JP2943813B2 - Method for recovering platinum group metal from monolith catalyst for exhaust gas purification - Google Patents

Method for recovering platinum group metal from monolith catalyst for exhaust gas purification

Info

Publication number
JP2943813B2
JP2943813B2 JP22562489A JP22562489A JP2943813B2 JP 2943813 B2 JP2943813 B2 JP 2943813B2 JP 22562489 A JP22562489 A JP 22562489A JP 22562489 A JP22562489 A JP 22562489A JP 2943813 B2 JP2943813 B2 JP 2943813B2
Authority
JP
Japan
Prior art keywords
monolith catalyst
platinum group
crushed product
exhaust gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22562489A
Other languages
Japanese (ja)
Other versions
JPH0388728A (en
Inventor
吉延 ▲榊▼原
栄作 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARAA KK
Original Assignee
KYATARAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARAA KK filed Critical KYATARAA KK
Priority to JP22562489A priority Critical patent/JP2943813B2/en
Publication of JPH0388728A publication Critical patent/JPH0388728A/en
Application granted granted Critical
Publication of JP2943813B2 publication Critical patent/JP2943813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車等の排気ガスを浄化する際に使用され
た排気ガス浄化用モノリス触媒からその触媒成分である
白金族金属を回収する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for recovering a platinum group metal as a catalyst component from an exhaust gas purifying monolith catalyst used for purifying exhaust gas of an automobile or the like. Things.

[従来の技術] 自動車等の排気ガス浄化用触媒は、ペレット型(粒
状)の触媒からスタートし、その後徐々にセラミック製
モノリス触媒へと移行してきた。よって使用済触媒も当
初はペレット型であった。ペレット型は粒径がほぼ均一
であるため貴金属溶解液を循環して抽出する場合におい
て、触媒が槽内に均一に流れるため、抽出ムラ等の不具
合を生じなかった。
[Prior Art] Exhaust gas purifying catalysts for automobiles and the like have been started from pellet type (granular) catalysts, and then gradually shifted to ceramic monolithic catalysts. Therefore, the spent catalyst was also pellet type at first. Since the pellet type has a substantially uniform particle size, when the precious metal solution is circulated and extracted, the catalyst flows uniformly in the tank, so that no problems such as uneven extraction occur.

ところが、モノリス触媒の場合に、1個1個そのまま
の形状で溶解抽出処理するとセル内への液循環が悪くな
り、抽出率の悪化を招くばかりか、嵩密度が0.2g/cc乃
至0.3g/ccと低いため溶解抽出液が大量に必要となる。
However, in the case of a monolithic catalyst, if the solution is subjected to the dissolution and extraction treatment in the form of one by one, the liquid circulation in the cell is deteriorated, and not only the extraction rate is deteriorated, but also the bulk density is 0.2 g / cc to 0.3 g /. Because of low cc, a large amount of dissolved extract is required.

そこでモノリス触媒から湿式法で、白金族金属を回収
する前処理法として粗砕、粉砕等を行い、還元剤や酸と
の接触面積を増やしたり、あるいは嵩密度を大きくする
ことにより、酸等の薬品使用量を低減することが考えら
れる。しかしながらこれらの細かい処理方法は開発され
ていない。
Therefore, the wet method from the monolith catalyst, by performing crushing, pulverization, etc. as a pretreatment method to recover the platinum group metal, to increase the contact area with the reducing agent or acid, or by increasing the bulk density, such as acid It is conceivable to reduce the amount of chemicals used. However, these fine processing methods have not been developed.

[発明が解決しようとする課題] 前記のようにモノリス触媒を粗砕、粉砕しないと、嵩
密度が小さく同じ触媒量を溶解抽出処理するためには、
酸の量およびそれらを中和するためのアルカリ等の薬品
量が、モノリス触媒を粗砕した場合に比べて大量に必要
なため回収コストが高くなる。
[Problems to be Solved by the Invention] Unless the monolith catalyst is coarsely crushed and pulverized as described above, the bulk density is small, and the same amount of the catalyst is subjected to dissolution extraction treatment.
Since the amount of the acid and the amount of a chemical such as an alkali for neutralizing the acid are required in large amounts as compared with the case where the monolith catalyst is crushed, the recovery cost is increased.

