JP2936754B2 - Ti alloy excellent in cold forgeability - Google Patents

Ti alloy excellent in cold forgeability

Info

Publication number
JP2936754B2
JP2936754B2 JP3908991A JP3908991A JP2936754B2 JP 2936754 B2 JP2936754 B2 JP 2936754B2 JP 3908991 A JP3908991 A JP 3908991A JP 3908991 A JP3908991 A JP 3908991A JP 2936754 B2 JP2936754 B2 JP 2936754B2
Authority
JP
Japan
Prior art keywords
alloy
deformation resistance
weight
cold
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3908991A
Other languages
Japanese (ja)
Other versions
JPH04214830A (en
Inventor
英人 大山
淳之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JPH04214830A publication Critical patent/JPH04214830A/en
Application granted granted Critical
Publication of JP2936754B2 publication Critical patent/JP2936754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷間鍛造性に優れたT
i合金に関し、詳細には従来のβ型Ti合金と同程度の
強度を維持しつつ、冷間加工性及び延性を向上させたT
i合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a T
Regarding the i-alloy, specifically, a T alloy having improved cold workability and ductility while maintaining the same strength as a conventional β-type Ti alloy.
It relates to the i alloy.

【0002】[0002]

【従来の技術】Ti合金は添加元素の種類や量によって
組織がかわり、α型,α+β型,β型等に分類され、各
々個有の特性を示すことが知られている。これまでのT
i合金としてはα+β型Ti合金であるTi−6Al−
4Vが最も多く利用されており、航空機や宇宙開発機器
を中心として需要が拡大しつつある。最近では上記Ti
合金の、軽く,強く、しかも耐食性に優れるという特性
に着目して、自動車や家庭用電化製品等をはじめとする
量産型民生品の部品として使用することも検討されはじ
めている。量産に適した部品としては冷間鍛造が効率良
く行なえることが要求され、この為には変形抵抗が小さ
く延性が大きいことが必要である。しかしながら前記α
+β型Ti合金であるTi−6Al−4Vは冷間加工性
に乏しく量産用の素材としては不適当である。
2. Description of the Related Art It is known that Ti alloys are classified into α-type, α + β-type, β-type, etc., depending on the type and amount of added elements, and each has its own characteristic. The previous T
As the i alloy, Ti-6Al- which is an α + β type Ti alloy
4V is used most frequently, and demand is expanding mainly in aircraft and space development equipment. Recently, the above Ti
Paying attention to the characteristics of the alloy that is light, strong, and excellent in corrosion resistance, the use of the alloy as a part for mass-produced consumer products such as automobiles and household electric appliances has begun to be studied. As a part suitable for mass production, it is required that cold forging can be performed efficiently, and for this purpose, it is necessary that deformation resistance is small and ductility is large. However, the α
Ti-6Al-4V, which is a + β-type Ti alloy, has poor cold workability and is unsuitable as a material for mass production.

【0003】冷間加工に適したTi合金としてはβ型T
i合金が有力視されており、応力誘起マルテンサイト変
態を生じるTi−16V−4Snや変形が双晶で起こる
Ti−16V−10Sn等が既に開発されている。本発
明者らが上記2種類のβ型Ti合金について変形抵抗を
比較調査したところ、Ti−16V−4Snでは0.2 %
耐力が30kgf/mm2程度、引張強さが50kgf/mm2程度で
あるのに対して、Ti−16V−10Snの0.2 %耐力
と引張強さは共に60kgf/mm2程度にも及び、Ti−1
6V−4Snの方が変形抵抗の面で優れていることを確
認している。
[0003] As a Ti alloy suitable for cold working, β-type T
The i alloy is considered to be promising, and Ti-16V-4Sn, which causes stress-induced martensitic transformation, and Ti-16V-10Sn, which deforms twin, have been developed. The present inventors have conducted a comparative study on the deformation resistance of the above two types of β-type Ti alloys.
While the yield strength is about 30 kgf / mm 2 and the tensile strength is about 50 kgf / mm 2 , both the 0.2% proof stress and tensile strength of Ti-16V-10Sn are about 60 kgf / mm 2 , 1
It has been confirmed that 6V-4Sn is superior in terms of deformation resistance.

【0004】但し、該Ti−16V−4Snは据込み限
界においては既存のβ型Ti合金であるTi−15V−
3Cr−3Sn−3Al等に劣り、またAlを含有して
いないため耐酸化性に不安が残ると共に、時効処理時に
析出するα相が軟らかくて高強度が得られず、かと言っ
てAlを添加すると冷間鍛造性が極端に低下するという
問題を有している。
However, Ti-16V-4Sn is an existing β-type Ti alloy, Ti-15V-Sn, at the upsetting limit.
Inferior to 3Cr-3Sn-3Al, etc., and because it does not contain Al, there remains anxiety in oxidation resistance, and the α phase precipitated during aging treatment is soft and high strength cannot be obtained. There is a problem that the cold forgeability is extremely reduced.

【0005】ところで本発明者らは冷間鍛造性に優れた
Ti合金を開発すべく研究を重ねてきており、これまで
にも冷間鍛造に適した強度と延性を有するTi合金を発
明して先に出願を行なった(特開平1−12994
1)。
The present inventors have been studying to develop a Ti alloy having excellent cold forgeability, and have invented a Ti alloy having strength and ductility suitable for cold forging. Filed earlier (Japanese Patent Application Laid-Open No. 1-12994)
1).

【0006】しかしながら上記先願合金で据込み鍛造を
行ない、既存のβ型Ti合金であるTi−15V−3C
r−3Sn−3Alと冷間鍛造性を比較したところ、変
形抵抗の面では優れているが、据込み限界の点ではTi
−15V−3Cr−3Sn−3Alが80%の圧縮率を
有するのに対して、上記先願合金は75%と幾分低い圧
縮率を示している。そこでさらに冷間鍛造性の優れたT
i合金を開発することが要望されている。
However, upsetting forging is performed using the above-mentioned prior-art alloy, and the existing β-type Ti alloy Ti-15V-3C
Comparing r-3Sn-3Al with cold forgeability, it is excellent in terms of deformation resistance, but Ti in terms of upsetting limit.
While the -15V-3Cr-3Sn-3Al has a compression ratio of 80%, the prior application alloy has a somewhat lower compression ratio of 75%. Therefore, T which is more excellent in cold forgeability
There is a need to develop i-alloys.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、既存のβ型Ti合金であ
るTi−15V−3Cr−3Sn−3Alと同程度の据
込み限界を有すると共に変形抵抗がTi−16V−4S
nと同程度若しくはそれ以上に低い冷間鍛造性に優れた
Ti合金を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has an upsetting limit equivalent to that of an existing β-type Ti alloy, Ti-15V-3Cr-3Sn-3Al. With deformation resistance of Ti-16V-4S
An object of the present invention is to provide a Ti alloy excellent in cold forgeability that is as low as or higher than n.

【0008】[0008]

【課題を解決するための手段】上記目的を達成した本発
明とはMoおよび/またはNb:0.5 〜18重量%,
V:13〜19重量%,Al:0.5 〜6重量%,Sn:
0.5 〜6重量%を含有し、残部がTiおよび不可避不純
物からなることを要旨とするものである。
According to the present invention which has achieved the above objects, the present invention relates to Mo and / or Nb: 0.5 to 18% by weight,
V: 13 to 19% by weight, Al: 0.5 to 6% by weight, Sn:
The gist of the invention is that it contains 0.5 to 6% by weight, with the balance being Ti and unavoidable impurities.

【0009】[0009]

【作用】本発明者らは変形に伴なって応力誘起マルテン
サイト変態を示すβ型Ti合金であるTi−16V−4
Snが低い変形抵抗を示すことに着目して、これに種々
の合金元素を添加して実験を繰り返す中で、Alを適量
添加して適当な強度をもたせた上で、ある種のβ相安定
化元素を添加すれば、Al添加によるα相の安定化を抑
制し、強度及び冷間加工性が共に適切なレベルに改良さ
れることを知見して本発明に想到した。
The present inventors have determined that Ti-16V-4, a .beta.-type Ti alloy exhibiting stress-induced martensitic transformation with deformation.
Paying attention to the fact that Sn exhibits low deformation resistance, while adding various alloying elements to this and repeating the experiment, adding an appropriate amount of Al to give appropriate strength, and then stabilizing a certain β phase The present inventors have found that the addition of Al element suppresses the stabilization of the α phase due to the addition of Al, and improves both the strength and the cold workability to appropriate levels.

【0010】上記β相安定化元素を選択するにあたって
は、Mo,Nb,Fe,Crの中から選び、種々の添加
量を変えて実験を行なったところ、次の様な結果を得
た。即ちFe,Crは合金の据込み限界を向上させる点
では寄与するが、変形抵抗をも上昇させてしまうのに対
し、Mo,Nbは据込み限界を向上させると同時に変形
抵抗もTi−16V−4Snより低く抑えることが可能
であることを見い出したのである。
In selecting the above-mentioned β-phase stabilizing element, experiments were carried out by selecting from among Mo, Nb, Fe, and Cr and varying the amount of addition, and the following results were obtained. In other words, Fe and Cr contribute to improving the upsetting limit of the alloy, but also increase the deformation resistance, whereas Mo and Nb improve the upsetting limit and simultaneously increase the deformation resistance of Ti-16V-. They have found that it is possible to keep it below 4Sn.

【0011】以下本発明合金における各成分元素の添加
量の限定理由について述べる。
The reasons for limiting the amount of each component element added in the alloy of the present invention will be described below.

【0012】Alは時効処理によって十分な引張強度を
得る目的で添加するが、0.5 重量%未満では時効処理を
施しても十分な引張強度が得られず、6重量%を超える
と延性及び冷間鍛造性が著しく低下するので、Alの添
加量は0.5 〜6重量%とした。
Al is added for the purpose of obtaining sufficient tensile strength by aging treatment. However, if it is less than 0.5% by weight, sufficient tensile strength cannot be obtained even after aging treatment, and if it exceeds 6% by weight, ductility and cold Since the forgeability is significantly reduced, the amount of Al added is set to 0.5 to 6% by weight.

【0013】MoとNbは据込み限界を向上させ、変形
抵抗を低くする目的で添加するが、0.5 重量%未満では
その効果が見られず、18重量%を超えると変形抵抗が
かえって上昇するので、0.5 〜18重量%とした。尚こ
の変形抵抗の上昇は固溶硬化によるものであると考えら
れる。また本合金においてMoとNbはほぼ同様に作用
するので、両元素の添加量の合計が上記範囲内に入って
いれば、単独に用いても同時に用いても良い。
Mo and Nb are added for the purpose of improving the upsetting limit and lowering the deformation resistance. However, if the content is less than 0.5% by weight, the effect is not seen, and if it exceeds 18% by weight, the deformation resistance increases rather. , 0.5 to 18% by weight. It is considered that this increase in deformation resistance is due to solid solution hardening. Since Mo and Nb act almost in the same manner in the present alloy, they may be used alone or simultaneously as long as the total amount of the two elements is within the above range.

【0014】VおよびSnの範囲を決定するにあたって
はAlおよびMoとNbを前記範囲内で添加した上で、
VおよびSnの添加量を変動させながら冷間鍛造性を評
価することによって行なった。Vは13重量%未満では
据込み限界が低く、19重量%を超えて添加すると変形
抵抗が上昇するので13〜19重量%とした。一方Sn
は0.5 重量%未満になると据え込み限界が極端に低下
し、6重量%を超えて添加すると変形抵抗が上昇するの
で0.5 〜6重量%とした。尚上記据込み限界の低下は焼
入れ時に拡散変態が進行するからであると考えられ、ま
た変形抵抗の上昇は固溶硬化によるものと思われる。
In determining the ranges of V and Sn, Al, Mo and Nb are added within the above ranges,
The evaluation was performed by evaluating the cold forgeability while changing the amounts of V and Sn added. If V is less than 13% by weight, the upsetting limit is low, and if it exceeds 19% by weight, the deformation resistance increases, so V is set to 13 to 19% by weight. On the other hand, Sn
When the content is less than 0.5% by weight, the upsetting limit is extremely lowered. When the content exceeds 6% by weight, the deformation resistance is increased. The lowering of the upsetting limit is considered to be due to the diffusion transformation during quenching, and the increase in deformation resistance is considered to be due to solid solution hardening.

【0015】[0015]

【実施例】表1及び表2に示す種々の組成を有するTi
合金をボタン溶解にて溶製し(各600g)、20mmφ
になるまで1000℃で約50%の熱間鍛造を行なった
後、900℃で10分間保持することによって溶体化処
理を施し水冷を行なった。これより直径16mm,高さ2
4mmの円柱状試験片を切り出し、端面拘束状態で冷間に
おける据込み鍛造を行なった。
EXAMPLES Ti having various compositions shown in Tables 1 and 2 was used.
The alloy is melted by button melting (600 g each), 20 mmφ
After about 50% hot forging was performed at 1000 ° C. until the solution became, a solution treatment was performed by holding at 900 ° C. for 10 minutes, and water cooling was performed. 16mm in diameter and 2 height
A 4 mm cylindrical test piece was cut out and subjected to cold upsetting forging with the end face constrained.

【0016】冷間鍛造性の評価は参考文献[塑性と加
工,第27巻,第304号(1986),568頁「冷
間鍛造用炭素鋼線材の変形抵抗と延性に関するデータシ
ート」]記載の手法に基づいて70%及び80%の変形
抵抗を測定すると共に、80%圧縮したときの割れ発生
の有無を観察して行なった。
The evaluation of cold forgeability is described in the reference document [Plasticity and Working, Vol. 27, No. 304 (1986), p. 568, “Data Sheet on Deformation Resistance and Ductility of Carbon Steel Wire for Cold Forging”]. The deformation resistance of 70% and 80% was measured based on the technique, and the presence or absence of cracking when compressed by 80% was observed.

【0017】また一部の合金に対しては500℃で8時
間保持する時効処理を施して引張試験を行ない、引張強
度及び伸びを測定した。結果は表1及び表2に併記す
る。
Some of the alloys were subjected to an aging treatment at 500 ° C. for 8 hours and subjected to a tensile test to measure tensile strength and elongation. The results are shown in Tables 1 and 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】No.1〜20は各合金成分が本発明範囲に
ある実施例であり、80%の圧縮によっても割れの発生
は見られず、70%及び80%の変形抵抗も比較的低い
値を示している。No.1〜14の実施例については時効
処理後の引張性質を調べたが、引張強度は90kgf/mm2
台と適度であり、伸びも14%以上と高い。
Nos. 1 to 20 are examples in which each alloy component is within the range of the present invention. No cracking is observed even at 80% compression, and the deformation resistance at 70% and 80% is relatively low. Is shown. For the examples of Nos. 1 to 14, the tensile properties after the aging treatment were examined, and the tensile strength was 90 kgf / mm 2.
The table is moderate, and the elongation is as high as 14% or more.

【0021】No.21〜36は合金成分のいずれかが本
発明範囲をはずれた場合の比較例であり、下記の様に冷
間加工性若しくは時効処理後の引張強度の点で劣ること
がわかる。尚表1では80%の圧縮で割れが発生した場
合は変形抵抗が測定できないので空欄にしている。No.
21,22はMo,Nbの添加量が少ない場合の比較例
であり、80%の圧縮で割れが発生しており、変形抵抗
は測定不可能になっている。
Nos. 21 to 36 are comparative examples in which one of the alloy components is out of the range of the present invention, and it is found that the alloy is inferior in cold workability or tensile strength after aging treatment as described below. . In Table 1, when a crack occurs at a compression of 80%, the deformation resistance cannot be measured. No.
Reference numerals 21 and 22 are comparative examples in which the amounts of Mo and Nb added are small. Cracks are generated by 80% compression, and the deformation resistance cannot be measured.

【0022】No.23〜25はMo,Nbの添加量が多
過ぎる場合の比較例であり、変形抵抗が高い。No.2
6,27はAlの含有量が少ない場合の比較例であり、
時効処理後の引張強さが低い。No.28,29はAlの
含有量が多い場合の比較例であり、80%の圧縮によっ
て割れが発生すると共に時効処理後の伸びが7%以下と
著しく低い。No.30はSn量が少ない場合の比較例で
あり、80%の圧縮によって割れが発生している。一方
No.31はSn量が多い場合の比較例であり、70%及
び80%での変形抵抗が著しく高い。No.32はVの添
加量が少ない場合の比較例であり、80%の圧縮によっ
て割れが発生している。これに対してNo.33はVの添
加量が多い場合の比較例であり、70%及び80%の変
形抵抗が高い。No.34〜36はMo若しくはNbに代
わってFe若しくはCrが添加された場合の比較例であ
り、いずれも変形抵抗が著しく高い。
Nos. 23 to 25 are comparative examples in which the added amounts of Mo and Nb are too large, and have high deformation resistance. No.2
6 and 27 are comparative examples when the content of Al is small,
Low tensile strength after aging treatment. Nos. 28 and 29 are comparative examples in which the content of Al is large. Cracks are generated by 80% compression, and the elongation after aging treatment is remarkably low at 7% or less. No. 30 is a comparative example in which the amount of Sn is small, and cracks are generated by 80% compression. On the other hand, No. 31 is a comparative example in which the amount of Sn is large, and the deformation resistance at 70% and 80% is remarkably high. No. 32 is a comparative example when the added amount of V is small, and cracks are generated by 80% compression. On the other hand, No. 33 is a comparative example in which the added amount of V is large, and the deformation resistance of 70% and 80% is high. Nos. 34 to 36 are comparative examples in which Fe or Cr is added instead of Mo or Nb, and all have significantly high deformation resistance.

【0023】[0023]

【発明の効果】本発明は以上の様に構成されているの
で、既存のβ型Ti合金よりも変形抵抗が低く、しかも
80%までの据込み鍛造が可能なTi合金を提供するこ
とが可能となった。
As described above, according to the present invention, it is possible to provide a Ti alloy having lower deformation resistance than existing β-type Ti alloys and capable of upsetting forging up to 80%. It became.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Moおよび/またはNb:0.5 〜18重
量%,V:13〜19重量%,Al:0.5 〜6重量%,
Sn:0.5 〜6重量%を含有し、残部がTiおよび不可
避不純物からなることを特徴とする冷間鍛造性に優れた
Ti合金。
1. Mo and / or Nb: 0.5 to 18% by weight, V: 13 to 19% by weight, Al: 0.5 to 6% by weight,
Sn: a Ti alloy containing 0.5 to 6% by weight, with the balance being Ti and inevitable impurities, and having excellent cold forgeability.
JP3908991A 1990-02-09 1991-02-08 Ti alloy excellent in cold forgeability Expired - Fee Related JP2936754B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-31060 1990-02-09
JP3106090 1990-02-09

Publications (2)

Publication Number Publication Date
JPH04214830A JPH04214830A (en) 1992-08-05
JP2936754B2 true JP2936754B2 (en) 1999-08-23

Family

ID=12320934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3908991A Expired - Fee Related JP2936754B2 (en) 1990-02-09 1991-02-08 Ti alloy excellent in cold forgeability

Country Status (1)

Country Link
JP (1) JP2936754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130209824A1 (en) * 2012-02-15 2013-08-15 Rti International Metals, Inc. Titanium alloys

Also Published As

Publication number Publication date
JPH04214830A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
JP4454492B2 (en) α-β Ti-Al-V-Mo-Fe alloy
JP5046178B2 (en) Magnesium alloy material and manufacturing method thereof
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP3076696B2 (en) α + β type titanium alloy
EP4148155A1 (en) High temperature titanium alloys
RU2346070C2 (en) High-strength titanium alloy
JPWO2015156356A1 (en) Α + β type titanium alloy cold-rolled annealed sheet having high strength and high Young's modulus and method for producing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP2859102B2 (en) Metastable β titanium alloy
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JPH0770676A (en) Alpha+beta type titanium alloy
JP2936754B2 (en) Ti alloy excellent in cold forgeability
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
JP2000319742A (en) Aluminum alloy extruded material with excellent crushing characteristic in axial direction
US20080199350A1 (en) Metastable beta-titanium alloy
US2864697A (en) Titanium-vanadium-aluminum alloys
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JP4263987B2 (en) High-strength β-type titanium alloy
US10982304B2 (en) Heat-resistant alloy for hearth metal member
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
US2372546A (en) Zinc base alloy
JPS58100654A (en) Aluminum alloy for casting with superior heat resistance
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JP2001158943A (en) Heat resistant bolt

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

LAPS Cancellation because of no payment of annual fees