内に加熱ヒ
ーター2が配置されている。真空チャンバー1の内部に
は直流電源5に接続された直流電極3が配置されてい
る。真空チャンバー1の下部には排気管6が接続され圧
力調整用のバルブ8を介して真空ポンプ7に接続されて
いる。真空チャンバー1の上部から原料ガス供給用のノ
ズル9が挿入されている。H2ガス、NH3ガス、Arガ
スの供給源からそれぞれマスフローコントローラー1
2、バルブ11、導入管10を介してノズル9に接続さ
れている。
Embodiment 1 FIG. 1 is a schematic diagram of an external heating furnace type ion nitriding apparatus used in an embodiment of the present invention. In the vacuum chamber 1, a heater 2 is arranged in the outer wall. A DC electrode 3 connected to a DC power supply 5 is disposed inside the vacuum chamber 1. An exhaust pipe 6 is connected to a lower portion of the vacuum chamber 1, and is connected to a vacuum pump 7 via a pressure adjusting valve 8. A nozzle 9 for supplying a source gas is inserted from above the vacuum chamber 1. Mass flow controllers 1 from the supply sources of H 2 gas, NH 3 gas, and Ar gas
2, connected to the nozzle 9 via a valve 11 and an inlet pipe 10.

【0015】直流電極3の上に横150mm、高さ22
0mm、奥行き80mmの直方体状のアルミダイキャス
ト用金型4aと、最大直径75mm、高さ200mmの
円柱状のアルミダイキャスト用ピン4bと、直径100
mm、厚さ50mmのギヤ4cと、直径75mm、厚さ
50mmの円盤状の押し出しダイス4dとからなる金属
部材4を配置した。これらの間隔は30mmとした。
又、これらの材質はSKD61鋼である。
The DC electrode 3 has a width of 150 mm and a height of 22 mm.
A rectangular aluminum die-casting die 4a having a diameter of 0 mm and a depth of 80 mm; a cylindrical aluminum die-casting pin 4b having a maximum diameter of 75 mm and a height of 200 mm;
A metal member 4 comprising a gear 4c having a thickness of 50 mm and a thickness of 50 mm and a disk-shaped extrusion die 4d having a diameter of 75 mm and a thickness of 50 mm was arranged. These intervals were 30 mm.
These materials are SKD61 steel.

【0016】まず、真空チャンバー1内真空ポンプ7
により10-3トールまで排気し、排気を続けながら水素
ガスを1000ml/分で供給し、1トールに維持し
た。同時に加熱ヒーター2で加熱を行い、1時間かけて
金属部材4の表面が設定温度の550℃に均一化される
まで昇温した
[0016] First of all, the vacuum pump 7 of the vacuum chamber 1
To 10 -3 Torr, and hydrogen gas was supplied at a rate of 1000 ml / min while the evacuation was continued to maintain the pressure at 1 Torr. Subjected to heat in heater 2 at the same time, the temperature was raised until the over one hour <br/> surface of the metal member 4 is equalized to 550 ° C. set temperature.

【0017】次に、直流電源5から−400Vの電圧を
金属部材4に印加して水素ガスによる直流グロー放電プ
ラズマを起こし、真空チャンバー1の内壁と金属部材4
の表面を30分間清浄化した。次に、水素ガス2000
ml/分、アンモニアガス500ml/分で真空チャン
バー1内に導入し、圧力を1トールに維持し、印加電圧
−400Vで水素ガスとアンモニアの直流グロー放電プ
ラズマを発生させイオン窒化処理を開始した。
Next, a voltage of -400 V is applied to the metal member 4 from the DC power supply 5 to generate a DC glow discharge plasma by hydrogen gas, and the inner wall of the vacuum chamber 1 and the metal member 4
Was cleaned for 30 minutes. Next, hydrogen gas 2000
The gas was introduced into the vacuum chamber 1 at a rate of 1 ml / min and ammonia gas at 500 ml / min, the pressure was maintained at 1 Torr, and a DC glow discharge plasma of hydrogen gas and ammonia was generated at an applied voltage of -400 V to start ion nitriding.

【0018】この間、金属部材4の表面に流れる電
度は0.6mA/cm 2 と低く且つ一定状態を維持し、加
熱ヒーター2により金属部材4を前記設定温度の550
℃に維持した。その結果、金属部材4の表面温度はプラ
ズマにより若干上昇して550℃よりも2〜6℃だけ高
くなった。又、金属部材4の表面でプラズマは均一に発
し、それぞれの金属部材4間の狭い空間では強いプラ
ズマの発生は認められなかった。
[0018] During this time, fine current flowing to the surface of the metal member 4
The temperature is as low as 0.6 mA / cm 2 and is kept constant.
The metal member 4 is heated to 550 at the set temperature by the heat heater 2.
C. was maintained. As a result, the surface temperature of the metal member 4 was higher by 2 to 6 ° C. than raised to 550 ° C. little by plasma. Further , plasma was uniformly generated on the surface of the metal member 4, and no strong plasma was generated in a narrow space between the metal members 4.

【0019】イオン窒化処理を8時間継続した後、プラ
ズマを停止し、ガスの供給と加熱を停止して室温まで冷
却した。各金属部材4を取り出し、切断し、断面を顕微
鏡で観察したところ、何れの金属部材4も表面に均一に
厚さ約12μmの化合物層と、その下に厚さ約280μ
mの拡散層とが形成されており、ギヤ4cやダイス4d
の溝の部分にも確実にこれらの層が確認出来た。これら
の金属部材4の表面の硬度はHv1150であった。
After the ion nitriding treatment was continued for 8 hours, the plasma was stopped, gas supply and heating were stopped, and the system was cooled to room temperature. Each metal member 4 was taken out, cut, and the section was observed with a microscope. As a result, each metal member 4 had a compound layer having a uniform thickness of about 12 μm on the surface and a thickness of about 280 μm below the compound layer.
m is formed, and a gear 4c and a die 4d are formed.
These layers could be surely confirmed also in the groove portion of. The hardness of the surface of these metal members 4 was Hv1150.

【0020】実施例2 実施例1の装置と、金属部材4とを用い、アルミダイキ
ャスト用金型4aと、ダイス4dとの、イオン窒化処理
時のプラズマ発生用の電流密度に対する表面温度の差を
測定した。その結果を図2に示す。図2において、Aは
表面電流密度が1.85mA/cm2の時の4aと4dの
温度差を示し、Bは表面電流密度が2.25mA/cm2
の時の4aと4dとの温度差を示す。
Example 2 Using the apparatus of Example 1 and the metal member 4, the difference between the surface temperature of the die 4a for aluminum die casting and the die 4d with respect to the current density for generating plasma during ion nitriding. Was measured. The result is shown in FIG. In FIG. 2, A is the surface current density indicates the temperature difference between the 4a and 4d when the 1.85mA / cm 2, B is the surface current density is 2.25mA / cm 2
3 shows the temperature difference between 4a and 4d.

【0021】4aはアルミダイキャスト用金型であり、
4dは押し出しダイスであるので、表面積/容積の比率
は4aが最も小さく、4dが最も大きい。AとBは電流
密度が大きくなるに従って温度差が約25℃から約50
℃に急激に大きくなることを示している。このことは、
表面積/容積の比率の大きい4dの表面温度が電流密度
の影響を受け易いことを示し、電流密度の大きい範囲で
は均一なプラズマ処理が困難となり、形状の異なった金
属部材を同時に処理しにくいことを示すものである。
4a is an aluminum die casting mold,
Since 4d is an extrusion die, the surface area / volume ratio is the smallest at 4a and the largest at 4d. A and B have a temperature difference from about 25 ° C. to about 50 as the current density increases.
It shows that the temperature rapidly increases to ° C. This means
This indicates that the surface temperature of 4d having a large surface area / volume ratio is easily affected by the current density. It is difficult to perform uniform plasma processing in a range where the current density is large, and it is difficult to simultaneously process metal members having different shapes. It is shown.

【0022】図2から温度差を30℃未満とするために
は2.0mA/cm2以下とすることが必要であること、
15℃以下とするためには1.5mA/cm2とするこ
と、更に5℃以下とするには、0.7mA/cm2以下と
する必要があることが分かる。しかし0.001mA/
cm2未満ではプラズマ化を充分に起こすことが困難と
なる。
From FIG. 2, it is necessary to make the temperature difference 2.0 mA / cm 2 or less in order to make the temperature difference less than 30 ° C.
It can be seen that 1.5 mA / cm 2 must be set to 15 ° C. or lower, and 0.7 mA / cm 2 or lower must be set to 5 ° C. or lower. However, 0.001 mA /
If it is less than cm 2 , it is difficult to sufficiently generate plasma.

【0023】実施例3 実施例1の装置を用い実施例1と同様の条件で、金属部
材として図4に示すアルミナ材押出用のダイスのイオン
窒化処理を行った。このダイス13の直径は200m
m、厚さ30mmで、押出孔14のスリット幅の最小部
分は0.4mm、スリット15の奥行きは10mmであ
った。図3にスリットの奥行き方向の距離と形成された
拡散層及び化合物層の厚さを示す。この結果、スリット
の底部までイオン窒化処理されていることが分かる。
Example 3 Using the apparatus of Example 1, under the same conditions as in Example 1, an aluminum material extrusion die as shown in FIG. 4 was subjected to ion nitriding as a metal member. The diameter of the die 13 is 200 m
m, the thickness was 30 mm, the minimum slit width of the extrusion hole 14 was 0.4 mm, and the depth of the slit 15 was 10 mm. FIG. 3 shows the distance in the depth direction of the slit and the thickness of the formed diffusion layer and compound layer. As a result, it can be seen that the ion nitriding treatment has been performed up to the bottom of the slit.

【0024】[0024]

【発明の効果】本発明のイオン窒化法によれば、次のよ
うな効果が得られる。 (1)金属部材の内、複雑形状で立体的なもの、表面が細
密な溝構造を有するもの、異種形状のものを複数混載し
てこれらの全表面を均一にイオン窒化処理できる。 (2)グロー放電は殆どガスのプラズマ化のみに使用する
ので、低電流密度でイオン窒化処理ができ、これに要す
る電力量を小さくできる。又、低電流密度のためプラズ
マ化ガスが安定して溝の隅々まで拡散しイオン窒化でき
る。 (3)加熱は専用の加熱装置によって、金属部材のイオン
窒化反応を合理的な速度で行わせるためにのみ用いるの
で、完全に自動制御できる。 (4)大電流密度に起因するアーク放電による金属部材表
面への放電痕が発生しないので製品化の収率が高い。 (5)イオン衝撃が緩やかなので、金属部材の表面をスパ
ッターリングすることなくイオン窒化処理できるので、
処理前に比較して表面の粗度が変わらない。
According to the ion nitriding method of the present invention, the following effects can be obtained. (1) Among the metal members, a plurality of metal members having a complicated shape and a three-dimensional structure, a surface having a fine groove structure, and a plurality of materials having different shapes can be mixed and ion-nitrided on all surfaces thereof. (2) Since the glow discharge is used almost exclusively for converting the gas into plasma, the ion nitriding treatment can be performed at a low current density, and the amount of power required for this can be reduced. Further, since the current density is low, the plasma gas is stably diffused to every corner of the groove and ion nitriding can be performed. (3) Since heating is used only by a dedicated heating device to cause the ion nitriding reaction of the metal member to be performed at a reasonable speed, it can be completely automatically controlled. (4) Since there is no discharge mark on the surface of the metal member due to the arc discharge caused by the large current density, the yield of commercialization is high. (5) Since the ion bombardment is moderate, ion nitriding can be performed without sputtering the surface of the metal member.
The surface roughness does not change compared to before the treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法の実施例に使用したイオン窒化装置の
概略説明図である。
FIG. 1 is a schematic explanatory view of an ion nitriding apparatus used in an embodiment of the method of the present invention.

【図2】実施例2おけるプラズマ発生電流密度と、金属
部材間の表面温度差を示す図である。
FIG. 2 is a diagram illustrating a plasma generation current density and a surface temperature difference between metal members in Example 2.

【図3】実施例3におけるスリット15の入口から突き
当たりまでの奥行き方向の距離と化合物層及び拡散層の
厚さの分布を示す図である。
FIG. 3 is a diagram showing a distance in a depth direction from an entrance of a slit 15 to an end and a distribution of thicknesses of a compound layer and a diffusion layer in Example 3.

【図4】実施例3で用いたダイスの平面図である。FIG. 4 is a plan view of a die used in Example 3.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 加熱ヒーター 3 直流電極 4 金属部材 5 直流電源 6 排気管 7 真空ポンプ 8 バルブ 9 ノズル 10 導入管 11 バルブ 12 マスフローコントローラー 13 ダイス 14 押出孔 15 スリット DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Heater 3 DC electrode 4 Metal member 5 DC power supply 6 Exhaust pipe 7 Vacuum pump 8 Valve 9 Nozzle 10 Introducing pipe 11 Valve 12 Mass flow controller 13 Dice 14 Extrusion hole 15 Slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳沼 良和 東京都府中市住吉町3−4−6 日本電 子工業株式会社府中工場内 (56)参考文献 特開 平3−104881(JP,A) 特公 昭57−53862(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C23C 8/36 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshikazu Yaginuma 3-4-6 Sumiyoshi-cho, Fuchu-shi, Tokyo Inside the Fuchu factory of Nippon Electronics Co., Ltd. (56) References JP-A-3-104881 (JP, A) JP-B-57-53862 (JP, B2) (58) Field surveyed (Int. Cl. 6 , DB name) C23C 8/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属部材を加熱手段により300〜65
0℃の温度に維持しながら、アンモニアガスと水素ガス
を用い、金属部材の表面に対して0.001〜2.0mA
/cm2の電流密度グロー放電を行い金属部材の表
面をイオン窒化することを特徴とする金属部材のイオン
窒化法。
1. A metal member is heated to 300 to 65 by heating means .
While maintaining the temperature at 0 ° C., 0.001 to 2.0 mA was applied to the surface of the metal member using ammonia gas and hydrogen gas.
/ Cm performed glow discharge 2 of current density, ion nitriding of the metal member, wherein the ion nitriding the surface of the metal member.
JP2724893A 1993-01-22 1993-01-22 Ion nitriding of metal members Expired - Lifetime JP2931173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2724893A JP2931173B2 (en) 1993-01-22 1993-01-22 Ion nitriding of metal members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2724893A JP2931173B2 (en) 1993-01-22 1993-01-22 Ion nitriding of metal members

Publications (2)

Publication Number Publication Date
JPH06220606A JPH06220606A (en) 1994-08-09
JP2931173B2 true JP2931173B2 (en) 1999-08-09

Family

ID=12215779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2724893A Expired - Lifetime JP2931173B2 (en) 1993-01-22 1993-01-22 Ion nitriding of metal members

Country Status (1)

Country Link
JP (1) JP2931173B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137402A1 (en) * 2005-06-24 2006-12-28 Tokyo Electron Limited Gas treatment method and computer readable storage medium
CN106958003A (en) * 2016-07-13 2017-07-18 苏州创瑞机电科技有限公司 Coil case cold-plasma surfaces treated method and device
WO2020080058A1 (en) 2018-10-15 2020-04-23 株式会社神戸製鋼所 Nitriding apparatus and nitriding method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005904A (en) 1998-06-18 2000-01-11 Sumitomo Metal Mining Co Ltd Surface treated steel based cutting tool
JP3830123B2 (en) * 1999-09-17 2006-10-04 日本コーティングセンター株式会社 Surface-coated cemented carbide and method for producing the same
KR100560066B1 (en) * 2004-03-25 2006-03-15 주식회사 플라스포 Ion-Nitriding treatment device and method therefor
KR100594998B1 (en) * 2004-05-14 2006-06-30 주식회사 케이피티 Method for nitriding of Ti and Ti alloy
JP2008202105A (en) * 2007-02-21 2008-09-04 Nippon Coating Center Kk Method for carbonitriding metallic member
CN105369190B (en) * 2015-12-10 2017-12-22 贵州西南工具(集团)有限公司 A kind of dry cyaniding automation control method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137402A1 (en) * 2005-06-24 2006-12-28 Tokyo Electron Limited Gas treatment method and computer readable storage medium
CN101107379B (en) * 2005-06-24 2010-12-01 东京毅力科创株式会社 Gas treatment method
CN106958003A (en) * 2016-07-13 2017-07-18 苏州创瑞机电科技有限公司 Coil case cold-plasma surfaces treated method and device
WO2020080058A1 (en) 2018-10-15 2020-04-23 株式会社神戸製鋼所 Nitriding apparatus and nitriding method

Also Published As

Publication number Publication date
JPH06220606A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
JP2931173B2 (en) Ion nitriding of metal members
US6681716B2 (en) Apparatus and method for depositing large area coatings on non-planar surfaces
US6482476B1 (en) Low temperature plasma enhanced CVD ceramic coating process for metal, alloy and ceramic materials
US6110571A (en) Duplex coated steel composite products and method of manufacturing them
KR910007536B1 (en) High temperature heating sputtering process
Koval et al. Generation of low-temperature gas discharge plasma in large vacuum volumes for plasma chemical processes
JP2989746B2 (en) Steel-based composite surface-treated product and its manufacturing method
US4486462A (en) Method for coating by glow discharge
WO2017122044A1 (en) Equipment for ion nitriding/nitrocarburizing treatment comprising two furnace chambers with shared resources, able to run glow discharge treatment continuously between the two chambers
JP2947445B2 (en) Ion nitriding method for metal members
JP3050361B2 (en) Ion nitriding method for metal members
JPH07118850A (en) Formation of hard film by ion nitriding and plasma cvd
JPH0813126A (en) Ion-soft nitriding process for metallic member
JP3314812B2 (en) Ion nitriding method of metal surface using glow discharge
JP2006249508A (en) Method for nitriding titanium and titanium alloy
JPH03232957A (en) Production of wear resistant member
US20030098367A1 (en) Processes and systems for determining the identity of metal alloys
JPH08296033A (en) Surface treatment of metal
JP2003064466A (en) Gear cutting tool and surface modifying method
JP2000054108A (en) Die for forging
KR100333948B1 (en) Method for ion-nitrating and coating diamond-Like carbon film using micropulse glow discharge
JP2890422B2 (en) Plasma carburizing method
JPH0813124A (en) Nitriding method and ion nitriding method for metallic member
CN108385074A (en) A kind of nitrogen method for implanting and its modified cutter, mold
JPH08193261A (en) Metallic working jig and formation of surface film thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120521

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130521

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14