また、逆にモノリス触媒の粉砕により、モノリス触媒
が細かくなりすぎると、抽出液と粉末の分離が困難とな
り、抽出後も抽出担体中に含まれる貴金属を洗浄する毎
に、大型の濾過装置が必要となり工程時間が長くかかっ
てしまう。
Conversely, if the monolith catalyst becomes too fine due to the pulverization of the monolith catalyst, it becomes difficult to separate the extract from the powder, and a large filtration device is required every time the noble metal contained in the extraction carrier is washed after extraction. And the process time is long.

従って本発明の目的は、自動車等に使用される排気ガ
ス浄化用モノリス触媒から効率良くしかも低コストで白
金族金属を回収することのできる方法を提供することに
ある。
Accordingly, an object of the present invention is to provide a method capable of efficiently and at low cost recovering a platinum group metal from a monolithic catalyst for purifying exhaust gas used in automobiles and the like.

[課題を解決するための手段] 上記課題を解決するため、本発明は排気ガス浄化用と
して使用されたセラミック製モノリス触媒からの白金族
金属の回収方法に於いて、32メッシュ未満の該モノリス
触媒が、粗砕品全体の30%以下になるよう該モノリス触
媒を粗砕処理後、該粗砕品を300℃以上の還元ガス雰囲
気で焼成したのち、塩酸酸性溶媒を用いた抽出処理に供
することを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention relates to a method for recovering a platinum group metal from a ceramic monolith catalyst used for purifying exhaust gas, wherein the monolith catalyst having a size of less than 32 mesh is used. However, after crushing the monolith catalyst so as to be 30% or less of the whole crushed product, calcining the crushed product in a reducing gas atmosphere of 300 ° C. or more, and then subjecting the crushed product to an extraction process using a hydrochloric acid acidic solvent. It is characterized by.

モノリス触媒を粗砕する場合、粒度分布が一番重要で
あり、32メッシュ未満の細粒が粗砕品全体の30%以下、
すなわち粗砕品の嵩密度で0.4g/cc乃至0.95g/ccの条件
が最適であることを見いだした。32メッシュ未満の細粒
が30%を越えると抽出液の拡散が不均一となり、抽出ム
ラを生じ、更に、固液分離に大型の濾過機等が必要とな
る。
When crushing a monolith catalyst, the particle size distribution is the most important, and fine particles of less than 32 mesh are less than 30% of the whole crushed product,
That is, it was found that the conditions of 0.4 g / cc to 0.95 g / cc in the bulk density of the crushed product were optimal. If the fine particles of less than 32 mesh exceed 30%, the diffusion of the extract becomes non-uniform, causing uneven extraction, and a large-sized filter or the like is required for solid-liquid separation.

粗砕品を300℃以上の還元ガス雰囲気で行うのは、粗
砕品を300℃未満の還元ガス雰囲気で行うと粗砕品全体
の還元が不十分となり、特に200℃の還元ガス雰囲気で
は抽出率が明らかに低下するためである。
Performing the crushed product in a reducing gas atmosphere of 300 ° C or higher is not sufficient if the crushed product is performed in a reducing gas atmosphere of less than 300 ° C. This is because the rate clearly decreases.

また粗砕品を300℃以上の還元ガス雰囲気で焼成した
のちの抽出処理に用いる塩酸酸性溶媒としては、塩素系
の薬品、過酸化水素水、硝酸および発生機の塩素ガス等
の中から選ばれた酸化剤を少なくとも1種を含む塩酸酸
性溶液であれば、高抽出率が得られる。
The acidic hydrochloric acid used for the extraction after baking the crushed product in a reducing gas atmosphere of 300 ° C or higher is selected from chlorine-based chemicals, aqueous hydrogen peroxide, nitric acid, and chlorine gas from the generator. A high extraction rate can be obtained with a hydrochloric acid solution containing at least one oxidizing agent.

[作用] 本発明は32メッシュ未満のモノリス触媒を、粗砕品全
体の30%以下になるように粗砕することにより、嵩密度
を大きくでき、抽出液を最小限に押さえることができ、
更に、固液分離も従来のペレット並に行うことができ
る。
[Function] The present invention is capable of increasing the bulk density and minimizing the amount of extract by crushing a monolithic catalyst having a mesh size of less than 32 mesh so as to be 30% or less of the whole crushed product.
Further, the solid-liquid separation can be performed in the same manner as the conventional pellets.

