JP2928648B2 - Method of manufacturing substrate for semiconductor device - Google Patents

Method of manufacturing substrate for semiconductor device

Info

Publication number
JP2928648B2
JP2928648B2 JP2492591A JP2492591A JP2928648B2 JP 2928648 B2 JP2928648 B2 JP 2928648B2 JP 2492591 A JP2492591 A JP 2492591A JP 2492591 A JP2492591 A JP 2492591A JP 2928648 B2 JP2928648 B2 JP 2928648B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
semiconductor device
aluminum nitride
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2492591A
Other languages
Japanese (ja)
Other versions
JPH04264757A (en
Inventor
泰隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2492591A priority Critical patent/JP2928648B2/en
Publication of JPH04264757A publication Critical patent/JPH04264757A/en
Application granted granted Critical
Publication of JP2928648B2 publication Critical patent/JP2928648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に使用される
窒化アルミニウム製基板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum nitride substrate used for a semiconductor device.

【0002】[0002]

【従来の技術】従来、例えば半導体装置の基板には、熱
伝導性が良いという理由で窒化アルミニウムが使用され
ている。
2. Description of the Related Art Conventionally, for example, aluminum nitride is used for a substrate of a semiconductor device because of its good thermal conductivity.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記窒化ア
ルミニウム自体は透明に近い白色を呈しており、配線基
板材料としては適したものではなかった。即ち、このよ
うな透明に近い色の窒化アルミニウムの焼結体では、自
動化された配線基板の製造工程において、光センサ等に
よる配線基板の位置の認識が困難になる。その結果、製
造工程での誤動作が生じ易く、製品の歩留まりが悪化す
るという問題があった。
However, the aluminum nitride itself has a nearly transparent white color and is not suitable as a wiring board material. That is, in such a sintered body of aluminum nitride having a color close to transparency, it is difficult to recognize the position of the wiring board by an optical sensor or the like in an automated manufacturing process of the wiring board. As a result, there is a problem that a malfunction is likely to occur in the manufacturing process, and the yield of products is deteriorated.

【0004】この対策としては、窒化アルミニウムに不
純物を混入することにより着色を行うという方法や、基
板の表面に有機剤系インクを塗布して有色の膜を形成す
る方法等が考えられるが、何れの場合も窒化アルミニウ
ムが本来有する放熱効果を損ない易く、有効な方法であ
るとはいえなかった。本発明は上記の問題点に鑑みて成
されたものであり、その目的は、窒化アルミニウムから
なる基板の本来の放熱性を失うことなく、その表面に有
色の薄膜を形成することが可能な半導体装置用基板の製
造方法を提供することにある。
[0004] As a countermeasure, a method of coloring by mixing impurities into aluminum nitride, a method of applying an organic agent-based ink to the surface of a substrate to form a colored film, and the like can be considered. In the case of (1), the heat dissipation effect inherent to aluminum nitride is easily lost, and it cannot be said that this is an effective method. The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor capable of forming a colored thin film on its surface without losing the original heat dissipation of a substrate made of aluminum nitride. An object of the present invention is to provide a method for manufacturing a device substrate.

【0005】[0005]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明では、先ず熱伝導性の良い窒化アル
ミニウムにより基板を形成する。次に、その基板の表面
にスパッタリングによって10重量%未満の遷移金属を
含有するセラミックス材料からなる薄膜を形成する。そ
して、その薄膜にアニ−ル処理を行う。
In order to achieve the above object, according to the present invention, first, a substrate is formed of aluminum nitride having good thermal conductivity. Next, a thin film made of a ceramic material containing less than 10% by weight of a transition metal is formed on the surface of the substrate by sputtering. Then, an annealing treatment is performed on the thin film.

【0006】従って上記の方法によると、スパッタリン
グにより、先ず基板表面に遷移金属とセラミックス材料
との非結晶質からなる有色(灰白色)の薄膜が形成され
る。そして、続くアニ−ル処理により薄膜の結晶化が促
進され、灰白色の薄膜が灰黒色を呈するようになる。こ
の薄膜はそれ自身の放熱性が優れているため、窒化アル
ミニウムからなる基板本来の放熱効果が損なわれること
はない。
Therefore, according to the above method, a colored (gray-white) thin film made of an amorphous material of a transition metal and a ceramic material is first formed on the substrate surface by sputtering. Then, crystallization of the thin film is promoted by the subsequent annealing treatment, and the gray-white thin film becomes gray-black. Since this thin film has excellent heat dissipation properties, the original heat dissipation effect of the substrate made of aluminum nitride is not impaired.

【0007】前記アニ−ル処理は1000〜1700℃
で行うことが望ましい。その理由は、この温度が100
0℃未満だとアニール効果が少なく、一方、1700℃
を越えると窒化アルミニウム基板が変形し易くなるから
である。前記遷移金属としては、例えば、ニッケル、
銅、チタン、クロム、鉄、コバルト、バナジウム、ニオ
ビウム、タンタル或いはパラジウムから選択される何れ
か少なくとも一種類以上のものを使用することが好適で
ある。また、この遷移金属の割合が10重量%未満であ
ることが望ましい。10重量%を越えると薄膜自体が金
属化して基板に形成された導体回路を短絡させる原因と
なり、製品の歩留まりが低下するためである。
The annealing treatment is performed at 1000 to 1700 ° C.
It is desirable to perform in. The reason is that this temperature is 100
If it is less than 0 ° C., the annealing effect is small, while 1700 ° C.
This is because, if the ratio exceeds, the aluminum nitride substrate is easily deformed. As the transition metal, for example, nickel,
It is preferable to use at least one selected from copper, titanium, chromium, iron, cobalt, vanadium, niobium, tantalum and palladium. Further, it is desirable that the ratio of the transition metal is less than 10% by weight. If it exceeds 10% by weight, the thin film itself is metallized, which causes a short circuit in the conductor circuit formed on the substrate, and the yield of the product is reduced.

【0008】前記セラミックス材料としては、炭化ケイ
素、窒化ケイ素、或いは窒化ホウ素から選択される何れ
か少なくとも一種類であることが好適である。前記スパ
ッタリングにより形成される薄膜の厚さとしては、0.
1〜10μmであることが望ましい。その理由は、薄膜
の厚さが0.1μmより薄いと、本発明の目的とする、
充分に着色された薄膜を得ることが困難になる。一方、
10μmより厚いと、基板の表面にクラックが発生し易
くなる。
Preferably, the ceramic material is at least one selected from silicon carbide, silicon nitride, and boron nitride. The thickness of the thin film formed by sputtering is set to 0.
Desirably, it is 1 to 10 μm. The reason is that if the thickness of the thin film is less than 0.1 μm,
It becomes difficult to obtain a sufficiently colored thin film. on the other hand,
If the thickness is more than 10 μm, cracks are easily generated on the surface of the substrate.

【0009】[0009]

【実施例】以下に本発明を半導体装置のパッケ−ジに具
体化した一実施例について、図面を参照しながら詳細に
説明する。先ず、予め窒化アルミニウムによって形成さ
れた基板を1をスパッタ装置に装填すると共に、スパッ
タ装置の陰極上にはタ−ゲットとしてのニッケル(N
i)とセラミックス材料(SiC)とをそれぞれ別々に
予め載置しておく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a package of a semiconductor device will be described below in detail with reference to the drawings. First, a substrate 1 previously formed of aluminum nitride is loaded into a sputtering apparatus, and nickel (N) as a target is placed on a cathode of the sputtering apparatus.
i) and the ceramic material (SiC) are separately placed in advance.

【0010】そして、真空に保たれたスパッタ装置の中
にアルゴンガスを導入し、同雰囲気中にて前記陰極及び
それに対向する陽極との間に所定の電圧を所定の時間だ
け印加してグロ−放電を起こさせる。そして、この時に
発生するプラズマ中の正イオンを陰極上のタ−ゲット表
面に衝突させてタ−ゲット原子(分子)をはじき出す。
図1に示されるように、はじき出されたタ−ゲット原子
(分子)であるニッケル原子とセラミックス分子とが、
基板1の表面に堆積され、これらの非結晶質である灰白
色の薄膜2を形成する。ここでスパッタリングの条件
は、ニッケルに対する印加電力を100W、セラミック
ス材料に対する印加電力を1KWとし、その印加時間を
1時間とした。更に、薄膜2の表面を1400℃の条件
でアニ−ル処理したところ、薄膜2の結晶化が促進さ
れ、その結果、灰黒色を呈するパッケ−ジ3が得られ
る。
Then, an argon gas is introduced into the sputtering apparatus kept in a vacuum, and a predetermined voltage is applied between the cathode and the anode opposed thereto for a predetermined time in the same atmosphere to grow the glow. Cause discharge. Positive ions in the plasma generated at this time are made to collide with the target surface on the cathode to repel target atoms (molecules).
As shown in FIG. 1, the ejected target atoms (molecules), nickel atoms and ceramic molecules,
These non-crystalline, off-white thin films 2 are deposited on the surface of the substrate 1. Here, the sputtering conditions were as follows: the power applied to nickel was 100 W, the power applied to the ceramic material was 1 KW, and the application time was 1 hour. Furthermore, when the surface of the thin film 2 is annealed at 1400 ° C., crystallization of the thin film 2 is promoted, and as a result, a package 3 having a gray black color is obtained.

【0011】上記のように製造されたパッケ−ジ3で
は、その表面に形成された薄膜2は灰黒色を呈し、その
呈色状態であっても窒化アルミニウム製のパッケ−ジ3
としての優れた放熱効果を何ら損なうことがない。ま
た、パッケ−ジ3の表面は、その上に形成された薄膜2
をアニ−ル処理することによって全体が灰黒色を呈して
いる。そのため、図2に示されるように、薄膜2上に白
色のインクでマーキング4した場合でも確実に認識され
得る。この結果、光センサによって自動化された配線基
板の製造工程においても、誤動作の発生が未然に防止さ
れ、よって製品の歩留まりが向上される。
In the package 3 manufactured as described above, the thin film 2 formed on the surface of the package 3 has a gray-black color, and even in the colored state, the package 3 made of aluminum nitride is used.
The excellent heat dissipation effect is not impaired at all. The surface of the package 3 has a thin film 2 formed thereon.
Is annealed to give a grayish black overall. Therefore, as shown in FIG. 2, even when the marking 4 is made on the thin film 2 with white ink, it can be reliably recognized. As a result, even in the manufacturing process of the wiring board automated by the optical sensor, the occurrence of a malfunction is prevented beforehand, and the product yield is improved.

【0012】[0012]

【発明の効果】本発明によれば、窒化アルミニウムから
なる基板の本来の放熱性を失うことなく、その表面に有
色の薄膜を形成することが可能になるという優れた効果
を奏する。
According to the present invention, there is an excellent effect that a colored thin film can be formed on the surface of the substrate made of aluminum nitride without losing the original heat dissipation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を具体化した一実施例における半導体
装置のパッケ−ジの一部を示す断面図である。
FIG. 1 is a cross-sectional view showing a part of a package of a semiconductor device according to an embodiment of the present invention.

【図2】 図1のパッケ−ジを示す平面図である。FIG. 2 is a plan view showing the package of FIG.

【符号の説明】[Explanation of symbols]

1 基板 2 薄膜 1 Substrate 2 Thin film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化アルミニウム製基板により形成され
た基板(1)の表面に、スパッタリングによって10重
量%未満の遷移金属を含有するセラミックス材料からな
る薄膜(2)を形成した後、その薄膜(2)にアニ−ル
処理を行うことを特徴とする半導体装置用基板の製造方
法。
A thin film (2) made of a ceramic material containing less than 10% by weight of a transition metal is formed on a surface of a substrate (1) formed of an aluminum nitride substrate by sputtering, and then the thin film (2) is formed. A) a method of manufacturing a substrate for a semiconductor device, wherein an annealing process is performed.
【請求項2】 前記アニ−ル処理は1000〜1700
℃で行うことを特徴とする請求項1記載の半導体装置用
基板の製造方法。
2. The annealing treatment is performed at 1000 to 1700.
2. The method for manufacturing a substrate for a semiconductor device according to claim 1, wherein the method is performed at a temperature of ° C.
JP2492591A 1991-02-19 1991-02-19 Method of manufacturing substrate for semiconductor device Expired - Lifetime JP2928648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2492591A JP2928648B2 (en) 1991-02-19 1991-02-19 Method of manufacturing substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2492591A JP2928648B2 (en) 1991-02-19 1991-02-19 Method of manufacturing substrate for semiconductor device

Publications (2)

Publication Number Publication Date
JPH04264757A JPH04264757A (en) 1992-09-21
JP2928648B2 true JP2928648B2 (en) 1999-08-03

Family

ID=12151705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2492591A Expired - Lifetime JP2928648B2 (en) 1991-02-19 1991-02-19 Method of manufacturing substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JP2928648B2 (en)

Also Published As

Publication number Publication date
JPH04264757A (en) 1992-09-21

Similar Documents

Publication Publication Date Title
EP0167446A2 (en) Semiconductor material and substrate
JPS63308324A (en) Method of forming thin film assembly and semiconductor device
USRE27287E (en) Method op fabricating semiconductor contacts
Zeng et al. Processing and encapsulation of silver patterns by using reactive ion etch and ammonia anneal
EP0132323A3 (en) Sputtered semiconducting films of catenated phosphorus material
KR920006533A (en) Plasma Annealing Method for Improving Barrier Properties of Deposited Thin Films
JP2928648B2 (en) Method of manufacturing substrate for semiconductor device
KR940010240A (en) Method for manufacturing conductive layer with maximum surface area
GB1343843A (en) Electrical resistance element wirh a semiconductor overlay and method of fabrication thereof
JP2804133B2 (en) Method for manufacturing substrate for semiconductor device
Waits Silicide resistors for integrated circuits
KR102511735B1 (en) Field effect transistor and preparing method of the same
JPS6476736A (en) Manufacture of semiconductor device
KR950006345B1 (en) Aluminium metal wiring method using wn film as a barrier layer
JPH05214516A (en) Manufacture of thin metallic film excellent in transferability
Singh et al. Structural and material properties of tungsten silicide formed at low temperature
JP3831433B2 (en) Transparent conductive film and method for producing the same
JP3986178B2 (en) Al thin film forming method
JPH05132758A (en) Manufacture of metallic thin film excellent in transferrability
JPS5910225A (en) Formation of metal cilicide
KR0144166B1 (en) Method of forming metal nitride film
JPS6130018A (en) Thick film capacitor and method of producing same
US5008215A (en) Process for preparing high sensitivity semiconductive magnetoresistance element
JPH0391240A (en) Method of forming metallized electrode wiring
JPH0688220A (en) Metal film having large particle size and method for coating thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110514

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110514