JP2924741B2 - Semiconductor device with current detector - Google Patents

Semiconductor device with current detector

Info

Publication number
JP2924741B2
JP2924741B2 JP7282948A JP28294895A JP2924741B2 JP 2924741 B2 JP2924741 B2 JP 2924741B2 JP 7282948 A JP7282948 A JP 7282948A JP 28294895 A JP28294895 A JP 28294895A JP 2924741 B2 JP2924741 B2 JP 2924741B2
Authority
JP
Japan
Prior art keywords
current
semiconductor device
film
semiconductor
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7282948A
Other languages
Japanese (ja)
Other versions
JPH09127161A (en
Inventor
裕治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7282948A priority Critical patent/JP2924741B2/en
Publication of JPH09127161A publication Critical patent/JPH09127161A/en
Application granted granted Critical
Publication of JP2924741B2 publication Critical patent/JP2924741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負荷を電流駆動する
半導体素子と同一ペレット上に形成された電流検出素子
とを有する電流検出器付き半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device with a current detector having a semiconductor element for driving a load with a current and a current detection element formed on the same pellet.

【0002】[0002]

【従来の技術】負荷を電流駆動する半導体素子に流れる
電流値を検出する電流検出素子の従来例としてホール素
子を利用した電流検出器付き半導体装置が知られている
が、図5にそのブロック図を示す。バイポーラトランジ
スタまたはMOSFET21などから成り負荷を電流駆
動する半導体素子は負荷などに接続される出力端子OU
Tおよび半導体素子の基準電位となる接地端子GNDに
接続され、出力端子OUTおよび接地端子GNDの間の
電流路36近傍にホール素子26が設けられている。半
導体装置25の入力端子INには定電流回路24と制御
回路22が接続され、定電流回路24からはホール素子
26に定電流が供給されている。電流路36に流れる電
流に従いホール素子26にて発生する電圧は制御回路2
2に入力するよう接続され、制御回路22はMOSFE
T21の入力信号を制御する構成になっている。
2. Description of the Related Art A semiconductor device with a current detector using a Hall element is known as a conventional example of a current detecting element for detecting a current value flowing in a semiconductor element for driving a load with a current. FIG. Is shown. A semiconductor element composed of a bipolar transistor or a MOSFET 21 for driving a load current is connected to an output terminal OU connected to the load or the like.
The Hall element 26 is provided near the current path 36 between the output terminal OUT and the ground terminal GND, and is connected to T and the ground terminal GND serving as a reference potential of the semiconductor element. A constant current circuit 24 and a control circuit 22 are connected to an input terminal IN of the semiconductor device 25, and a constant current is supplied to the Hall element 26 from the constant current circuit 24. The voltage generated by the Hall element 26 according to the current flowing through the current path 36 is controlled by the control circuit 2
2 and the control circuit 22
It is configured to control the input signal of T21.

【0003】ホール素子26近傍のペレット構成につい
ては、特開昭61−97574号公報にあるが、それに
ついて図6(a),(b)に示す。出力端子OUTと接
地端子GNDの間の電流路36を図6に示すようにペレ
ット表面の絶縁膜35上に数10μm厚のAg層により
C字状に形成してある。C字状に形成した電流路36で
囲まれた領域にはエミッタ電極33bおよびコレクタ電
極34bが形成され、エミッタ電極33bとコレクタ電
極34bを結ぶ線の両側にn+ 拡散領域から成る一対の
ホール領域にそれぞれ接続されるホール電極37−1,
37−2が形成してある。ここで、コレクタ電極34b
は定電流回路24に、エミッタ電極33bは接地端子G
NDに接続され、一対のホール電極37−1,37−2
の他端は制御回路22に接続されている。
The configuration of the pellet in the vicinity of the Hall element 26 is disclosed in Japanese Patent Application Laid-Open No. 61-97574, which is shown in FIGS. 6 (a) and 6 (b). As shown in FIG. 6, a current path 36 between the output terminal OUT and the ground terminal GND is formed in a C-shape by an Ag layer having a thickness of several tens of μm on the insulating film 35 on the surface of the pellet. An emitter electrode 33b and a collector electrode 34b are formed in a region surrounded by the C-shaped current path 36, and a pair of hole regions formed of n + diffusion regions are provided on both sides of a line connecting the emitter electrode 33b and the collector electrode 34b. , The hole electrodes 37-1, which are respectively connected to
37-2 are formed. Here, the collector electrode 34b
Is the constant current circuit 24, and the emitter electrode 33b is the ground terminal G.
ND, and a pair of hole electrodes 37-1, 37-2.
Is connected to the control circuit 22.

【0004】同一ペレット上のMOSFET21から電
気的に分離された約10μm厚のN- 型エピタキシャル
層31にはP型拡散領域から成るベース領域32aが形
成され、ベース領域32aにはN+ 型拡散領域から成る
エミッタ領域33aが形成されている。また、N- 型エ
ピタキシャル層31にはN+ 型拡散領域から成るコレク
タ領域34bも形成されている。
A base region 32a composed of a P-type diffusion region is formed in an approximately 10 μm thick N -type epitaxial layer 31 electrically separated from the MOSFET 21 on the same pellet, and an N + -type diffusion region is formed in the base region 32a. Is formed. The N type epitaxial layer 31 also has a collector region 34b formed of an N + type diffusion region.

