JP2920256B2 - Hydrodesulfurization catalyst - Google Patents

Hydrodesulfurization catalyst

Info

Publication number
JP2920256B2
JP2920256B2 JP2131322A JP13132290A JP2920256B2 JP 2920256 B2 JP2920256 B2 JP 2920256B2 JP 2131322 A JP2131322 A JP 2131322A JP 13132290 A JP13132290 A JP 13132290A JP 2920256 B2 JP2920256 B2 JP 2920256B2
Authority
JP
Japan
Prior art keywords
metal
catalyst
group
periodic table
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2131322A
Other languages
Japanese (ja)
Other versions
JPH0427438A (en
Inventor
康人 高橋
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2131322A priority Critical patent/JP2920256B2/en
Publication of JPH0427438A publication Critical patent/JPH0427438A/en
Application granted granted Critical
Publication of JP2920256B2 publication Critical patent/JP2920256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軽質炭化水素油に含まれる硫黄化合物を効率
よく除去するための高活性水素化脱硫触媒に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a highly active hydrodesulfurization catalyst for efficiently removing a sulfur compound contained in a light hydrocarbon oil.

〔従来の技術〕[Conventional technology]

炭化水素油の水素化脱硫を主体とする水素化処理に
は、従来より多孔質のアルミナを主体とする触媒担体に
周期律表第6族金属と第8族金属とを担持させた触媒を
使用され、第6族金属としてはクロム、モリブデンまた
はタングステンが第8族金属としては鉄、コバルト又は
ニッケルが主として用いられている。
Hydrogenation treatment mainly based on hydrodesulfurization of hydrocarbon oils has conventionally used a catalyst in which a group 6 metal and a group 8 metal of the periodic table are supported on a porous alumina-based catalyst carrier. Chromium, molybdenum or tungsten is mainly used as Group 6 metal, and iron, cobalt or nickel is mainly used as Group 8 metal.

これらの金属は通常酸化物態で担持されており、その
ままの状態では水素化脱硫活性を発現しないので水素化
脱硫反応に供するには酸化物態から触媒活性を持つ硫化
物態に変換するいわゆる予備硫化処理が必要となる。こ
の予備硫化処理は炭化水素油の水素化処理を行なう反応
容器に触媒を充填し、硫化水素/水素混合ガス、二硫化
炭素、ノルマルブチルメルカプタン、硫化ジメチル、二
硫化ジメチル等の含硫黄有機化合物等を添加した原料油
をこの反応容器に通液して行なうのが一般的である。し
かし、この操作はかなり煩雑であり、かつ必ずしも完全
に予備硫化されるものではない。
These metals are usually supported in an oxide form, and do not exhibit hydrodesulfurization activity as they are, so that they are converted to a sulfide form having catalytic activity from an oxide form in order to be used for hydrodesulfurization reaction. Sulfidation treatment is required. In this preliminary sulfurization treatment, a catalyst is filled in a reaction vessel for hydrotreating hydrocarbon oil, and sulfur-containing organic compounds such as hydrogen sulfide / hydrogen mixed gas, carbon disulfide, normal butyl mercaptan, dimethyl sulfide, and dimethyl disulfide are used. In general, the feedstock is added with a feedstock oil and passed through the reaction vessel. However, this operation is rather complicated and is not always completely presulfurized.

この予備硫化操作の煩雑さを解消すべく開発された方
法が特開昭61−111144号公報に開示されている。これは
活性金属が担持された触媒に一般的R−S(n)−R′
(nは3〜20の整数)で表わされる多硫化物を含浸し、
水素ガスの不存在下で65〜275℃、0.5〜70バールの圧力
下で前記触媒を熱処理して予備硫化させるものである。
この方法は予備硫化の煩雑さを解消すものの、用いる多
硫化物の粘度が高く、必ずしも触媒全体に均一に担持さ
せることができず、高活性を発現しえていない。
A method developed to eliminate the complexity of the preliminary sulfurization operation is disclosed in Japanese Patent Application Laid-Open No. 61-111144. This is because the catalyst supporting the active metal has a general R—S (n) —R ′.
(N is an integer of 3 to 20) impregnated with a polysulfide,
The catalyst is subjected to a heat treatment at 65 to 275 ° C. and a pressure of 0.5 to 70 bar in the absence of hydrogen gas to presulfurize the catalyst.
Although this method eliminates the complexity of preliminary sulfurization, the polysulfide used has a high viscosity, cannot be uniformly supported on the entire catalyst, and does not exhibit high activity.

予備硫化操作の煩雑さの解消と高活性化とを目的と
し、本発明者らは特願昭63−206194にアルミニウムの酸
化物、水和物の一方又は双方を主成分とする担体物質に
活性金属として周期律表第6族金属、第8族金属の水溶
液化合物のうち少なくとも一種とりん酸の水溶液及びメ
ルカプトカルボン酸を用いて活性金属とりんとメルカプ
トカルボン酸を担持させた水素化処理触媒を開示した。
For the purpose of eliminating the complexity of the presulfurization operation and increasing the activity, the present inventors have disclosed in Japanese Patent Application No. 63-206194, an active substance for a carrier substance containing one or both of aluminum oxide and hydrate as a main component. Disclosed is a hydrogenation catalyst in which an active metal, phosphorus and mercaptocarboxylic acid are supported using an aqueous solution of phosphoric acid and mercaptocarboxylic acid using at least one aqueous solution of a Group 6 metal or Group 8 metal as a metal. did.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、近年大気汚染問題、特に大都市圏の自動車
排ガスにより大気汚染問題が再燃してきており、この問
題が解決策の一つとしてディーゼルエンジン用軽油中の
硫黄分の低減が上げられており、具体的には現在の規制
値である0.5重量%(以下%と示す。)を0.2%とし、将
来は0.05%とすることが検討されている。しかしなが
ら、上記高活性化された従来の触媒を用いても、通常の
水素化脱硫処理では軽油中の硫黄分を0.35%にするのが
限度とされており、脱硫塔の増設による処理段数の増
加、操業条件の強化等が検討されている。しかし、脱硫
塔の増設には多大の費用が必要とされ、操業条件の強化
は製品軽油の着色や触媒寿命の短命化をもたらすという
欠点がある。そのため従来の装置、操業条件で使用で
き、予備硫化操業が簡単で高活性の触媒の開発が切望さ
れているが、今のところ有効な触媒は提供されていな
い。
By the way, in recent years, the air pollution problem has reignited due to the exhaust gas from automobiles in metropolitan areas, and as one of the solutions, reduction of the sulfur content in diesel engine light oil has been raised. Currently, it is considered that the current regulation value of 0.5% by weight (hereinafter, referred to as%) is set to 0.2%, and to 0.05% in the future. However, even with the above-mentioned highly activated conventional catalyst, the sulfur content in light oil is limited to 0.35% in normal hydrodesulfurization treatment, and the number of treatment stages is increased by adding a desulfurization tower. Consideration has been given to enhancing operating conditions. However, the construction of additional desulfurization towers requires a great deal of cost, and the enhancement of operating conditions has the disadvantage that the product gas oil is colored and the life of the catalyst is shortened. Therefore, there has been a strong demand for the development of a highly active catalyst which can be used under conventional equipment and operating conditions, and which can be easily preliminarily sulfurized, but no effective catalyst has been provided so far.

本発明の目的は、上記要求を満足させうる触媒の提供
にある。
An object of the present invention is to provide a catalyst that can satisfy the above requirements.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは特願昭63−206194号に開示した上記アル
ミニウムの酸化物、水和物の一方又は双方を主成分とす
る担体物質に活性金属として周期律表第6族金属、第8
族金属のうちの少なくとも一種とりんとメルカプトカル
ボン酸とを担持させた水素化処理触媒の改善を種々試
み、その結果、活性金属、りん、メルカプトカルボン酸
の担持量を限定することにより軽質炭化水素油の水素化
脱硫反応において上記要求を満足させうる触媒を得るこ
とができることを見出し本発明に至った。
The present inventors have reported that a carrier material containing one or both of the above-mentioned aluminum oxides and hydrates disclosed in Japanese Patent Application No. 63-206194 as an active metal, a metal belonging to Group 6 of the periodic table,
Various attempts have been made to improve hydrotreating catalysts in which at least one of the group metals is supported and phosphorus and mercaptocarboxylic acid, and as a result, light hydrocarbon oils are obtained by limiting the amount of active metals, phosphorus and mercaptocarboxylic acid supported. It has been found that a catalyst capable of satisfying the above requirements can be obtained in the hydrodesulfurization reaction of the present invention, and the present invention has been accomplished.

すなわち、本発明の方法はアルミナ水和物を主成分と
する担体物質に活性金属として周期律表第6族金属、第
8族金属のうちの少なくとも一種とりんとメルカプトカ
ルボン酸とを担持させた水素化処理触媒において、活性
金属の担持量がアルミナ水和物中のアルミニウム1モル
に対して、活性金属として周期律表第6族の金属を用い
る場合には0.03〜0.15モル、周期律表第8族の金属を用
いる場合には0.03〜0.06モルであり、りんの担持量が0.
02〜0.08モルであり、メルカプトカルボン酸の担持量
が、Sをメルカプトカルボン酸中の硫黄のモル数、VIを
周期律表第6族金属のモル数、VIIIを周期律表第8族金
属のモル数としたときに式:S/(2×VI+VIII)で示さ
れるモル比で0.9〜2.0であることを特徴とする物であ
る。
In other words, the method of the present invention provides a method in which at least one of Group 6 and Group 8 metals of the Periodic Table and phosphorus and mercaptocarboxylic acid are supported as active metals on a carrier substance mainly composed of alumina hydrate. The amount of the active metal supported in the conversion catalyst is 0.03 to 0.15 mol in the case where a metal belonging to Group 6 of the periodic table is used as the active metal, relative to 1 mol of aluminum in the alumina hydrate. In the case of using a group III metal, the amount is 0.03 to 0.06 mol, and the supported amount of phosphorus is 0.3.
02 to 0.08 mol, and the amount of mercaptocarboxylic acid supported is such that S is the number of moles of sulfur in the mercaptocarboxylic acid, VI is the number of moles of Group 6 metal of the periodic table, and VIII is the number of group 8 metal of the periodic table. It is characterized in that the molar ratio represented by the formula: S / (2 × VI + VIII) is 0.9 to 2.0 in terms of the number of moles.

本発明は特願昭63−206194号に開示した発明を改良す
るものであり、従って、用いる活性金属、リン酸、メル
カプトカルボン酸は特願昭63−206194号に記載されたも
のと同一であり、用いる理由も同一である。
The present invention is an improvement of the invention disclosed in Japanese Patent Application No. 63-206194, and the active metals, phosphoric acid and mercaptocarboxylic acid used are the same as those described in Japanese Patent Application No. 63-206194. For the same reason.

〔作用〕[Action]

本発明の特徴は、触媒に担持させる活性金属の量とり
んの量とを限定し、かつメルカプトカルボン酸の量を担
持させる活性金属量と一定の関係を有するように限定す
ることにより高活性で予備硫化操作が不要な触媒を得よ
うとするものである。
The feature of the present invention is that high activity is achieved by limiting the amount of active metal supported on the catalyst and the amount of phosphorus, and limiting the amount of mercaptocarboxylic acid to have a certain relationship with the amount of active metal supported on the catalyst. The purpose of the present invention is to obtain a catalyst that does not require a preliminary sulfidation operation.

本発明において活性金属の担持量をアルミナ水和物中
のアルミニウム1モルに対して、活性金属として周期律
表第6族の金属を用いる場合には0.03〜0.15モル、周期
律表第8族の金属を用いる場合には0.03〜0.06モルとす
るのは、これより少ない担持量では充分の触媒活性が発
現されず、これより多くしても触媒活性のさらなる向上
が望めないからである。
In the present invention, the amount of the active metal supported is 0.03 to 0.15 mol when the metal of Group 6 of the periodic table is used as the active metal with respect to 1 mol of aluminum in the alumina hydrate. The reason for using a metal in the range of 0.03 to 0.06 mol is that if the amount is less than this, sufficient catalytic activity is not exhibited, and if the amount is more than this, further improvement in catalytic activity cannot be expected.

また、りんの担持量をアルミナ水和物中のアルミニウ
ム1モルに対して0.02〜0.08モルとするのは、これより
少ない担持量では充分の触媒活性が発現されず、これよ
り多くすると触媒活性を阻害するからである。
In addition, the amount of phosphorus supported is set to 0.02 to 0.08 mol per 1 mol of aluminum in alumina hydrate. If the supported amount is less than this, sufficient catalytic activity is not exhibited. This is because it inhibits.

メルカプトカルボン酸の担持量を、Sをメルカプトカ
ルボン酸中の硫黄のモル数、VIを周期律表第6族金属の
モル数、VIIIを周期律表第8族金属のモル数としたとき
に式:S/(2×VI+VIII)で示されるモル比で0.9〜2.0
とするのは、これより少ない担持量では充分の触媒活性
が発現されず、これより多くしても触媒活性のさらなる
向上が望めないからである。
When S is the number of moles of sulfur in the mercaptocarboxylic acid, VI is the number of moles of Group 6 metal of the periodic table, and VIII is the number of moles of group 8 metal of the periodic table, : S / (2 × VI + VIII) at a molar ratio of 0.9 to 2.0
The reason is that if the amount is less than this, sufficient catalytic activity is not exhibited, and if the amount is more than this, further improvement in catalytic activity cannot be expected.

本発明で使用するアルミナ水和物を主成分とする担体
物質としては、擬ベーマイトが最も好ましく、他の形態
のアルミナ水和物やアルミナ、シリカ、チタニア及び又
はジルコニアを混合して用いても良い。担体に活性金属
成分等を担持するには、例えば、三酸化モリブデン及び
炭酸コバルトを水に懸濁させたスラリーに正りん酸を添
加し、加熱して溶解した後、メルカプト酢酸を添加して
得た溶液と担体原料とを混合し、混練し、押出し成形
し、乾燥する。
As the carrier substance mainly composed of alumina hydrate used in the present invention, pseudo-boehmite is most preferable, and other forms of alumina hydrate and alumina, silica, titania and / or zirconia may be used as a mixture. . To support the active metal component or the like on the carrier, for example, orthophosphoric acid is added to a slurry of molybdenum trioxide and cobalt carbonate suspended in water, heated and dissolved, and then mercaptoacetic acid is added. The mixed solution and the carrier material are mixed, kneaded, extruded, and dried.

本発明の触媒は活性金属が担体物質上に高分散で高濃
度で担持されており、かつメルカプトカルボン酸の担持
量が活性金属に対して最適化されているため高触媒活性
をもつ。更に、使用に際しては昇温過程において、触媒
中のメルカプトカルボン酸により活性金属が硫化物態に
変換されるため特に予備硫化工程を必要としない。
The catalyst of the present invention has a high catalytic activity because the active metal is supported on the carrier material in a highly dispersed and high concentration, and the amount of mercaptocarboxylic acid supported is optimized for the active metal. Further, in use, the active metal is converted to the sulfide form by the mercaptocarboxylic acid in the catalyst during the temperature raising process, so that a preliminary sulfurization step is not particularly required.

〔実施例1〕 三酸化モリブデン38.5g、炭酸コバルト(Co含有量49.
1重量%)16.4gを水に懸濁し85重量%の正りん酸12.5g
を添加して加熱下で溶解し150mlの水溶液とした。この
水溶液に、85重量%メルカプト酢酸108.9gを添加して金
属硫化物前駆体の金属メルカプチド水溶液を得た。
[Example 1] Molybdenum trioxide 38.5 g, cobalt carbonate (Co content 49.
16.4 g) suspended in water and 12.5 g of 85% by weight orthophosphoric acid
Was added and dissolved under heating to obtain a 150 ml aqueous solution. To this aqueous solution, 108.9 g of 85% by weight mercaptoacetic acid was added to obtain an aqueous metal mercaptide solution of a metal sulfide precursor.

この金属メルカプチド水溶液と噴霧乾燥アルミナ水和
物粉末(Al2O3含有量73.5重量%)272gの双腕型ニーダ
ー中で混練し、次に1.5mmφ孔のダイスを有する押し出
し成形機により円柱状に成型した。この成型体を100℃
で16時間乾燥し触媒1を得た。
This aqueous solution of metal mercaptide and a spray-dried alumina hydrate powder (Al 2 O 3 content: 73.5% by weight) are kneaded in a 272 g double-arm kneader, and then extruded into a cylindrical shape using an extruder having a die with a hole of 1.5 mmφ. Molded. 100 ° C
For 16 hours to obtain Catalyst 1.

触媒1の破壊強度は1.5kg/mm以上であった。 The breaking strength of the catalyst 1 was 1.5 kg / mm or more.

触媒1の活性を以下の条件で評価した。 The activity of the catalyst 1 was evaluated under the following conditions.

触媒量 15ml 原料油液空間速度 2.0hr-1 反応圧力(水素圧) 30kg/cm2 昇温(室温→330℃) 10hrs 反応温度 330℃ 水素/油比 150N1/1 通油時間 48hrs 反応に用いた直留常圧軽油の性状は次の通りであっ
た。
Amount of catalyst 15ml Raw material oil liquid space velocity 2.0hr -1 Reaction pressure (hydrogen pressure) 30kg / cm 2 Temperature rise (from room temperature to 330 ℃) 10hrs Reaction temperature 330 ℃ Hydrogen / oil ratio 150N1 / 1 Oil flow time 48hrs Used for reaction The properties of the straight-run normal pressure gas oil were as follows.

比重(15/4℃ 0.844 硫黄 1.13重量% 窒素 162 重量ppm 蒸留性状(初留点) 203.3℃ 〃 (50 容量%点)299.0℃ 〃 (終点) 391.8℃ 処理油は8時間毎にサンプリングし、硫黄含有量を測
定して脱硫率を求めた。以下の実施例で示す処理油中硫
黄含有量及び脱硫率は、16,24,32,40,48時間目にサンプ
リングした処理油の硫黄含有量の平均値及び脱硫率の平
均値である。
Specific gravity (15/4 ° C 0.844 Sulfur 1.13 wt% Nitrogen 162 wtppm Distillation properties (initial boiling point) 203.3 ° C 〃 (50% by volume point) 299.0 ° C 〃 (End point) 391.8 ° C The sulfur content in the treated oil and the desulfurization rate shown in the following examples were calculated based on the sulfur content of the treated oil sampled at 16, 24, 32, 40, and 48 hours. It is the average value and the average value of the desulfurization rate.

得られた結果を第1表に示した。 The results obtained are shown in Table 1.

〔実施例2〕 実施例1と同様の方法で第2表に示すように原料の量
を変えて触媒2,3,4,5を得た。
Example 2 Catalysts 2, 3, 4, and 5 were obtained in the same manner as in Example 1 except that the amounts of the raw materials were changed as shown in Table 2.

触媒2,3,4及び5の破壊強度は1.5kg/cm2以上であっ
た。
The breaking strength of catalysts 2, 3, 4, and 5 was 1.5 kg / cm 2 or more.

得た触媒の活性を実施例1に従い評価し、その結果を
第1表に示した。
The activity of the obtained catalyst was evaluated in accordance with Example 1, and the results are shown in Table 1.

比較例 γ−アルミナを担体としMoO3を15重量%,CoOを4重量
%含有する市販触媒(日本ケッチェン(株)社製KF−74
2)に次の予備硫化処理を施した。
Comparative Example A commercially available catalyst containing γ-alumina as a carrier and containing 15% by weight of MoO 3 and 4% by weight of CoO (KF-74 manufactured by Nippon Ketjen Corporation)
2) was subjected to the following preliminary sulfurization treatment.

硫化量 3重量%n−ブチルメルカプタン/クェート常
圧軽油 触媒量 15ml 原料油液空間速度 1.0hr-1 反応圧力(水素圧) 20kg/cm2 反応温度 316℃ 水素/油比 150N1/1 通油時間 18hrs この予備硫化を施した触媒について実施例と同様にし
て活性評価した。
Sulfurization amount 3% by weight n-butyl mercaptan / quat normal pressure light oil Catalytic amount 15ml Raw material oil liquid space velocity 1.0hr -1 Reaction pressure (hydrogen pressure) 20kg / cm 2 Reaction temperature 316 ℃ Hydrogen / oil ratio 150N1 / 1 Oil flow time 18 hrs The activity of this presulfurized catalyst was evaluated in the same manner as in the example.

得られた結果を第1表に示した。 The results obtained are shown in Table 1.

第1表より本発明の有効性は明らかである。 Table 1 clearly shows the effectiveness of the present invention.

〔効果〕〔effect〕

本発明の水素化脱硫触媒は軽質炭化水素油の脱硫に従
来の酸化物型触媒よりはるかに優れた活性を示す。従っ
て、この高活性触媒を用いれば運転条件の変更や、設備
の増設を行うことなく硫黄含有量の低いディーゼル燃料
用軽油を生産することができる。
The hydrodesulfurization catalyst of the present invention exhibits much better activity in desulfurizing light hydrocarbon oils than conventional oxide-type catalysts. Therefore, if this highly active catalyst is used, diesel oil having a low sulfur content can be produced without changing operating conditions or adding equipment.

また本発明の水素化脱硫触媒は活性金属を硫化するた
めの硫黄分が担持されているので製油所での予備硫化か
不要になる利点も備えている。
Further, the hydrodesulfurization catalyst of the present invention has an advantage that presulfurization at a refinery is not required because a sulfur content for sulfurizing active metals is carried.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミナ水和物を主成分とする担体物質に
活性金属として周期律表第6族、第8族金属のうちの少
なくとも一種とりんとメルカプトカルボン酸とを担持さ
せた水素化処理触媒において、活性金属の担持量がアル
ミナ水和物中のアルミニウム1モルに対して、活性金属
として周期律表第6族の金属を用いる場合には0.03〜0.
15モル、周期律表第8族の金属を用いる場合には0.03〜
0.06モルであり、りんの担持量が0.02〜0.08モルであ
り、メルカプトカルボン酸の担持量が、Sをメルカプト
カルボン酸中の硫黄のモル数、VIを周期律表第6族金属
のモル数、VIIIを周期律表第8族金属のモル数としたと
きに式:S/(2×VI+VIII)で示されるモル比で0.9〜2.
0であることを特徴とする水素化脱硫触媒。
1. A hydrotreating catalyst comprising a carrier material containing alumina hydrate as a main component and at least one of Group 6 and Group 8 metals of the periodic table as an active metal, phosphorus and mercaptocarboxylic acid. In the case of using a metal belonging to Group 6 of the periodic table as the active metal, the supported amount of the active metal is 1 mol of aluminum in the alumina hydrate.
15 mol, 0.03 or more when using a metal of Group 8 of the periodic table
0.06 mol, the supported amount of phosphorus is 0.02 to 0.08 mol, the supported amount of mercaptocarboxylic acid, S is the number of moles of sulfur in mercaptocarboxylic acid, VI is the number of moles of Group 6 metal of the periodic table, When VIII is the number of moles of the Group 8 metal of the periodic table, the molar ratio is expressed by the formula: S / (2 × VI + VIII) in the range of 0.9 to 2.
A hydrodesulfurization catalyst, which is 0.
JP2131322A 1990-05-23 1990-05-23 Hydrodesulfurization catalyst Expired - Lifetime JP2920256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131322A JP2920256B2 (en) 1990-05-23 1990-05-23 Hydrodesulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131322A JP2920256B2 (en) 1990-05-23 1990-05-23 Hydrodesulfurization catalyst

Publications (2)

Publication Number Publication Date
JPH0427438A JPH0427438A (en) 1992-01-30
JP2920256B2 true JP2920256B2 (en) 1999-07-19

Family

ID=15055245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131322A Expired - Lifetime JP2920256B2 (en) 1990-05-23 1990-05-23 Hydrodesulfurization catalyst

Country Status (1)

Country Link
JP (1) JP2920256B2 (en)

Also Published As

Publication number Publication date
JPH0427438A (en) 1992-01-30

Similar Documents

Publication Publication Date Title
EP0496592B1 (en) Method of preparing hydrotreating catalyst for hydrocarbon oil
US5246569A (en) Process for the hydrodesulfurization of light hydrocarbon feeds
US20060249429A1 (en) Hydrodesulfurization Catalyst for Petroleum Hydrocarbons and Process for Hydrodesulfurization Using the Same
EP0289211B1 (en) Catalysts for hydrotreating hydrocarbons and method of activating the same
EA010112B1 (en) Hydrotreating catalyst containing a group v metal
EP0357295A2 (en) Catalysts for hydrotreating of hydrocarbons and methods of preparing the same
US3094480A (en) Hydrodenitrogenation with high molybdenum content catalyst
JP2004508453A (en) Method for achieving ultra-high hydrodesulfurization of hydrocarbon feedstocks
US5137859A (en) Process for producing catalyst composition for use in hydrodesulfurization of hydrocarbon oil
US5248412A (en) Process for producing catalyst composition for use in hydrodesulfurization of hydrocarbon oil and process for hydrodesulfurizing hydrocarbon oil
US5484756A (en) Hydrodesulfurization catalyst and preparation thereof
JP2920255B2 (en) Hydrodesulfurization catalyst
JP2920256B2 (en) Hydrodesulfurization catalyst
JPH0751582A (en) New preliminary sulfidization of catalyst
JP3676869B2 (en) Method for producing hydrodesulfurization catalyst for hydrocarbon oil
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JP2531728B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JPH0549339B2 (en)
JP2531730B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JP3682106B2 (en) Preparation method of hydrodesulfurization catalyst of light oil
JP2001198471A (en) Impregnation liquid for producing hydrogenation catalyst and method for producing hydrogenation catalyst
JPH0549342B2 (en)
US4816434A (en) Catalytic materials of controlled geometric mean electronegativity
JPH0549340B2 (en)
JPH0549343B2 (en)