また、本発明では、粗砕品を300℃以上の還元ガス雰
囲気下で焼成し酸化状態にある白金族金属を還元する
が、その際、本発明の方法におけるような粒度分布の粗
砕品を用いることにより、還元ガスの拡散を良くし、ム
ラなく還元処理され、更に、塩酸酸性溶媒中の溶解にお
いても、溶液との接触が効率良く行われるため高い回収
率が得られると考えられる。
Further, in the present invention, the crushed product is calcined in a reducing gas atmosphere of 300 ° C. or more to reduce the platinum group metal in an oxidized state. It is considered that the use of the compound improves the diffusion of the reducing gas, reduces the reduction evenly, and also achieves a high recovery rate even when dissolving in a hydrochloric acid solvent because the contact with the solution is performed efficiently.

[実施例] 実施例1 使用済モノリス触媒をジョークラッシャー(吉田制作
所製)を用いて粗砕し、第1図に示す粒度分布をもつ嵩
硬度0.65g/ccの粗砕品を得た。この粗砕品を、触媒に付
着したカーボン等を焼成するため空気中で500℃、1時
間焼成し、更に3%H2−N2バランスの還元ガス雰囲気中
で800℃1時間還元処理し、1kgのサンプルAを得た。
Example 1 Example 1 A used monolith catalyst was crushed using a jaw crusher (manufactured by Yoshida Seisakusho) to obtain a crushed product having a particle size distribution and a bulk hardness of 0.65 g / cc as shown in FIG. This crushed product is calcined in air at 500 ° C. for 1 hour in order to calcine carbon and the like attached to the catalyst, and further reduced at 800 ° C. for 1 hour in a reducing gas atmosphere of 3% H 2 —N 2 balance, 1 kg of sample A was obtained.

実施例2 使用済モノリス触媒をハンマー型粗砕機(ヤリヤ機械
製)を用いて第2図に示す粒度分布をもつ嵩密度0.82g/
ccの粗砕品を得た。この粗砕品を空気中で500℃、1時
間焼成し、更に5%H2−N2バランスの還元ガス雰囲気中
で500℃1時間還元処理し、1kgのサンプルBを得た。
Example 2 A spent monolith catalyst was treated with a hammer type crusher (manufactured by Yarya Kikai) to have a bulk density of 0.82 g / having a particle size distribution shown in FIG.
cc of crude product was obtained. This crushed product was calcined in air at 500 ° C. for 1 hour, and further subjected to reduction treatment in a reducing gas atmosphere of 5% H 2 —N 2 balance at 500 ° C. for 1 hour to obtain 1 kg of sample B.

実施例3 使用済モノリス触媒をハンマー型粗砕機に幅4mmのス
リットスクリーンを取り付け、第3図に示す粒度分布を
もつ嵩密度0.91g/ccの粗砕品を得た。この粗砕品を空気
中で500℃、1時間焼成し、更に3%H2+3%CO+10%C
O2−N2バランスの還元ガス雰囲気中で300℃、1時間還
元処理し、1kgのサンプルCを得た。
Example 3 A 4 mm-wide slit screen was attached to the used monolith catalyst in a hammer-type crusher to obtain a crushed product having a particle size distribution and a bulk density of 0.91 g / cc as shown in FIG. This crushed product is fired in air at 500 ° C for 1 hour, and further 3% H 2 + 3% CO + 10% C
A reduction treatment was performed at 300 ° C. for 1 hour in an O 2 —N 2 balance reducing gas atmosphere to obtain 1 kg of Sample C.

実施例4 使用済モノリス触媒をジョークラッシャーを用いて粗
砕し、第4図に示す粒度分布をもつ嵩密度0.49g/ccの粗
砕品を得た。この粗砕品を空気中で500℃、1時間焼成
し、更に10%H2−N2バランスの還元ガス雰囲気中で800
℃、1時間還元処理し、1kgのサンプルDを得た。
Example 4 A spent monolith catalyst was crushed using a jaw crusher to obtain a crushed product having a particle size distribution and a bulk density of 0.49 g / cc as shown in FIG. The crude砕品500 ° C. in air and calcined for 1 hour, a further 10% H 2 -N 2 in a reducing gas atmosphere balance 800
The reduction treatment was performed at 1 ° C. for 1 hour to obtain 1 kg of sample D.