【0005】この構成の電流検出器付き半導体装置に例
えば数Aの電流を電流方向39で電流路36に流したと
き、C字状の電流路36の内側では数105 /4π(A
/m)の磁界が磁界方向38に発生しており、C字状の
電流路36で囲まれた領域のさし渡し寸法を例えば50
μmとするとコレクタ領域34aからエミッタ領域33
aに数mAの定電流を流しているときホール電極間には
数10mVの電圧が出力される。電流路36を流れる電
流値に相当するホール電圧は制御回路22に入力され、
検出した電流値によりMOSFET21の入力電圧を制
御したりPWM制御を行ったりすることで駆動電流を制
御する。
When a current of several A, for example, is passed through the current path 36 in the current direction 39 through the semiconductor device with the current detector having the above-described configuration, a voltage of several 10 5 / 4π (A) is formed inside the C-shaped current path 36.
/ M) is generated in the direction of the magnetic field 38, and the span of the region surrounded by the C-shaped current path 36 is set to, for example, 50
μm, the collector region 34a to the emitter region 33
When a constant current of several mA flows through a, a voltage of several tens mV is output between the Hall electrodes. The Hall voltage corresponding to the current value flowing through the current path 36 is input to the control circuit 22,
The drive current is controlled by controlling the input voltage of the MOSFET 21 or performing PWM control based on the detected current value.

【0006】[0006]

【発明が解決しようとする課題】図6に示す従来例では
ホール素子のコレクタ領域34aからエミッタ領域33
aに流れる定電流の方向と一対のホール電極37−1,
37−2を結ぶ方向およびホール素子への印加磁界の磁
界方向38は互いに直交する方向に配置するとき最も効
率よくホール電圧が得られるため、ホール素子をペレッ
ト表面に形成しホール素子の周囲にC字状の電流路36
を形成していた。
In the conventional example shown in FIG. 6, the collector region 34a of the Hall element is shifted from the emitter region 33.
a and a pair of hole electrodes 37-1,
Since the Hall voltage can be obtained most efficiently when the direction connecting 37-2 and the magnetic field direction 38 of the magnetic field applied to the Hall element are arranged in directions orthogonal to each other, the Hall element is formed on the surface of the pellet, and C is formed around the Hall element. Current path 36
Had formed.

【0007】ところが、電流路36を引き回すことによ
り半導体装置の出力端子OUTと接地端子GNDの間の
抵抗を増加させる原因になりオン時にMOSFET21
に発生する抵抗または電圧を低減しても半導体装置全体
として低オン抵抗または低電圧にすることが難しくなる
と同時に発熱による温度の増大も生じる問題があった。
また、駆動電流によるMOSFET21とその周辺の発
熱およびホール素子へ流す定電流などによる発熱により
温度の上昇が生じ、検出すべき電流値をあらわすホール
電圧が不安定になる問題もあった。
However, routing the current path 36 causes an increase in the resistance between the output terminal OUT and the ground terminal GND of the semiconductor device.
However, even if the resistance or voltage generated in the semiconductor device is reduced, it is difficult to reduce the on-resistance or the voltage as a whole of the semiconductor device, and at the same time, there is a problem that the temperature is increased by heat generation.
In addition, there is also a problem that the temperature rises due to the heat generated by the MOSFET 21 and its surroundings due to the drive current and the heat generated by the constant current flowing to the Hall element, and the Hall voltage representing the current value to be detected becomes unstable.

【0008】従って本発明の第1の目的は温度上昇を殆
ど伴わずに集積できる電流検出素子を有する電流検出器
付き半導体装置を提供することにある。更に本発明の第
2の目的は電流検出機能の温度依存性の少ない電流検出
器付き半導体装置を提供することにある。
Accordingly, a first object of the present invention is to provide a semiconductor device with a current detector having a current detection element that can be integrated with almost no rise in temperature. A second object of the present invention is to provide a semiconductor device with a current detector having a small temperature dependency of a current detection function.

【0009】[0009]

【課題を解決するための手段】本発明の電流検出器付き
半導体装置は、負荷を電流駆動する半導体素子及び前記
半導体素子に流れる駆動電流を検出する電流検出素子が
同一半導体ペレットに集積されてなる電流検出器付き半
導体装置において、磁性体膜及び導電膜の2層膜からな
る磁気抵抗効果素子とこれに定電流を供給する手段とを
有し、前記駆動電流による磁界に依存する抵抗値を有す
前記磁気抵抗効果素子が前記電流検出素子として前記
半導体素子上に縦積みされているというものである。
A semiconductor device with a current detector according to the present invention comprises a semiconductor element for driving a load with a current and a current detection element for detecting a drive current flowing through the semiconductor element, which are integrated on the same semiconductor pellet. In a semiconductor device with a current detector, a two-layer film of a magnetic film and a conductive film is used.
That a magnetoresistive element and means for supplying it to the constant current, the magnetoresistance effect element having a resistance value that depends on the magnetic field due to the drive current is stacked vertically on the semiconductor device as the current detecting element It is that.

【0010】この場合、半導体素子から駆動電流を取り
出すボンディング線に接続するパッドの近傍に2層膜を
配置することができる。更に、ボンディング線を囲んで
配置された磁気誘導体で形成され一部にギャップを有す
る磁路と、前記ギャップ部に磁気抵抗効果素子を配置す
ることもできる。磁気誘導体としては、Ni−Fe膜を
含んでなるものが1例としてあげられる。
In this case, a two-layer film can be arranged near a pad connected to a bonding line for extracting a drive current from the semiconductor element. Furthermore, it is also possible to arrange a magnetic path formed of a magnetic derivative and surrounding the bonding line and having a gap in a part, and a magnetoresistive element in the gap. As a magnetic derivative, a Ni-Fe film is used.
One example is the one comprising.

【0011】更に又、駆動電流による磁界依存性が互い
に逆極性の一対の磁気抵抗効果素子と、これらの抵抗値
の差を検出する差動増幅器とを設けることもできる。こ
の場合、一対の磁気抵抗効果素子は、磁性体膜と導電膜
の積層順序が互いに逆で、同一方向にそれぞれ定電流を
流すようにすることができる。あるいは、磁性体膜と導
電膜の積層順序が同じで、互いに逆方向にそれぞれ定電
流を流すようにしてもよい。
[0011] Furthermore, it a pair of magneto-resistive element field dependence opposite polarities to each other by the drive current, also be provided a differential amplifier for detecting the difference between these resistance values. In this case, the order of lamination of the magnetic film and the conductive film in the pair of magnetoresistive elements is opposite to each other, and a constant current can flow in the same direction. Alternatively, the magnetic material film and the conductive film may be stacked in the same order, and a constant current may flow in opposite directions.

【0012】半導体素子としては、半導体基板の表面に
接続されるソース電極及び裏面に形成されるドレイン電
極を有する縦型IGFETを使用することができる。
As the semiconductor element, a vertical IGFET having a source electrode connected to the front surface of the semiconductor substrate and a drain electrode formed on the back surface can be used.

【0013】半導体素子と電流検出素子とが同一半導体
ペレットに縦積みされているので、従来例のように駆動
電流を検出するための電流路を引き回す必要がない。
Since the semiconductor element and the current detecting element are vertically stacked on the same semiconductor pellet, there is no need to route a current path for detecting a drive current as in the conventional example.

【0014】逆極性の一対の磁気抵抗効果素子と差動増
幅器とを用いれば、温度による変化を消去できる。
If a pair of magnetoresistive elements having opposite polarities and a differential amplifier are used, a change due to temperature can be eliminated.

【0015】[0015]

【発明の実施の形態】図1は本発明の第1の実施の形態
の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a first embodiment of the present invention.

【0016】本実施の形態は、バイポーラトランジスタ
またはMOSFET21などの半導体素子は負荷などに
接続される出力端子OUTおよび基準電位となる接地端
子GNDに接続され、出力端子OUTおよび接地端子G
NDの間の電流路36近傍に一対の磁気抵抗効果素子1
2−1,12−2が設けられている。入力端子INには
一対の定電流回路24−1,24−2と制御回路22が
接続され、一対の定電流回路24−1,24−2からは
それぞれの磁気抵抗効果素子12−1,12−2に定電
流が供給されている。電流路36に流れる電流に従い磁
気抵抗効果素子12−1,12−2にて発生する電圧は
差動増幅器23に入力され差動演算された信号が制御回
路22に入力するよう接続され、制御増幅器22は負荷
を電流駆動する半導体素子(MOSFET21)の入力
信号を制御する構成になっている。
In this embodiment, a semiconductor element such as a bipolar transistor or MOSFET 21 is connected to an output terminal OUT connected to a load or the like and a ground terminal GND serving as a reference potential.
A pair of magnetoresistive effect elements 1 is provided near the current path 36 between ND.
2-1 and 12-2 are provided. A pair of constant current circuits 24-1 and 24-2 and the control circuit 22 are connected to the input terminal IN, and the pair of constant current circuits 24-1 and 24-2 respectively output the magnetoresistive elements 12-1 and 12-1. -2 is supplied with a constant current. Voltages generated in the magnetoresistive elements 12-1 and 12-2 according to the current flowing through the current path 36 are input to the differential amplifier 23 and connected to input the differentially operated signal to the control circuit 22. Reference numeral 22 denotes a configuration for controlling an input signal of a semiconductor element (MOSFET 21) for driving a load with current.

【0017】図2(a)は磁気抵抗効果素子近傍の半導
体ペレットの平面図、図2(b),(c)はそれぞれ図
2(a)のA−A線断面図及びB−B線拡大断面図であ
る。N型シリコン基板(N+ 型ドレイン領域1,N型ド
レイン領域2よりなる)に周知の縦型IGFET(DM
OSトランジスタ)が形成されている。すなわち、4は
P型ベース領域、5はN+ 型ソース領域、6はゲート酸
化膜、7はゲート電極、3はフィールド酸化膜、8は層
間絶縁膜、9はソース電極、17はメッシュ状のゲート
電極7の周囲に接続されるゲートパッドである。ただ
し、図2(b)にはDMOSトランジスタのセル構造の
概要を示し、セルの寸法は実際のものを示してはいな
い。縦型IGFETの表面(アルミニウム膜などでなる
ソース電極9の表面)を被覆する酸化シリコン膜11に
窓を設け、そこに露出したソース電極9にボンディング
線16がボンディングされている。ボンディング線16
の他端は接地端子GNDに接続される。又、ドレイン電
極10は図示しないリードフレームなどを経由して出力
端子OUTに接続される。
FIG. 2A is a plan view of a semiconductor pellet near the magnetoresistive element, and FIGS. 2B and 2C are cross-sectional views taken along line AA and line BB of FIG. 2A, respectively. It is sectional drawing. A well-known vertical IGFET (DM) is formed on an N-type silicon substrate (consisting of an N + -type drain region 1 and an N-type drain region 2).
OS transistor). That is, 4 is a P-type base region, 5 is an N + -type source region, 6 is a gate oxide film, 7 is a gate electrode, 3 is a field oxide film, 8 is an interlayer insulating film, 9 is a source electrode, and 17 is a mesh-shaped film. The gate pad is connected around the gate electrode 7. However, FIG. 2B shows the outline of the cell structure of the DMOS transistor, and the actual dimensions of the cell are not shown. A window is provided in the silicon oxide film 11 covering the surface of the vertical IGFET (the surface of the source electrode 9 made of an aluminum film or the like), and a bonding wire 16 is bonded to the source electrode 9 exposed there. Bonding wire 16
Is connected to a ground terminal GND. The drain electrode 10 is connected to the output terminal OUT via a lead frame (not shown).

【0018】磁気抵抗効果素子12−1,12−2及び
磁気誘導体13の配置を図2(a),(b)に示し、具
体的構造を図2(c)に示す。この半導体ペレットのボ
ンディング線16の周囲の絶縁膜(11)上にNi−F
e膜を含む磁気誘導体13がC字状に形成され、C字状
の磁気誘導体13の切り欠き部(ギャップ)には一対の
磁気抵抗効果素子12−1,12−2が形成されてい
る。一対の磁気抵抗効果素子12−1,12−2の一端
はソース電極9に接続され、他端は差動増幅器23に接
続されている。
FIGS. 2A and 2B show the arrangement of the magnetoresistive elements 12-1 and 12-2 and the magnetic derivative 13, and FIG. 2C shows a specific structure. Ni-F is formed on the insulating film (11) around the bonding wire 16 of the semiconductor pellet.
A magnetic derivative 13 including an e-film is formed in a C shape, and a pair of magnetoresistive elements 12-1 and 12-2 are formed in a cutout (gap) of the C shape magnetic derivative 13. One end of the pair of magnetoresistive elements 12-1 and 12-2 is connected to the source electrode 9, and the other end is connected to the differential amplifier 23.

【0019】磁気抵抗効果素子12−1は0.15μm
厚のTi膜14aからなるシャントバイアス膜と0.0
4μm厚のNi−Fe膜(パーマロイ膜)15aでなる
磁気抵抗効果膜との幅数μmのストライプ状の2層膜で
なる。18は0.15μm厚の酸化シリコン膜でなる。
磁気抵抗効果素子12−2は、0.04μm厚のNi−
Fe膜15bでなる磁気抵抗効果膜と0.015μm膜
のTi膜14bからなるシャントバイアス膜との幅数μ
mのストライプ状の2層膜でなる。磁気誘導体13はT
i膜14a/Ni−Fe膜15a/酸化シリコン膜18
/Ni−Fe膜15b/Ti膜14bの積層構造を有し
ているが、この上に更に酸化シリコン膜を堆積し、Ni
−Fe膜を堆積し、パターニングすることによりNi−
Fe膜の合計厚さを大きくしてもよい。
The magnetoresistive element 12-1 has a thickness of 0.15 μm.
A shunt bias film made of a thick Ti film 14a and 0.0
It is a stripe-shaped two-layer film having a width of several μm with a magnetoresistive effect film composed of a Ni—Fe film (permalloy film) 15 a having a thickness of 4 μm. Reference numeral 18 is a silicon oxide film having a thickness of 0.15 μm.
The magnetoresistive element 12-2 is made of a 0.04 μm thick Ni-
A width μ between the magnetoresistive effect film made of the Fe film 15b and the shunt bias film made of the 0.015 μm Ti film 14b.
It is composed of a m-stripe two-layer film. The magnetic derivative 13 is T
i film 14a / Ni-Fe film 15a / silicon oxide film 18
/ Ni-Fe film 15b / Ti film 14b, and a silicon oxide film is further deposited thereon to form a Ni
-Fe film is deposited and patterned to obtain Ni-
The total thickness of the Fe film may be increased.

【0020】一対の磁気抵抗効果素子12−1,12−
2には定電流回路24−1,24−2から同一方向に一
定の電流が流れており、シャントバイアス膜14a,1
4bを流れる電流が隣接する磁気抵抗効果膜15a,1
5bに磁気バイアスを印加する。
A pair of magnetoresistive elements 12-1, 12-
2, a constant current flows from the constant current circuits 24-1 and 24-2 in the same direction, and the shunt bias films 14a and 1
4b is applied to adjacent magnetoresistive films 15a, 15a.
A magnetic bias is applied to 5b.

【0021】磁気抵抗効果素子12−1,12−2の磁
気抵抗特性を図3に示す。一対の磁気抵抗効果素子12
−1,12−2は磁気抵抗効果膜とシャントバイアス膜
の相対位置が逆のため磁気抵抗効果素子12−1,12
−2に数10mAの電流を流すことにより数105 /4
π(A/m)の互いに逆バイアス磁界の状態41a,4
1bがバイアス点となる。MOSFET21に流れる電
流39の作る磁界は一対の磁気抵抗効果素子12−1,
12−2の両者に同じ磁界方向38に印加されるため、
一対の磁気抵抗効果素子12−1,12−2は動作点4
2a,42bのように、片方の抵抗値は減少し他方は増
大する。状態42a,42bの抵抗差による電圧差を差
動増幅器23で差動演算することによりMOSFET2
1を流れる電流値が得られる。例えばMOSFET21
に数Aの電流39が流れるとき電流の作る磁界は磁界方
向38に数105 /4π(A/m)となり、一対の磁気
抵抗効果素子12−1,12−2のストライプ方向の長
さが約100μmのとき差動演算により数10mVの出
力電圧が得られる。MOSFET21を流れる電流値に
従い得られる電圧は制御回路22に入力することで駆動
電流を制御する。
FIG. 3 shows the magnetoresistance characteristics of the magnetoresistance effect elements 12-1 and 12-2. A pair of magnetoresistive elements 12
-1 and 12-2 are magnetoresistive elements 12-1 and 12-2 because the relative positions of the magnetoresistive film and the shunt bias film are opposite.
-2 by applying a current of several tens of mA to several tens of 5
states 41a, 4 of mutually reverse bias magnetic fields of π (A / m)
1b is the bias point. The magnetic field generated by the current 39 flowing through the MOSFET 21 is a pair of magnetoresistive elements 12-1, 12-1,
12-2 are applied in the same magnetic field direction 38,
The pair of magnetoresistive elements 12-1 and 12-2 have an operating point of 4
As in 2a and 42b, one of the resistance values decreases and the other increases. The voltage difference due to the resistance difference between the states 42a and 42b is differentially calculated by the differential amplifier 23, so that the MOSFET 2
The current value flowing through 1 is obtained. For example, MOSFET 21
When a current 39 of several A flows in the magnetic field direction, the magnetic field generated by the current becomes several 10 5 / 4π (A / m) in the magnetic field direction 38, and the length of the pair of magnetoresistive elements 12-1 and 12-2 in the stripe direction is reduced. When it is about 100 μm, an output voltage of several tens mV can be obtained by differential operation. A voltage obtained according to a current value flowing through the MOSFET 21 is input to a control circuit 22 to control a drive current.

【0022】なお、制御回路22,差動増幅器23,定
電流回路24−1,24−2は通常のnMOSFETな
どで構成され、同一の半導体ペレットに集積されている
ものとする。
It is assumed that the control circuit 22, the differential amplifier 23, and the constant current circuits 24-1 and 24-2 are composed of ordinary nMOSFETs and the like, and are integrated on the same semiconductor pellet.

【0023】縦型IGFETを形成した半導体ペレット
上に電流検出素子を縦積みして設けるので、従来例のよ
うに電流路を引き回す必要がない分オン抵抗を少なくで
き、その分温度上昇を抑えることが可能となる。又、駆
動電流による磁界依存性が逆極性の一対の磁気抵抗効果
素子と差動増幅器とを用いることにより、検出機能の温
度依存性を少なくできる。
Since the current detecting elements are vertically stacked on the semiconductor pellet on which the vertical IGFET is formed, the on-resistance can be reduced because the current path does not need to be routed as in the conventional example, and the temperature rise can be suppressed accordingly. Becomes possible. Further, the temperature dependency of the detection function can be reduced by using a pair of magnetoresistive elements and a differential amplifier whose magnetic field dependence due to the driving current is opposite in polarity.

【0024】図4(a)は本発明の第2の実施の形態を
示す平面図、図4(b)は図4(a)のA−A線断面図
である。
FIG. 4A is a plan view showing a second embodiment of the present invention, and FIG. 4B is a sectional view taken along line AA of FIG. 4A.

【0025】一対の磁気抵抗効果素子はいずれも磁気抵
抗効果膜(Ni−Fe膜15)とシャント膜(Ti膜1
4)の積層順序が同一の2層膜でなっているが、電流の
向きが互いに逆になるように形状を工夫してある。第1
の磁気抵抗効果素子は幅広の電極部19−11,19−
12が幅数μmの細いストライプ状の検出部12−1A
の両端に連結され、電極部19−12の先端20−1で
ソース電極9に接続される。第2の磁気抵抗効果素子は
幅広の電極部19−21の先端に細いストライプ状の検
出部12−2Aが逆平行に連結されている。検出部12
−2Aの一端20−2はソース電極9に接続される。電
極部19−11,19−21はそれぞれ定電流回路24
−1,24−2と差動増幅器23に接続される。従っ
て、検出部12−1Aと12−2Aには互いに逆方向に
電流が流れる。電極部19−11,19−12,19−
21は検出部の幅(数μm)の10倍前後の幅にしてお
けば磁界を実効的に検出するのは検出部12−1A,1
2−2Aと考えられる。よって一対の磁気抵抗効果素子
の構成は実効的に同じであるが、流れる定電流の方向が
逆になるため互いに逆バイアスの磁界の動作点になる。
なお、磁気誘導体13AはNi−Fe膜15,Ti膜1
4の2層膜で構成されている。
Each of the pair of magnetoresistive elements has a magnetoresistive film (Ni—Fe film 15) and a shunt film (Ti film 1).
4) Although the two layers are formed in the same lamination order, the shapes are devised so that the directions of the currents are opposite to each other. First
The magnetoresistive effect element of the first embodiment has wide electrode portions 19-11 and 19-.
Reference numeral 12 denotes a thin stripe-shaped detection unit 12-1A having a width of several μm.
Are connected to the source electrode 9 at the tip 20-1 of the electrode portion 19-12. In the second magnetoresistive element, a thin stripe-shaped detecting portion 12-2A is connected to the tip of a wide electrode portion 19-21 in an anti-parallel manner. Detector 12
-2A is connected to the source electrode 9 at one end 20-2. The electrode portions 19-11 and 19-21 are respectively provided with a constant current circuit 24.
-1, 24-2 and the differential amplifier 23. Therefore, currents flow in the detection units 12-1A and 12-2A in opposite directions. Electrode portions 19-11, 19-12, 19-
If the width of the detection unit 21 is about 10 times the width of the detection unit (several μm), the detection unit 12-1A, 1 can effectively detect the magnetic field.
2-2A. Therefore, although the configuration of the pair of magnetoresistive elements is effectively the same, the directions of the flowing constant currents are opposite, so that the operating points of the magnetic fields are oppositely biased.
The magnetic derivative 13A includes the Ni—Fe film 15, the Ti film 1
4 is formed of a two-layer film.

【0026】半導体チップ下部の構造は第1の実施の形
態と同じである。本実施の形態は磁気誘導体13A,一
対の磁気抵抗効果素子をいずれも同じ2層膜で形成でき
るので製造工程が簡単でよい利点がある。
The structure below the semiconductor chip is the same as in the first embodiment. In the present embodiment, the magnetic derivative 13A and the pair of magnetoresistive elements can be formed of the same two-layer film, so that there is an advantage that the manufacturing process is simple and good.

【0027】以上、一対の磁気抵抗効果素子と差動増幅
回路を用いる例について説明したが単一の磁気抵抗効果
素子とバッファ回路を使用しても駆動電流を検出でき
る。ただ、電流検出機能の温度依存性は少なくできな
い。
In the above, an example in which a pair of magnetoresistive elements and a differential amplifier circuit are used has been described. However, a drive current can be detected by using a single magnetoresistive element and a buffer circuit. However, the temperature dependency of the current detection function cannot be reduced.

【0028】又、負荷を駆動する半導体素子として縦型
IGFETを例にあげて説明したが横型IGFETを使
用することもでき、バイポーラトランジスタを使用する
こともできる。更にNチャネルIGFETやNPNトラ
ンジスタばかりでなくPチャネルIGFETやPNPト
ランジスタを使用することもできる。更に又、電流路で
あるボンディング線の近傍に多数の磁気抵抗効果素子を
並列に配置して磁気誘導体を省略することも可能であ
る。
Although a vertical IGFET has been described as an example of a semiconductor element for driving a load, a horizontal IGFET can be used, and a bipolar transistor can also be used. Further, not only N-channel IGFETs and NPN transistors but also P-channel IGFETs and PNP transistors can be used. Furthermore, it is also possible to dispose a large number of magnetoresistive elements in parallel near the bonding line, which is a current path, and omit the magnetic derivative.

【0029】[0029]

【発明の効果】以上説明したように本発明は、磁性体膜
と導電膜の2層膜でなる磁気抵抗効果素子を、負荷を電
流駆動する半導体素子を形成した半導体ペレット状に縦
積みすることにより、駆動電流の電流路を従来例のよう
に引き回す必要がないので、電流検出素子を設けること
によるオン抵抗の増大などそれによる温度上昇を防止で
きる。又、オン時に発生する電圧が増加しないので、負
荷短絡時のような非常時にも破壊され難い。また互いに
逆極性の一対の電流検出素子と差動増幅器を用いれば、
半導体装置自身の発熱などによる温度の影響を少なくで
き、精度よく電流制御を行うことが可能となるばかりで
なく、安全性の高い1チップの電流検出器付き半導体装
置を実現できる。
As described above, according to the present invention, a magnetoresistive effect element comprising a two-layer film of a magnetic film and a conductive film is vertically stacked in a semiconductor pellet shape on which a semiconductor element for driving a load with current is formed. Thus, the current path of the drive current does not need to be routed as in the conventional example, so that it is possible to prevent an increase in the on-resistance due to the provision of the current detecting element and a rise in temperature due to this. Further, since the voltage generated at the time of turning on does not increase, it is hard to be destroyed even in an emergency such as a load short circuit. If a pair of current detecting elements and a differential amplifier having opposite polarities are used,
The influence of temperature due to heat generation of the semiconductor device itself can be reduced, and current control can be performed with high accuracy, and a highly safe one-chip semiconductor device with a current detector can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示すブロック図で
ある。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】第1の実施の形態の主要部を示す半導体ペレッ
トの平面図(図2(a))、図2(a)のA−A線断面
図(図2(b))、B−B線拡大断面図(図2(c))
である。
FIG. 2 is a plan view (FIG. 2 (a)) of a semiconductor pellet showing a main part of the first embodiment, a cross-sectional view taken along line AA of FIG. 2 (a) (FIG. 2 (b)), and FIG. B line enlarged sectional view (FIG. 2 (c))
It is.

【図3】磁気抵抗効果素子の説明に使用するグラフであ
る。
FIG. 3 is a graph used to describe a magnetoresistive element.

【図4】本発明の第2の実施の形態の主要部を示す半導
体ペレットの平面図(図4(a))、図4(a)のA−
A線断面図(図4(b))である。
FIG. 4 is a plan view (FIG. 4 (a)) of a semiconductor pellet showing a main part of a second embodiment of the present invention, and FIG.
FIG. 5 is a sectional view taken along the line A (FIG. 4B).

【図5】従来例を示すブロック図である。FIG. 5 is a block diagram showing a conventional example.

【図6】従来例の主要部を示す半導体ペレットの平面図
(図6(a))、図6(a)のA−A線断面図(図6
(b))である。
FIG. 6 is a plan view of a semiconductor pellet showing a main part of a conventional example (FIG. 6A), and a sectional view taken along line AA of FIG.
(B)).

【符号の説明】[Explanation of symbols]

1 N+ 型ドレイン領域(シリコン基体) 2 N型ドレイン領域(エピタキシャル層) 3 フィールド酸化膜 4 P型ベース領域 5 N+ 型ソース領域 6 ゲート酸化膜 7 ゲート電極 8 層間絶縁膜 9 ソース電極 10 ドレイン電極 11 酸化シリコン膜 12−1,12−2 磁気抵抗効果素子 12−1A,12−2A 磁気抵抗効果素子の検出部 13 磁気誘導体 14a,14b Ni−Fe膜(磁性体膜) 15a,15b Ti膜(導電膜) 16 ボンディング線 17 ゲートパッド 18 酸化シリコン膜 19−11,19−12,19−21 電極部 20−1 19−12の先端 20−2 12−2Aの先端 21 MOSFET 22 制御回路 23 差動増幅器 24,24−1,24−2 定電流回路 25 電流検出器付き半導体装置 26 ホール素子 31 N- 型エピタキシャル層 32a ベース領域 32b ベース電極 33a エミッタ領域 33b エミッタ電極 34a コレクタ領域 34b コレクタ電極 35 絶縁膜 36 電流路 37−1,37−2 ホール電極 38 磁界方向 41a,41b バイアス点 42a,42b 動作点Reference Signs List 1 N + type drain region (silicon base) 2 N type drain region (epitaxial layer) 3 Field oxide film 4 P type base region 5 N + type source region 6 Gate oxide film 7 Gate electrode 8 Interlayer insulating film 9 Source electrode 10 Drain Electrode 11 Silicon oxide film 12-1, 12-2 Magnetoresistance effect element 12-1A, 12-2A Detection part of magnetoresistance effect element 13 Magnetic derivative 14a, 14b Ni-Fe film (magnetic material film) 15a, 15b Ti film (Conductive film) 16 Bonding line 17 Gate pad 18 Silicon oxide film 19-11, 19-12, 19-21 Electrode section 20-1 Tip of 19-12 20-2 Tip of 12-2A 21 MOSFET 22 Control circuit 23 Difference Dynamic amplifier 24, 24-1, 24-2 Constant current circuit 25 Semiconductor device with current detector 26 Hall element Reference Signs List 1 N- type epitaxial layer 32a Base region 32b Base electrode 33a Emitter region 33b Emitter electrode 34a Collector region 34b Collector electrode 35 Insulating film 36 Current path 37-1, 37-2 Hall electrode 38 Magnetic field direction 41a, 41b Bias point 42a, 42b Operating point

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負荷を電流駆動する半導体素子及び前記
半導体素子に流れる駆動電流を検出する電流検出素子が
同一半導体ペレットに集積されてなる電流検出器付き半
導体装置において、磁性体膜及び導電膜の2層膜からな
る磁気抵抗効果素子とこれに定電流を供給する手段とを
有し、前記駆動電流による磁界に依存する抵抗値を有す
前記磁気抵抗効果素子が前記電流検出素子として前記
半導体素子上に縦積みされていることを特徴とする電流
検出器付き半導体装置。
1. A semiconductor device with a current detector in which a semiconductor element for driving a load with current and a current detection element for detecting a drive current flowing through the semiconductor element are integrated on the same semiconductor pellet. 2-layer film Tona
That a magnetoresistive element and means for supplying it to the constant current, the magnetoresistance effect element having a resistance value that depends on the magnetic field due to the drive current is stacked vertically on the semiconductor device as the current detecting element A semiconductor device with a current detector.
【請求項2】 半導体素子から駆動電流を取り出すボン
ディング線に接続するパッドの近傍に磁気抵抗効果素子
が配置される請求項1記載の電流検出器付き半導体装
置。
2. The semiconductor device with a current detector according to claim 1, wherein the magnetoresistive element is arranged near a pad connected to a bonding line for extracting a drive current from the semiconductor element.
【請求項3】 ボンディング線を囲んで配置された磁気
誘導体で形成され一部にギャップを有する磁路と、前記
ギャップ部に磁気抵抗効果素子が配置される請求項2記
載の電流検出器付き半導体装置。
3. The semiconductor with a current detector according to claim 2, wherein a magnetic path formed of a magnetic derivative and surrounding the bonding line and having a gap in a part thereof, and a magnetoresistive element in the gap are disposed. apparatus.
【請求項4】 駆動電流による磁界依存性が互いに逆極
性の一対の磁気抵抗効果素子と、これらの抵抗値の差を
検出する差動増幅器とを有する請求項1,2又は3記載
の電流検出器付き半導体装置。
4. The current detecting device according to claim 1, further comprising a pair of magnetoresistive effect elements whose magnetic field dependence by the driving current is opposite to each other, and a differential amplifier for detecting a difference between these resistance values. Semiconductor device with container.
【請求項5】 一対の磁気抵抗効果素子が、磁性体膜と
導電膜の積層順序が互いに逆で、同一方向にそれぞれ定
電流が流れる請求項4記載の電流検出器付き半導体装
置。
5. The semiconductor device with a current detector according to claim 4, wherein the pair of magnetoresistive elements has a stacking order of the magnetic film and the conductive film opposite to each other, and a constant current flows in the same direction.
【請求項6】 一対の磁気抵抗効果素子が、磁性体膜と
導電膜の積層順序が同じで、互いに逆方向にそれぞれ定
電流が流れる請求項4記載の電流検出器付き半導体装
置。
6. The semiconductor device with a current detector according to claim 4, wherein the pair of magnetoresistive elements have the same lamination order of the magnetic film and the conductive film, and a constant current flows in opposite directions.
【請求項7】 半導体素子が半導体基板の表面に接続さ
れるソース電極及び裏面に形成されるドレイン電極を有
する縦型IGFETである請求項1乃至6いずれか1項
記載の電流検出器付き半導体装置。
7. A semiconductor device a vertical IGFET is claims 1 to 6 any one having a drain electrode formed on the source electrode and the rear surface is connected to the surface of the semiconductor substrate
Current detector with a semiconductor device according to.
【請求項8】 磁気誘導体がNi−Fe膜を含んでなる
請求項3記載の電流検出器付き半導体装置。
8. A magnetic derivative Ni-Fe film comprising Claim 3 Symbol placement of the current detector with a semiconductor device.
JP7282948A 1995-10-31 1995-10-31 Semiconductor device with current detector Expired - Fee Related JP2924741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7282948A JP2924741B2 (en) 1995-10-31 1995-10-31 Semiconductor device with current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7282948A JP2924741B2 (en) 1995-10-31 1995-10-31 Semiconductor device with current detector

Publications (2)

Publication Number Publication Date
JPH09127161A JPH09127161A (en) 1997-05-16
JP2924741B2 true JP2924741B2 (en) 1999-07-26

Family

ID=17659200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7282948A Expired - Fee Related JP2924741B2 (en) 1995-10-31 1995-10-31 Semiconductor device with current detector

Country Status (1)

Country Link
JP (1) JP2924741B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
WO2005064356A2 (en) * 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. High sensitivity magnetic built-in current sensor
JP4360998B2 (en) 2004-10-01 2009-11-11 Tdk株式会社 Current sensor
JP5794777B2 (en) 2010-12-22 2015-10-14 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH09127161A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
US7872322B2 (en) Magnetic field sensor with a hall element
JP4506808B2 (en) Semiconductor device
US4987467A (en) Integratable hall element
JP2004207477A (en) Semiconductor device having hall element
JP2001174486A (en) Current detector with hall element
JP2001165963A (en) Current detecting device
WO2004075311A1 (en) Semiconductor device with hall-effect element
JP2000174357A (en) Semiconductor device containing hall-effect element
JP2002202327A (en) Current detector equipped with hall element
JP2001339109A (en) Current sensing device equipped with hall element
JP2002040058A (en) Current detection device equipped with hall element
JP3230580B2 (en) Current detection device equipped with a ball element
JP2924741B2 (en) Semiconductor device with current detector
US6194961B1 (en) Microstructure including a circuit integrated in a substrate on one surface of which is arranged a flat coil
US3882409A (en) Differential amplifier circuit
US5990533A (en) Semiconductor device including a magnetoresistance effect element functioning as a current detector
US7199434B2 (en) Magnetic field effect transistor, latch and method
JP4200358B2 (en) Current detection device with Hall element
JP4144591B2 (en) Semiconductor device
JP2570990B2 (en) Semiconductor integrated circuit
JP2668887B2 (en) Power MOSFET and method of manufacturing the same
JP3383451B2 (en) Semiconductor device
JP3237256B2 (en) Acceleration detection circuit
JP3588926B2 (en) Semiconductor magnetic sensor
JP3182182B2 (en) Magnetic-sensitive semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

LAPS Cancellation because of no payment of annual fees