JP2924457B2 - Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device - Google Patents

Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device

Info

Publication number
JP2924457B2
JP2924457B2 JP15296892A JP15296892A JP2924457B2 JP 2924457 B2 JP2924457 B2 JP 2924457B2 JP 15296892 A JP15296892 A JP 15296892A JP 15296892 A JP15296892 A JP 15296892A JP 2924457 B2 JP2924457 B2 JP 2924457B2
Authority
JP
Japan
Prior art keywords
particles
alloy
based sintered
tungsten
structural member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15296892A
Other languages
Japanese (ja)
Other versions
JPH05326766A (en
Inventor
雄三 植村
辰夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15296892A priority Critical patent/JP2924457B2/en
Publication of JPH05326766A publication Critical patent/JPH05326766A/en
Application granted granted Critical
Publication of JP2924457B2 publication Critical patent/JP2924457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高強度と低熱膨張係
数を有し、かつ熱伝導性も良好な半導体装置のタングス
テン(以下、Wで示す)基焼結合金製放熱構造部材に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-dissipating structural member made of a tungsten (hereinafter referred to as W) -based sintered alloy for a semiconductor device having high strength and a low coefficient of thermal expansion and good thermal conductivity. is there.

【0002】[0002]

【従来の技術】従来、一般に半導体装置のヒートシンク
材や基板などの放熱構造部材には低熱膨張係数と良好な
熱伝導性が要求されることから、これら部材の製造に、
前記特性を具備した、例えば特開昭59−136938
号公報に記載されるW基焼結合金が用いられている。上
記従来W基焼結合金製放熱構造部材は、原料粉末とし
て、W粉末、Mo粉末、Cu粉末、およびNi粉末を用
い、これら原料粉末を、重量%で(以下、%は重量%を
示す)、 Cu:5〜20%、 Ni:0.02〜2%、 WまたはMo:残り、 の配合組成に配合し、以下いずれも通常の条件で、混合
し、所定形状の圧粉体に成形し、この圧粉体を焼結する
ことにより製造されるものである。
2. Description of the Related Art Conventionally, heat dissipation structural members such as heat sink materials and substrates of semiconductor devices are generally required to have a low coefficient of thermal expansion and good thermal conductivity.
For example, Japanese Patent Application Laid-Open No. 59-136938 has the above-mentioned characteristics.
No. 6,009,045, the W-based sintered alloy described in Japanese Patent Application Laid-Open Publication No. H10-209,873 is used. The conventional heat dissipation structural member made of a W-based sintered alloy uses W powder, Mo powder, Cu powder, and Ni powder as raw material powders, and these raw material powders are expressed in weight% (hereinafter,% indicates weight%). , Cu: 5 to 20%, Ni: 0.02 to 2%, W or Mo: remaining, and the following composition is mixed under normal conditions to form a green compact of a predetermined shape. This is manufactured by sintering this green compact.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の半導体装
置の高集積化はめざましく、これに伴ない、半導体装置
の放熱構造部材であるヒートシンク材や基板にも軽量化
および薄肉化が強く要求されているが、上記の従来W基
焼結合金製放熱構造部材は、強度が不十分であるため
に、これらの要求に満足に対応することができない。
On the other hand, in recent years, high integration of semiconductor devices has been remarkable, and accordingly, heat sink materials and substrates, which are heat dissipation structural members of semiconductor devices, have been strongly required to be reduced in weight and thickness. However, the above-mentioned conventional heat-dissipating structural member made of a W-based sintered alloy cannot satisfy these requirements satisfactorily because of its insufficient strength.

【0004】そこで、本発明者等は、上述のような観点
から、軽量化および薄肉化が可能な高強度を有する半導
体装置の放熱構造部材を開発すべく、特に低熱膨張係数
と良好な熱伝導性の確保が可能なW基焼結合金に着目し
研究を行なった結果、半導体装置の放熱構造部材を、W
粒子と、このW粒子との合量に占める割合で0.5〜3
0%のMo粒子との混合粒子(前記W粒子およびMo粒
子に若干のNiが合金化した状態になっている)同志が
相互に隣接接合してなる骨格構造を有し、この骨格構造
部分の割合が全体に占める割合で84〜88%を占め、
残りが前記混合粒子間を埋めるCu合金からなるととも
に、前記Cu合金が、実質的に、 Ni:20〜30%、 Cu:残り、 の組成を有してなるW基焼結合金で構成すると、この結
果のW基焼結合金製放熱構造部材は、上記骨格構造によ
って低熱膨張係数が確保され、かつこの骨格構造とこれ
を埋める上記Cu合金によって一般と高い強度をもつよ
うになるほか、前記Cu合金によって良好な熱伝導性も
具備するようになるという研究結果を得たのである。
[0004] In view of the above, the present inventors have developed a heat radiation structural member for a semiconductor device having a high strength which can be reduced in weight and thickness. As a result of research focusing on a W-based sintered alloy capable of ensuring heat resistance, the heat dissipation structural member of a semiconductor device was replaced with a W-based sintered alloy.
0.5 to 3 as a percentage of the total amount of the particles and the W particles.
0% Mo particles and a mixed particle (the W particles and the Mo particles are in a state in which a small amount of Ni is alloyed) have a skeleton structure in which adjacent particles are joined to each other. The ratio accounts for 84-88% of the total,
The remainder is composed of a Cu alloy that fills the mixed particles, and the Cu alloy is substantially composed of a W-based sintered alloy having a composition of: Ni: 20 to 30%, Cu: residual, The resulting heat-dissipating structural member made of a W-based sintered alloy has a low coefficient of thermal expansion secured by the skeletal structure, and has a generally high strength by the skeletal structure and the Cu alloy filling the same. The research results show that the alloy also has good thermal conductivity.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、W粒子と、このW粒子との合量
に占める割合で0.5〜30%のMo粒子との混合粒子
同志が相互に隣接接合してなる骨格構造を有し、この骨
格構造部分の割合が全体に占める割合で84〜88%を
占め、残りが前記混合粒子間を埋めるCu合金からなる
とともに、前記Cu合金が、実質的に、 Ni:20〜30%、 Cu:残り、 の組成を有してなるW基焼結合金で構成してなる半導体
装置のW基焼結合金製放熱構造部材に特徴を有するもの
である。
The present invention has been made on the basis of the above research results, and is a mixture of W particles and 0.5 to 30% Mo particles in the total amount of the W particles. Has a skeletal structure formed by adjoining each other, and the proportion of the skeletal structure portion occupies 84 to 88% of the whole, and the rest is made of a Cu alloy filling the mixed particles and the Cu alloy Is characterized by a heat-dissipating structural member made of a W-based sintered alloy of a semiconductor device substantially composed of a W-based sintered alloy having a composition of Ni: 20 to 30% and Cu: remaining. Things.

【0006】つぎに、この発明の放熱構造部材における
骨格構造部分およびCu合金に関して、上記の通りに数
値限定した理由を説明する。 (a) 骨格構造部分の割合 その割合が84%未満では、混合粒子間の相互接合が十
分に行われず、この結果強固な骨格構造の形成が困難と
なり、所望の高強度と低熱膨張係数を確保することがで
きなくなり、一方その割合が88%を越えると、相対的
にCu合金の割合が少なくなりすぎて、強度および熱伝
導性が低下するようになることから、その割合を84〜
88%と定めた。
Next, the reason why the numerical values of the skeletal structure and the Cu alloy in the heat radiation structural member of the present invention are limited as described above will be described. (A) Ratio of skeleton structure portion If the ratio is less than 84%, mutual bonding between mixed particles is not sufficiently performed, and as a result, formation of a strong skeleton structure becomes difficult, and desired high strength and low thermal expansion coefficient are secured. On the other hand, if the ratio exceeds 88%, the ratio of the Cu alloy becomes relatively too small, and the strength and the thermal conductivity are reduced.
It was set at 88%.

【0007】(b) W粒子に対するMo粒子の割合 Mo粒子には、W粒子との共存において強固な骨格構造
を形成し、もって強度を向上させる作用があるが、その
割合がW粒子との合量に占める割合で(以下同じ)0.
5%未満では前記作用に所望の効果が得られず、一方そ
の割合が30%を越えても前記作用により一段の向上効
果が現われないことから、その割合を0.5〜30%と
定めた。
(B) Ratio of Mo particles to W particles Mo particles have a function of forming a strong skeleton structure in coexistence with W particles and thereby improving the strength. In terms of percentage of the amount (the same applies hereinafter)
If it is less than 5%, a desired effect cannot be obtained in the above-mentioned operation, and if the ratio exceeds 30%, no further improvement effect is exhibited by the above-mentioned operation. Therefore, the ratio is set to 0.5 to 30%. .

【0008】(c) Cu合金のNi含有量 Cu合金には、上記の通り骨格を形成する混合粒子間に
存在して熱伝導性を高める作用があるほか、Cu合金中
のNiには、W粒子およびMo粒子との界面で、これと
合金化して粒子間の結合力を高めると共に、Cu合金自
体の強度を高め、もって前記骨格構造と相まって部材の
強度を向上させる作用があるが、その含有量が20%以
下では所望の高強度を確保することができず、一方その
含有量が30%を越えると熱伝導性に低下傾向が現われ
るようになることから、その含有量を20〜30%と定
めた。
(C) Ni Content of Cu Alloy The Cu alloy has a function of increasing the thermal conductivity by being present between the mixed particles forming the skeleton as described above, and Ni in the Cu alloy has a W content. At the interface between the particles and the Mo particles, the alloying with the particles enhances the bonding force between the particles, increases the strength of the Cu alloy itself, and thus has the effect of improving the strength of the member in combination with the skeleton structure. If the amount is less than 20%, the desired high strength cannot be ensured. On the other hand, if the content exceeds 30%, the thermal conductivity tends to decrease. It was decided.

【0009】[0009]

【実施例】つぎに、この発明の放熱構造部材を実施例に
より具体的に説明する。原料粉末として、それぞれ表1
に示される平均粒径を有するW粉末、Mo粉末、および
Cu合金粉末を用意し、これら原料粉末を同じく表1に
示される配合組成に配合し、ボールミルで72時間湿式
混合した後、3ton /cm2 の圧力で圧粉体にプレス成形
し、ついでこの圧粉体を1350〜1400℃の範囲内
の所定温度に60分間保持の条件で焼結することによ
り、実質的に配合組成と同じ成分組成、並びに平面:2
5mm×25mm、厚さ:1mmの寸法をもった半導体装置の
基板として用いられる本発明W基焼結合金製放熱構造部
材(以下、本発明放熱構造部材という)1〜4、並びに
骨格構造部分の割合またはCu合金中のNi含有量がこ
の発明の範囲から外れたW基焼結合金で構成された比較
W基焼結合金製放熱構造部材(以下、比較放熱構造部材
という)1〜4をそれぞれ製造した。
Next, the heat radiation structural member of the present invention will be specifically described with reference to examples. Table 1
A W powder, a Mo powder, and a Cu alloy powder having the average particle diameters shown in Table 1 were prepared, and these raw material powders were similarly blended into the blending composition shown in Table 1 and wet-mixed for 72 hours by a ball mill. By pressing into a green compact at a pressure of 2 and then sintering the green compact at a predetermined temperature in the range of 1350 to 1400 ° C. for 60 minutes, the component composition substantially the same as the compounding composition , And plane: 2
Heat-dissipating structural members made of W-based sintered alloy of the present invention (hereinafter referred to as heat-dissipating structural members of the present invention) 1 to 4 used as a substrate of a semiconductor device having dimensions of 5 mm × 25 mm and a thickness of 1 mm; Comparative W-based sintered alloy heat-dissipating structural members (hereinafter referred to as comparative heat-dissipating structural members) 1 to 4 each composed of a W-based sintered alloy whose ratio or Ni content in the Cu alloy is out of the range of the present invention, Manufactured.

【0010】[0010]

【表1】 [Table 1]

【0011】ついで、この結果得られた各種の放熱構造
部材について、強度を評価する目的で引張強さを測定
し、また熱膨張係数および熱伝導率も測定した。これら
の測定結果を表1に示した。また、図1には、本発明放
熱構造部材2の金属顕微鏡による組織写真(400倍)
を示した。
Next, the tensile strength of the various heat radiation structural members obtained as a result was measured for the purpose of evaluating the strength, and the coefficient of thermal expansion and the thermal conductivity were also measured. Table 1 shows the results of these measurements. FIG. 1 is a micrograph of a structure of the heat radiation structural member 2 of the present invention, taken with a metallographic microscope (at a magnification of 400).
showed that.

【0012】[0012]

【発明の効果】表1および図1に示される結果から、本
発明放熱構造部材1〜4は、いずれもWおよびMo粒子
同志が相互に隣接接合した骨格構造を有し、かつこの骨
格構造がCu合金中のNiによって一層強化された組織
を有すると共に、Cu合金自体もNiの含有によって高
強度を有するので、部材強度はきわめて高いものとなる
ほか、熱膨張係数も小さいものとなっており、さらにW
およびMo粒子間を埋めるCu合金によって良好な熱伝
導性も具備するのに対して、比較放熱構造部材1〜4に
見られるように、これを構成する骨格構造部分の割合あ
るいはCu合金のNi含有量がこの発明の範囲から外れ
ると、上記の特性のうちの少なくともいずれかの特性が
相対的に劣ったものになることが明らかである。
From the results shown in Table 1 and FIG. 1, all of the heat radiation structural members 1 to 4 of the present invention have a skeletal structure in which W and Mo particles are mutually adjacently joined, and this skeletal structure is In addition to having a structure further strengthened by Ni in the Cu alloy, the Cu alloy itself also has high strength due to the inclusion of Ni, so that the member strength becomes extremely high, and the thermal expansion coefficient is also small, Further W
And the Cu alloy that fills the space between the Mo particles also has good thermal conductivity. On the other hand, as can be seen from the comparative heat dissipation structural members 1 to 4, the proportion of the skeletal structure part constituting this or the Ni content of the Cu alloy Clearly, amounts outside the scope of the invention will result in relatively poor at least one of the above properties.

【0013】上述のように、この発明のW基焼結合金製
放熱構造部材は、高強度と低熱膨張係数、さらに良好な
熱伝導性を有するので、これの軽量化および薄肉化に十
分対応することができ、半導体装置の高集積化に大いに
寄与するものである。
As described above, the heat-dissipating structural member made of a W-based sintered alloy according to the present invention has a high strength, a low coefficient of thermal expansion, and a good thermal conductivity. This greatly contributes to high integration of the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明放熱構造部材2の金属顕微鏡による組織
写真である。
FIG. 1 is a structural photograph of a heat radiation structural member 2 of the present invention, taken with a metallographic microscope.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 タングステン粒子と、このタングステン
粒子との合量に占める割合で0.5〜30重量%のモリ
ブテン粒子との混合粒子同志が相互に隣接接合してなる
骨格構造を有し、この骨格構造部分の割合が全体に占め
る割合で84〜88重量%を占め、残りが前記混合粒子
間を埋めるCu合金からなるとともに、前記Cu合金
が、実質的に、 Ni:20〜30重量%、 Cu:残り、 の組成を有してなるタングステン基焼結合金で構成した
ことを特徴とする半導体装置のタングステン基焼結合金
製放熱構造部材。
1. A skeletal structure in which mixed particles of tungsten particles and molybdenum particles in a proportion of 0.5 to 30% by weight, based on the total amount of the tungsten particles, are bonded to each other adjacent to each other. The proportion of the skeleton structure portion accounts for 84 to 88% by weight of the whole, and the rest is made of a Cu alloy filling the mixed particles, and the Cu alloy is substantially composed of Ni: 20 to 30% by weight, Cu: a heat-dissipating structural member made of a tungsten-based sintered alloy for a semiconductor device, comprising a tungsten-based sintered alloy having the following composition:
JP15296892A 1992-05-20 1992-05-20 Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device Expired - Lifetime JP2924457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15296892A JP2924457B2 (en) 1992-05-20 1992-05-20 Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15296892A JP2924457B2 (en) 1992-05-20 1992-05-20 Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device

Publications (2)

Publication Number Publication Date
JPH05326766A JPH05326766A (en) 1993-12-10
JP2924457B2 true JP2924457B2 (en) 1999-07-26

Family

ID=15552093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15296892A Expired - Lifetime JP2924457B2 (en) 1992-05-20 1992-05-20 Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device

Country Status (1)

Country Link
JP (1) JP2924457B2 (en)

Also Published As

Publication number Publication date
JPH05326766A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
US9188397B2 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
WO2017213207A1 (en) Ceramic circuit board and method for manufacturing ceramic circuit board
US20130333870A1 (en) Aluminum alloy powder metal with high thermal conductivity
JP3495770B2 (en) Brazing filler metal for ceramics
JP2924457B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2924456B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2910414B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2842032B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP3909037B2 (en) Manufacturing method of low thermal expansion and high thermal conductive member
KR101159086B1 (en) Tungsten based sintered material having high strength and high hardness and mold for hot press molding of optical glass lens
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP3358685B2 (en) Manufacturing method of low thermal expansion sintered alloy
KR101825302B1 (en) Electronic component joining alloy with excellent joining characteristic under high temperature and electronic component joining paste with the same
JP5060680B2 (en) Silver / metal oxide contact materials
JP3408598B2 (en) Metal powder composition for metallizing, metallized substrate and method for producing the same
JPH10231175A (en) Low thermal expansion and highly heat conductive heat dissipation material and its production
JP2670627B2 (en) Metallized alumina ceramics
JP2679267B2 (en) Manufacturing method of brazing material
JP2559085B2 (en) Composite sintered material and manufacturing method thereof
JP2002356731A (en) Substrate for semiconductor
JP2004521185A (en) Highly conductive copper / refractory metal composites and methods of making them
JP2784551B2 (en) Aluminum nitride substrate
JP4366594B2 (en) Tungsten-based sintered material having high strength and hardness suitable for use as a hot press mold for optical glass lenses
JPH0790413A (en) Composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130507

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130507

Year of fee payment: 14