比較例1 使用済モノリス触媒を解砕機を用いて、ある程度解砕
した後、ハンマー型粗砕機に1.5mmのスリットスクリー
ンを取り付け、第5図に示す粒度分布をもつ嵩密度1.03
g/ccの粗砕品を得た。この粗砕品を空気中で500℃、1
時間焼成し、更に5%H2−N2バランスの還元ガス雰囲気
中で、回転撹拌しながら800℃、1時間還元処理し、1kg
のサンプルEを得た。
Comparative Example 1 After the used monolith catalyst was crushed to some extent using a crusher, a 1.5 mm slit screen was attached to a hammer-type crusher, and a bulk density of 1.03 having a particle size distribution shown in FIG. 5 was obtained.
A g / cc crude product was obtained. This crushed product is put in air at 500 ℃, 1
Calcination for 1 hour at 800 ° C for 1 hour while rotating and stirring in a reducing gas atmosphere of 5% H 2 -N 2 balance
Sample E was obtained.

比較例2 使用済モノリス触媒をジョークラッシャーを用いて粗
砕し、実施例1と同様の粗砕品を1kg得た。この粗砕品
を空気中で500℃、1時間焼成し、、還元処理は行わな
かった。このサンプルをFとする。
Comparative Example 2 The used monolith catalyst was crushed using a jaw crusher, and 1 kg of the same crushed product as in Example 1 was obtained. This crushed product was fired in air at 500 ° C. for 1 hour, and no reduction treatment was performed. This sample is designated as F.

比較例3 使用済モノリス触媒をジョークラッシャーを用いて粗
砕し、実施例1と同様の粗砕品を得た。この粗砕品を空
気中で500℃、1時間焼成し、更に3%H2−N2バランス
の還元ガス雰囲気中で、200℃、1時間還元処理し、1kg
のサンプルGを得た。
Comparative Example 3 A used monolith catalyst was crushed using a jaw crusher to obtain a crushed product similar to that of Example 1. This crushed product is fired in air at 500 ° C. for 1 hour, and further reduced in a reducing gas atmosphere of 3% H 2 —N 2 balance at 200 ° C. for 1 hour, and 1 kg
Sample G was obtained.

比較例4 使用済モノリス触媒を粗砕しないで、空気中で500
℃、1時間焼成し、更に10%H2−N2バランスの還元ガス
雰囲気中で、800℃、1時間還元処理し、1kgのサンプル
Hを得た。
Comparative Example 4 Spent monolith catalyst was not crushed,
° C., and baked for one hour, further at 10% H 2 -N 2 in a reducing gas atmosphere of balance, 800 ° C., for 1 hour reduction treatment to obtain a Sample H of 1 kg.

実施例1乃至実施例4及び比較例1乃至比較例4で得
られたサンプルに下記の抽出テストを行った。各サンプ
ルは、1kgとした。
The following extraction test was performed on the samples obtained in Examples 1 to 4 and Comparative Examples 1 to 4. Each sample was 1 kg.

第6図に示すように、各サンプル1を、透明塩化ビニ
ル樹脂製の抽出槽2に入れ、20%のHCl溶液を投入し
た。HCl溶液をヒータで加熱し、40℃に達したら、過酸
化水素水40ccを約20分かけて投入した。その際溶解液
は、常にポンプPを用いて液入口3から投入し、液出口
4から排出させ、100乃至200cc/minで矢印を示すように
循環した。過酸化水素水を投入開始してから約1時間
後、溶解液が約60℃に上昇したところで抽出工程を終了
し、液抜き口5から液抜きを行った。続いて、抽出担体
中に付着している溶解した貴金属を洗浄するために、水
を投入し30分間、液をポンプで循環し、水洗を行い、続
いて液抜きを行った。更にこの水洗操作を2回行い、溶
解した貴金属を十分洗浄した。
As shown in FIG. 6, each sample 1 was placed in an extraction tank 2 made of a transparent vinyl chloride resin, and a 20% HCl solution was introduced. The HCl solution was heated by a heater, and when the temperature reached 40 ° C., 40 cc of hydrogen peroxide solution was introduced over about 20 minutes. At that time, the solution was always introduced from the liquid inlet 3 using the pump P, discharged from the liquid outlet 4, and circulated at 100 to 200 cc / min as indicated by the arrow. About 1 hour after the start of the supply of the aqueous hydrogen peroxide, when the temperature of the solution rose to about 60 ° C., the extraction step was terminated, and the liquid was removed from the liquid discharging port 5. Subsequently, in order to wash the dissolved noble metal adhering to the extraction carrier, water was introduced, the liquid was circulated by a pump for 30 minutes, washed with water, and then drained. This washing operation was further performed twice to sufficiently wash the dissolved noble metal.

抽出、洗浄処理したサンプルは、乾燥し、サンプル中
の白金族金属の分析を行った。なお、貴金属の各抽出率
は次式により求めた。
The extracted and washed sample was dried and analyzed for platinum group metals in the sample. In addition, each extraction rate of the noble metal was determined by the following formula.

また、使用済モノリス触媒の各サンプル中の白金族金
属の含有量は白金(Pt)0.14乃至0.18重量%、ロジウム
(Rh)0.011乃至0.015重量%であった。
The content of the platinum group metal in each sample of the spent monolith catalyst was 0.14 to 0.18% by weight of platinum (Pt) and 0.011 to 0.015% by weight of rhodium (Rh).

結果を第1表に示す。 The results are shown in Table 1.

第1表から明らかなように、嵩密度が0.95g/ccをこえ
た比較例1、還元処理のない比較例2、還元ガスの温度
が300℃未満の比較例3、粗砕処理を行っていない比較
例4は、いずれも本発明の方法を用いた実施例に比べて
白金、ロジウムの抽出率が低かった。また粗砕処理をし
ないと、溶解抽出に使用する塩酸と洗浄水の量が非常に
多く必要となる。また嵩密度が0.95g/ccをこえた比較例
1では、液抜きの時間が他に比べ30倍もかかり、全工程
時間も長いことがわかった。
As is clear from Table 1, Comparative Example 1 having a bulk density exceeding 0.95 g / cc, Comparative Example 2 having no reduction treatment, Comparative Example 3 having a reducing gas temperature of less than 300 ° C., and crushing treatment were performed. In Comparative Example 4 where no method was used, the extraction rates of platinum and rhodium were lower than those of Examples using the method of the present invention. If the crushing treatment is not performed, the amounts of hydrochloric acid and washing water used for the dissolution extraction become extremely large. In Comparative Example 1 in which the bulk density exceeded 0.95 g / cc, it was found that the time required for draining the liquid was 30 times as long as that of the others, and that the entire process time was long.

[発明の効果] 以上の結果から、明らかなように、本発明の方法を用
いると比較例に示す方法に比べ高い抽出率が得られ、溶
解抽出に使用した塩酸と洗浄水の総量も最小限であり、
更に、液抜き、循環も容易であるから工程時間も最小限
で行うことができる。
[Effects of the Invention] From the above results, it is clear that the use of the method of the present invention provides a higher extraction rate than the method shown in Comparative Example, and the total amount of hydrochloric acid and washing water used for the dissolution extraction is also minimized. And
Further, since the drainage and circulation are easy, the process time can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1で使用した粗砕品の粒度分布
図である。 第2図は本発明の実施例2で使用した粗砕品の粒度分布
図である。 第3図は本発明の実施例3で使用した粗砕品の粒度分布
図である。 第4図は本発明の実施例4で使用した粗砕品の粒度分布
図である。 第5図は本発明の比較例1で使用した粗砕品の粒度分布
図である。 第6図は抽出テストに使用する装置を示す説明図であ
る。
FIG. 1 is a particle size distribution diagram of the crushed product used in Example 1 of the present invention. FIG. 2 is a particle size distribution chart of the crushed product used in Example 2 of the present invention. FIG. 3 is a particle size distribution chart of the crushed product used in Example 3 of the present invention. FIG. 4 is a particle size distribution chart of the crushed product used in Example 4 of the present invention. FIG. 5 is a particle size distribution diagram of the crushed product used in Comparative Example 1 of the present invention. FIG. 6 is an explanatory diagram showing an apparatus used for an extraction test.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01G 55/00 B01J 38/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C01G 55/00 B01J 38/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排気ガス浄化用として使用されたセラミッ
ク製モノリス触媒からの白金族金属の回収方法に於い
て、32メッシュ未満の該モノリス触媒が、粗砕品全体の
30%以下になるよう該モノリス触媒を粗砕処理後、該粗
砕品を300℃以上の還元ガス雰囲気で焼成したのち、塩
酸酸性溶媒を用いた抽出処理に供することを特徴とする
排気ガス浄化用モノリス触媒からの白金族金属回収方
法。
In a method for recovering a platinum group metal from a ceramic monolith catalyst used for purifying exhaust gas, the monolith catalyst having a size of less than 32 mesh is used as a catalyst for the entire crushed product.
Exhaust gas purification, characterized in that the monolith catalyst is crushed so as to have a concentration of 30% or less, and the crushed product is calcined in a reducing gas atmosphere of 300 ° C. or more, and then subjected to an extraction treatment using a hydrochloric acid acidic solvent. For recovering platinum group metals from monolithic catalysts for industrial use.
JP22562489A 1989-08-31 1989-08-31 Method for recovering platinum group metal from monolith catalyst for exhaust gas purification Expired - Fee Related JP2943813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22562489A JP2943813B2 (en) 1989-08-31 1989-08-31 Method for recovering platinum group metal from monolith catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22562489A JP2943813B2 (en) 1989-08-31 1989-08-31 Method for recovering platinum group metal from monolith catalyst for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPH0388728A JPH0388728A (en) 1991-04-15
JP2943813B2 true JP2943813B2 (en) 1999-08-30

Family

ID=16832227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22562489A Expired - Fee Related JP2943813B2 (en) 1989-08-31 1989-08-31 Method for recovering platinum group metal from monolith catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP2943813B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607303B2 (en) * 2000-09-13 2011-01-05 株式会社フルヤ金属 Method for recovering platinum group metals from metal electrodes
JP4700815B2 (en) * 2001-01-12 2011-06-15 株式会社フルヤ金属 Method for recovering platinum group metals from metal electrodes
JP5579357B2 (en) * 2006-11-21 2014-08-27 株式会社フルヤ金属 Ruthenium recovery method
JP5093687B2 (en) * 2008-09-16 2012-12-12 独立行政法人産業技術総合研究所 Method for concentrating platinum group catalysts from automotive exhaust gas converters

Also Published As

Publication number Publication date
JPH0388728A (en) 1991-04-15

Similar Documents

Publication Publication Date Title
TWI388670B (en) Separation of rhodium with platinum and / or palladium
CN111533220A (en) Novel denitrification system for efficiently removing nitrate in water by utilizing electrocatalytic hydrogen evolution and catalytic hydrogenation and application thereof
CA2964281C (en) Method for removing noble metal from noble-metal-containing shaped catalyst bodies
CN104294048B (en) A kind of siderophore spent automotive exhaust catalysts platinum group metal recovery method
JP2943813B2 (en) Method for recovering platinum group metal from monolith catalyst for exhaust gas purification
JPS5828209B2 (en) How to save money and save money
CN104878208A (en) Recovery method for palladium and ruthenium in catalytic combustion catalyst Pd-Ru/alumina
JP4274802B2 (en) Platinum group precious metal recovery method
CN113061743A (en) Recycling method of ammonium chloroplatinate reduction waste liquid
RU2209843C2 (en) Method of recovering precipitate metals from automobile catalysts
CN107326192A (en) The method that rhodium is reclaimed from auto-exhaust catalyst
RU2156817C1 (en) Method of preparing palladium from spent aluminium oxide- based catalysts
RU2553273C1 (en) Method of extracting platinum and/or palladium from spent catalysts on aluminium oxide supports
CN106048264B (en) The method that cerium is recycled from the integral catalyzer of junked-auto exhaust purifier
CN107983344A (en) A kind of preparation method of ceria modified montmorillonite load ruthenium catalyst
JPS6116326B2 (en)
JP2001335855A (en) Method for recovering platinum from waste catalyst
RU2261284C2 (en) Method of complex reworking of decontaminated platinum-rhenium catalysts
JP2577978B2 (en) Reactivation method of platinum group metal supported catalyst
JP2003247030A (en) Method for recovering noble metal
JP2016190221A (en) Selenate reduction catalyst, production method of selenate reduction catalyst and reduction method of selenate solution
JPH05255771A (en) Reduction method for noble metal
JPH01189347A (en) Recovery of platinum group metal from purification catalyst for exhaust gas of automobile
KR100367710B1 (en) Recovery method of platinum group metals from spent active carbon catalyst
JPS62216924A (en) Method for recovering platinum metal from waste catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees