JP2933148B2 - Method for manufacturing diffusion furnace member for semiconductor - Google Patents

Method for manufacturing diffusion furnace member for semiconductor

Info

Publication number
JP2933148B2
JP2933148B2 JP3253501A JP25350191A JP2933148B2 JP 2933148 B2 JP2933148 B2 JP 2933148B2 JP 3253501 A JP3253501 A JP 3253501A JP 25350191 A JP25350191 A JP 25350191A JP 2933148 B2 JP2933148 B2 JP 2933148B2
Authority
JP
Japan
Prior art keywords
sic
diffusion furnace
furnace member
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3253501A
Other languages
Japanese (ja)
Other versions
JPH0594957A (en
Inventor
美治 茅根
房雄 藤田
和明 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP3253501A priority Critical patent/JP2933148B2/en
Publication of JPH0594957A publication Critical patent/JPH0594957A/en
Application granted granted Critical
Publication of JP2933148B2 publication Critical patent/JP2933148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体用拡散炉部材の製
造方法に係り、特に、耐熱衝撃性、耐汚染性に優れ、軽
量で低熱容量の炭化珪素(SiC)製半導体用拡散炉部
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a diffusion furnace member for a semiconductor .
More particularly, the present invention relates to a method of manufacturing a light-weight, low-heat-capacity diffusion furnace member made of silicon carbide (SiC) for semiconductors having excellent thermal shock resistance and contamination resistance.

【0002】[0002]

【従来の技術】拡散炉は、Si単結晶ウェハを高温に加
熱して不純物をドーピングしたり、酸化膜を形成する工
程で用いられるものであり、半導体デバイスの製造工程
のなかでも最も基本的な設備である。
2. Description of the Related Art A diffusion furnace is used in a process of doping impurities or forming an oxide film by heating a Si single crystal wafer to a high temperature, and is the most basic in a semiconductor device manufacturing process. Equipment.

【0003】近年、半導体についても高集積度化が進
み、拡散炉に用いられる部材、例えば、プロセスチュー
ブ、ライナーチューブ、ウェハボート、マザーボート、
パドル等の半導体用拡散炉部材についても高純度化が必
要とされると共に、Siウェハの大口径化に伴う拡散炉
部材の大型化、高強度化が必要とされるようになり、S
iC製高特性半導体用拡散炉部材の出現が望まれてい
る。
[0003] In recent years, the degree of integration of semiconductors has also increased, and members used in diffusion furnaces, such as process tubes, liner tubes, wafer boats, mother boats,
The diffusion furnace members for semiconductors such as paddles are required to be highly purified, and the diffusion furnace members are required to be large-sized and high-strength due to the large diameter of the Si wafer.
The emergence of a high-performance semiconductor diffusion furnace member made of iC is desired.

【0004】従来、SiC系拡散炉部材としては、次の
ようなものが提案されている。
Conventionally, the following materials have been proposed as SiC-based diffusion furnace members.

【0005】 再結晶SiCからなる基材の内外面に
SiC被膜を形成するもの(特開昭59−18962
2)。この構成により、再結晶SiC単独のものに比べ
て、内部酸化を防止することができる。また、Siを含
有しないことから、Si−SiC質のものに比べて、S
iによる不純物の拡散を抑制することができる。
A method in which a SiC coating is formed on the inner and outer surfaces of a substrate made of recrystallized SiC (Japanese Patent Laid-Open No. 59-18962)
2). With this configuration, internal oxidation can be prevented as compared with the case where recrystallized SiC is used alone. In addition, since it does not contain Si, it has a higher S content than Si-SiC materials.
i can suppress diffusion of impurities.

【0006】 再結晶SiCにSiを含浸したSi−
SiC質基材に、10〜500μm厚さの緻密なSiC
被膜を形成したもの(特公昭61−20128)。この
構成により、SiC被膜がないSi−SiC質のものと
比べてHClガスやHF−HNO3溶液による洗浄に対
して耐洗浄性が向上する。
[0006] Si-impregnated with re-crystallized SiC impregnated with Si
Dense SiC with a thickness of 10-500 μm on SiC substrate
One with a coating (Japanese Patent Publication No. 61-20128). With this configuration, the cleaning resistance with respect to cleaning with HCl gas or HF-HNO 3 solution is improved as compared with a Si-SiC material having no SiC coating.

【0007】 チューブ、パドル等の拡散炉部材をS
i−SiC質で構成したもの(特公昭54−1082
5)。
A diffusion furnace member such as a tube and a paddle is made of S
Those made of i-SiC (Japanese Patent Publication No. 54-1082)
5).

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、チュー
ブ、ボート等の拡散炉部材として本質的に求められるべ
き特性について検討を重ねた結果、特に、高純度、高強
度、大型拡散炉部材として、次のような特性が必要とさ
れることを知見した。
SUMMARY OF THE INVENTION The inventors of the present invention have studied the characteristics that are essentially required for diffusion furnace members such as tubes and boats, and as a result, have found that, in particular, high-purity, high-strength, large-size diffusion furnace members. It was found that the following characteristics were required.

【0009】(1) 昇降温に耐え得る熱衝撃に対する耐久
性に優れること。 (2) 高温における使用に際して、不純物を外部に放出す
ることがなく(拡散障壁)、耐汚染性に優れること。 (3) 軽量でハンドリング性に優れること。 (4) 熱容量が小さく、加熱し易いこと。
(1) It has excellent durability against thermal shock that can withstand temperature rise and fall. (2) When used at high temperatures, impurities should not be released to the outside (diffusion barrier) and have excellent contamination resistance. (3) Light weight and excellent handling. (4) Heat capacity is small and heating is easy.

【0010】しかしながら、従来において、上記特性を
すべて満足する拡散炉部材は提供されていない。例え
ば、前記の拡散炉部材では、上記(1) 〜(4) の特性の
改善について全く触れられておらず、わずかに不純物の
拡散の面で、Siの悪作用を述べているが、他の特性を
満足し得ない。また、,の拡散炉部材でも上記特性
を満たすことはできない。
However, a diffusion furnace member satisfying all the above characteristics has not been provided. For example, in the above-mentioned diffusion furnace member, the improvement of the characteristics of the above (1) to (4) is not mentioned at all, and the adverse effect of Si is described slightly in terms of diffusion of impurities. The characteristics cannot be satisfied. Further, the above characteristics cannot be satisfied even with the diffusion furnace members of (1) and (2).

【0011】本発明は上記従来の問題点を解決し、耐熱
衝撃性、耐汚染性に優れ、軽量で熱容量の小さい高特性
半導体用拡散炉部材の製造方法を提供することを目的と
する。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method of manufacturing a high-performance semiconductor diffusion furnace member which is excellent in thermal shock resistance and contamination resistance, lightweight and has a small heat capacity.

【0012】[0012]

【課題を解決するための手段】本発明の半導体用拡散炉
部材の製造方法は、平均気孔径が20〜200μm、気
孔率12〜70%の多孔質SiC基体の表面層に、該多
孔質炭化珪素基体の表面から深さ方向に化学蒸着法によ
り炭化珪素を浸透させることにより厚さ10〜200μ
mのSiC浸透層形成更に引き続いて、化学蒸着
の条件を調節して、該浸透層上に厚さ10μm以上の化
学蒸着法による緻密SiC被覆層形成ることを特徴
とする。
According to a method of manufacturing a diffusion furnace member for a semiconductor according to the present invention, a porous carbon substrate having a mean pore diameter of 20 to 200 μm and a porosity of 12 to 70% is formed on a surface layer of the porous SiC substrate. 10 to 200 μm in thickness by penetrating silicon carbide by chemical vapor deposition in the depth direction from the surface of the silicon substrate
forming a SiC permeation layer of m, further subsequently, chemical vapor deposition
Conditions by adjusting the characterized that you form a dense SiC coating layer of thickness of 10μm or more chemical vapor deposition on the infiltration layer.

【0013】以下に本発明を図面を参照して詳細に説明
する。第1図は本発明で製造される半導体用拡散炉部材
の一実施例を示す拡大断面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an enlarged sectional view showing one embodiment of a diffusion furnace member for a semiconductor manufactured by the present invention.

【0014】図示の如く、本発明で製造される半導体用
拡散炉部材1は、多孔質SiC基体2の表面層に、Si
C浸透層3が形成され、更に、このSiC浸透層3の上
に緻密SiC被覆層4が形成されているものである。
As shown in the figure, a diffusion furnace member 1 for a semiconductor manufactured according to the present invention has a porous SiC substrate 2 having a surface layer of Si.
A C permeable layer 3 is formed, and a dense SiC coating layer 4 is formed on the SiC permeable layer 3.

【0015】本発明において、多孔質SiC基体は、平
均気孔径が20〜200μm、気孔率12〜70%のも
のである。平均気孔径が200μmを超えると静的強度
が低下する。得られる部材の強度、耐熱衝撃性等の面か
ら、平均気孔径は20〜200μmとする。また、気孔
率が70%を超えると静的強度が低下し、12%未満で
あると耐熱衝撃性が不足する上に、軽量性が損なわれ、
また、熱容量が大きくなる。従って、気孔率は12〜7
0%とする。
In the present invention, the porous SiC substrate has an average pore diameter of 20 to 200 μm and a porosity of 12 to 70%. If the average pore diameter exceeds 200 μm, the static strength decreases. The average pore diameter is set to 20 to 200 μm from the viewpoint of the strength, thermal shock resistance, and the like of the obtained member. When the porosity exceeds 70%, the static strength decreases. When the porosity is less than 12%, the thermal shock resistance is insufficient, and the lightness is impaired.
Also, the heat capacity increases. Therefore, the porosity is 12-7.
0%.

【0016】また、SiC浸透層はその厚さが10〜2
00μmとなるように形成する。SiC浸透層の厚さが
200μmを超えると、基体を多孔質とする効果が低下
し、10μm未満であると基体とSiC浸透層の密着性
が低下する。従って、SiC浸透層の厚さは10〜20
0μmとする。
The thickness of the SiC permeable layer is 10 to 2
It is formed to have a thickness of 00 μm. If the thickness of the SiC permeable layer exceeds 200 μm, the effect of making the substrate porous is reduced, and if it is less than 10 μm, the adhesion between the substrate and the SiC permeable layer is reduced. Therefore, the thickness of the SiC permeation layer is 10-20.
0 μm.

【0017】更に、緻密SiC被覆膜の厚さが10μm
未満であると基体からの不純物の拡散防止効果が不足す
る。不純物拡散防止効果、コスト等の面から、この緻密
SiC被覆膜の厚さは50〜100μmとするのが好ま
しい。
Further, the thickness of the dense SiC coating film is 10 μm.
If it is less than this, the effect of preventing diffusion of impurities from the base will be insufficient. It is preferable that the thickness of the dense SiC coating film is 50 to 100 μm from the viewpoint of the effect of preventing impurity diffusion and cost.

【0018】このような半導体用拡散炉部材は、本発明
の方法に従って、例えば、次のようにして製造される。
即ち、まず、多孔質SiC基体を製造する。この多孔質
SiC基体の製造には、Siの無いSiC単相からなる
多孔質SiCを作製する技術であれば良く、再結晶法、
発泡剤を使用する方法等、いずれの方法を採用しても良
い。いずれの場合も、SiC原料粉末の大きさ、発泡剤
の種類、量、その他各種条件を、前記平均気孔径及び気
孔率となるように適宜調整する。
[0018] Such semi-conductor diffusion furnace member, the present invention
According to the above method, for example, it is manufactured as follows.
That is, first, a porous SiC substrate is manufactured. The production of the porous SiC substrate may be any technique for producing a porous SiC composed of a single phase of SiC without Si, such as a recrystallization method,
Any method such as a method using a foaming agent may be adopted. In any case, the size of the SiC raw material powder, the type and amount of the foaming agent, and other various conditions are appropriately adjusted so that the average pore diameter and the porosity are obtained.

【0019】次いで、得られた多孔質SiC基体の表層
部分の所定厚さ部分に、化学蒸着法によりSiCを浸透
させてSiC浸透層を形成する。この場合、化学蒸着条
件を適宜調整することにより、所望の深さ方向にSiC
を浸透させることができる。
Next, SiC is infiltrated into a predetermined thickness portion of the surface layer portion of the obtained porous SiC substrate by a chemical vapor deposition method to form a SiC permeable layer. In this case, by appropriately adjusting the chemical vapor deposition conditions, SiC can be formed in a desired depth direction.
Can be infiltrated.

【0020】更に、上記SiC浸透層の形成に引き続い
て、化学蒸着の条件を適宜調整することにより、表面に
所定厚さの緻密質SiC被覆層を形成する。
Further, following the formation of the SiC infiltration layer, a dense SiC coating layer having a predetermined thickness is formed on the surface by appropriately adjusting the conditions of chemical vapor deposition.

【0021】[0021]

【作用】本発明に係る半導体用拡散炉部材の基体は、多
孔質SiC基体であるため、熱歪に対する吸収効果が良
好で、耐熱衝撃性に優れる。しかも、軽量で熱容量も小
さい。
Since the substrate of the diffusion furnace member for semiconductor according to the present invention is a porous SiC substrate, it has a good effect of absorbing thermal strain and has excellent thermal shock resistance. Moreover, it is lightweight and has a small heat capacity.

【0022】また、その表層部には化学蒸着法によるS
iC浸透層が形成され、更に緻密SiC被覆層が形成さ
れ、表面は緻密質とされているため、 静的強度が著
しく高い。 熱衝撃時における蒸着膜の耐剥離性に優
れる。 基体からの不純物の拡散が確実に防止され
る。といった効果が奏される。
The surface layer is made of S by chemical vapor deposition.
Since the iC penetration layer is formed, the dense SiC coating layer is further formed, and the surface is made dense, the static strength is extremely high. Excellent exfoliation resistance of deposited film during thermal shock. Diffusion of impurities from the substrate is reliably prevented. Such an effect is produced.

【0023】因みに、従来のSi−SiC質拡散炉部材
では、後掲の実施例1で測定した耐熱衝撃の限度がΔT
=350℃であるのに対し、本発明で製造される拡散炉
部材はΔT=850℃に向上する。また、嵩密度も従来
のSi−SiC質拡散炉部材はρ=2.8程度であるの
に対し、本発明で製造される拡散炉部材はρ=1.8程
度と、約36%の重量減となる。
Incidentally, in the conventional Si-SiC diffusion furnace member, the limit of the thermal shock measured in Example 1 described later is ΔT.
= 350 ° C., whereas the diffusion furnace member manufactured according to the present invention improves to ΔT = 850 ° C. Also, the bulk density of the conventional Si-SiC diffusion furnace member is about ρ = 2.8, whereas the diffusion furnace member manufactured by the present invention has a bulk density of about ρ = 1.8, which is about 36% by weight. Will be reduced.

【0024】[0024]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
The present invention will be described more specifically with reference to the following examples.

【0025】実施例1 嵩密度1.8、気孔率45%、平均気孔径50μmの多
孔質SiC基体に、SiCl4/C38/H2の混合ガス
を用い、ガス条件、温度を調整することにより、20μ
m厚さのSiC浸透層及び10μm厚さの緻密SiC被
覆層を形成してサンプルを作製した。
Example 1 A gas mixture of SiCl 4 / C 3 H 8 / H 2 was used for a porous SiC substrate having a bulk density of 1.8, a porosity of 45%, and an average pore diameter of 50 μm, and gas conditions and temperature were adjusted. By doing, 20μ
A sample was prepared by forming a m-thick SiC permeation layer and a 10 μm-thick dense SiC coating layer.

【0026】得られたサンプルを用い、常温において4
点曲げ試験を行なった。また、熱衝撃(各温度に保持し
た後に水中急冷した時の温度差ΔTによる熱衝撃。従っ
て、常温における測定はΔT=0である。)を与えた後
に4点曲げ試験を行ない、結果を第2図に示した(No.
1)。なお、4点曲げ試験は、JIS R1601に基
き、3×4×40mmの曲げ試験片について行なった。
The obtained sample was used at room temperature for 4 hours.
A point bending test was performed. Further, a 4-point bending test was performed after applying a thermal shock (a thermal shock due to a temperature difference ΔT when quenching in water after holding at each temperature. Therefore, the measurement at room temperature is ΔT = 0). As shown in Fig. 2 (No.
1). The four-point bending test was performed on a 3 × 4 × 40 mm bending test piece based on JIS R1601.

【0027】同様に、SiC浸透層及びSiC被覆層を
全く形成していない多孔質SiC基体(No. 2)、Si
C浸透層(厚さ20μm)及びSiC被覆層(厚さ10
0μm)を形成したもの(No. 3)及び従来のSi−S
iC質基材(No. 4)について4点曲げ試験を行ない、
結果を第2図に示した。
Similarly, a porous SiC substrate (No. 2) having no SiC permeable layer and no SiC coating layer formed thereon,
C permeation layer (thickness: 20 μm) and SiC coating layer (thickness: 10 μm)
0 μm) (No. 3) and conventional Si—S
A four-point bending test was performed on the iC substrate (No. 4).
The results are shown in FIG.

【0028】第2図より、本発明の拡散炉部材の製造方
により、静的強度が大幅に向上されると共に、耐熱衝
撃性も著しく改善されたことが明らかである。
FIG. 2 shows that the method of manufacturing the diffusion furnace member according to the present invention.
It is clear that the method significantly improved the static strength and also significantly improved the thermal shock resistance.

【0029】実施例2 外径280mm、肉厚6mm、長さ1200mmの縦型
プロセスチューブを、従来のSi−SiC質基材、本発
明に係る部材(平均気孔径50μm、気孔率40%の多
孔質SiC基体に、厚さ20μmのSiC浸透層及び厚
さ50μmのSiC被覆層を形成したもの)を用いてそ
れぞれ作製した。
Example 2 A vertical process tube having an outer diameter of 280 mm, a wall thickness of 6 mm, and a length of 1200 mm was connected to a conventional Si-SiC substrate, a member according to the present invention (porous material having an average pore diameter of 50 μm and a porosity of 40%). Using a porous SiC substrate having a 20 μm thick SiC permeable layer and a 50 μm thick SiC coating layer formed thereon.

【0030】次に、予め900℃に設定された加熱炉の
中に、各チューブを入れ、300mm/分の速度で加熱
した。
Next, each tube was placed in a heating furnace set at 900 ° C. in advance, and heated at a speed of 300 mm / min.

【0031】その結果、従来のものは天井エッジ部にク
ラックが発生したが、本発明によるものはクラックは全
く発生しなかった。
As a result, cracks occurred at the edge of the ceiling in the conventional device, but no cracks occurred in the device according to the present invention.

【0032】[0032]

【発明の効果】以上詳述した通り、本発明の方法により
製造される半導体用拡散炉部材は、内部多孔質、表面緻
密質のSiCよりなり、しかも、表面の緻密SiC被覆
層と内部の多孔質SiC基体とは、SiC含浸層を介し
て強固に一体化されるため、 (1) 昇降温に耐え得る熱衝撃に対する耐久性に著しく優
れる。 (2) 高温における使用に際して、不純物を外部に放出す
ることがなく(拡散障壁)、耐汚染性に優れる。 (3) 軽量でハンドリング性に優れる。 (4) 熱容量が小さく、加熱し易い。という要求特性をす
べて満足する高特性拡散炉部材である。
As described in detail above, the method of the present invention
The manufactured diffusion furnace member for semiconductor is made of internal porous and dense surface SiC, and the surface dense SiC coating layer and the internal porous SiC substrate are firmly integrated via the SiC impregnated layer. Therefore, (1) it is extremely excellent in durability against thermal shock that can withstand temperature rise and fall. (2) When used at high temperatures, it does not release impurities to the outside (diffusion barrier) and has excellent contamination resistance. (3) Light weight and excellent handling. (4) Heat capacity is small and easy to heat. It is a high-performance diffusion furnace member that satisfies all the required characteristics.

【0033】本発明で製造される半導体用拡散炉部材
は、耐熱衝撃性、耐汚染性に優れ、軽量で低熱容量であ
ることから、プロセスチューブ、ライナーチューブ、ウ
ェハボート、マザーボート、パドル、その他の各種半導
体用拡散炉部材として、特に、高純度、大型、高強度拡
散炉部材として工業的に極めて有用である。
The diffusion furnace member for semiconductor manufactured by the present invention is excellent in thermal shock resistance and contamination resistance, light weight and low heat capacity, so that it can be used for process tubes, liner tubes, wafer boats, mother boats, paddles, etc. Is extremely industrially very useful as a diffusion furnace member for various semiconductors, particularly as a high-purity, large-size, high-strength diffusion furnace member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は本発明の方法で製造される半導体用拡
散炉部材の一実施例を示す拡大断面図である。
FIG. 1 is an enlarged sectional view showing one embodiment of a diffusion furnace member for a semiconductor manufactured by a method of the present invention.

【図2】第2図は実施例1の結果を示すグラフである。FIG. 2 is a graph showing the results of Example 1.

【符号の説明】[Explanation of symbols]

1 半導体用拡散炉部材 2 多孔質SiC基体 3 SiC浸透層 4 緻密SiC被覆層 DESCRIPTION OF SYMBOLS 1 Diffusion furnace member for semiconductors 2 Porous SiC base 3 SiC permeable layer 4 Dense SiC coating layer

フロントページの続き (72)発明者 宮崎 和明 岡山県玉野市玉3丁目1番1号 三井造 船株式会社玉野事業所内 (56)参考文献 特開 昭63−85076(JP,A) 特開 昭58−84427(JP,A) 特開 昭59−189622(JP,A) 特開 昭61−274318(JP,A) 特開 昭53−114678(JP,A) 特開 平3−82117(JP,A)Continuation of front page (72) Inventor Kazuaki Miyazaki 3-1-1, Tamano, Tamano-shi, Okayama Mitsui Engineering & Shipbuilding Co., Ltd. Tamano Works (56) References JP-A-63-85076 (JP, A) JP-A Sho 58-84427 (JP, A) JP-A-59-189622 (JP, A) JP-A-61-274318 (JP, A) JP-A-53-114678 (JP, A) JP-A-3-82117 (JP, A A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均気孔径が20〜200μm、気孔率
12〜70%の多孔質炭化珪素基体の表面層に、該多孔
質炭化珪素基体の表面から深さ方向に化学蒸着法により
炭化珪素を浸透させることにより厚さ10〜200μm
の炭化珪素浸透層形成更に引き続いて、化学蒸着
の条件を調節して、該浸透層上に厚さ10μm以上の化
学蒸着法による緻密炭化珪素被覆層形成ることを特
徴とする半導体用拡散炉部材の製造方法
1. A method in which silicon carbide is deposited on a surface layer of a porous silicon carbide substrate having an average pore diameter of 20 to 200 μm and a porosity of 12 to 70% by a chemical vapor deposition method in a depth direction from the surface of the porous silicon carbide substrate. 10-200μm thickness by infiltration
Of forming a silicon carbide permeation layer, further subsequently, chemical vapor deposition
Conditions by adjusting the method of manufacturing a semiconductor diffusion furnace member characterized that you form a dense silicon carbide coating layer by chemical vapor deposition or the thickness 10μm of the said penetration layer.
JP3253501A 1991-10-01 1991-10-01 Method for manufacturing diffusion furnace member for semiconductor Expired - Fee Related JP2933148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253501A JP2933148B2 (en) 1991-10-01 1991-10-01 Method for manufacturing diffusion furnace member for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253501A JP2933148B2 (en) 1991-10-01 1991-10-01 Method for manufacturing diffusion furnace member for semiconductor

Publications (2)

Publication Number Publication Date
JPH0594957A JPH0594957A (en) 1993-04-16
JP2933148B2 true JP2933148B2 (en) 1999-08-09

Family

ID=17252262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253501A Expired - Fee Related JP2933148B2 (en) 1991-10-01 1991-10-01 Method for manufacturing diffusion furnace member for semiconductor

Country Status (1)

Country Link
JP (1) JP2933148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593922B1 (en) * 2014-12-30 2016-02-15 하나머티리얼즈(주) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011043427A1 (en) * 2009-10-09 2013-03-04 信越化学工業株式会社 Method for densifying porous silicon carbide substrate
KR101138440B1 (en) * 2010-06-17 2012-04-26 투비엠테크 주식회사 Porous body with silicon carbide enhancement layer and fabrication method thereof
JP6506093B2 (en) * 2015-04-28 2019-04-24 イビデン株式会社 Ceramic structure and method of manufacturing ceramic structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884427A (en) * 1981-11-13 1983-05-20 Toshiba Corp Furnace tube for forming semiconductor-diffused layer
JPS6385076A (en) * 1986-09-26 1988-04-15 宇部興産株式会社 Tool for heating silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593922B1 (en) * 2014-12-30 2016-02-15 하나머티리얼즈(주) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof

Also Published As

Publication number Publication date
JPH0594957A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US5665260A (en) Ceramic electrostatic chuck with built-in heater
EP0308695B1 (en) A component for producing semi-conductor devices and process of producing it
JP2933148B2 (en) Method for manufacturing diffusion furnace member for semiconductor
WO2002060834A1 (en) Joining methode for high-purity ceramic parts
KR100500495B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
TWI667700B (en) Making semiconductor bodies from molten material using a free-standing interposer sheet
TWI288454B (en) Wafer carrier having improved processing characteristics
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
WO2016140125A1 (en) Environment-resistant coating
JPS62189726A (en) Susceptor for vapor growth of semiconductor
JP6042273B2 (en) How to use SiC film forming C / C composite
JP3087070B1 (en) Single crystal SiC composite material for semiconductor device production and method for producing the same
JPH0686352B2 (en) Crucible for manufacturing high-purity semiconductor single crystal
JP2000277525A (en) Silicon wafer for semiconductor and its manufacture
JP2855458B2 (en) Processing material for semiconductor
JP2687354B2 (en) Method for manufacturing polysilicon member having SiC coating
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JP2009107864A (en) Parts for manufacturing semiconductor
JPS59191327A (en) Heat-treatment jig
JPH06135793A (en) Double-layered ceramic crucible
JPH0682624B2 (en) Structural material with SiC coating
JP6558666B2 (en) Manufacturing method of joined body and joined body
JP2622609B2 (en) Sic ceramic products for semiconductor manufacturing
JPH05124864A (en) Production of high purity silicon carbide body
JP2001278675A (en) SINTERED SiC CONJUGATE AND METHOD FOR MANUFACTURING PARTS FOR SEMICONDUCTOR USING IT

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees