JP2920123B2 - A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect - Google Patents

A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect

Info

Publication number
JP2920123B2
JP2920123B2 JP9149963A JP14996397A JP2920123B2 JP 2920123 B2 JP2920123 B2 JP 2920123B2 JP 9149963 A JP9149963 A JP 9149963A JP 14996397 A JP14996397 A JP 14996397A JP 2920123 B2 JP2920123 B2 JP 2920123B2
Authority
JP
Japan
Prior art keywords
weight
properties
mixed
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9149963A
Other languages
Japanese (ja)
Other versions
JPH10324825A (en
Inventor
信秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOHARA SANWA KK
Original Assignee
OOHARA SANWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOHARA SANWA KK filed Critical OOHARA SANWA KK
Priority to JP9149963A priority Critical patent/JP2920123B2/en
Publication of JPH10324825A publication Critical patent/JPH10324825A/en
Application granted granted Critical
Publication of JP2920123B2 publication Critical patent/JP2920123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遠赤外線放射特
性、抗菌性、脱臭性、防カビ性および防虫性を有すると
共に、静電気防止効果を有する塗料の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect.

【0002】[0002]

【従来の技術】従来、遠赤外線放射特性、抗菌性、脱臭
性、防カビ性および防虫性を有すると共に、静電気防止
効果を有する塗料は存在していなかった。
2. Description of the Related Art Heretofore, there have been no paints having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellent properties, and having an antistatic effect.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来は
遠赤外線放射特性、抗菌性、脱臭性、防カビ性および防
虫性を有すると共に、静電気防止効果を有する塗料は存
在していなかったため、従来の塗料を、例えば便所や浴
室あるいは台所の壁面に塗布した家屋においては抗菌作
用、脱臭作用、防カビ作用、防虫作用および静電気防止
作用を期待することが全くできないという課題があっ
た。
As described above, there has been no paint that has far-infrared radiating properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellent properties, and also has an antistatic effect. For example, in a house where a conventional paint is applied to a wall of a toilet, a bathroom or a kitchen, there is a problem that antibacterial action, deodorizing action, fungicidal action, insecticide action and antistatic action cannot be expected at all.

【0004】本発明はかかる課題を解決すべくなしたも
ので、遠赤外線放射特性、抗菌性、脱臭性、防カビ性お
よび防虫性を有すると共に、静電気防止効果を有する塗
料の製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides a method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect. It is assumed that.

【0005】[0005]

【課題を解決するための手段】本発明は、粒径15μm
以下の蛇紋石40〜60重量%および炭素5〜15重量
%を基材とすると共に、これら基材に対して助材として
粒径15μm以下のチタン15〜25重量%を添加し、
更に粒径15μm以下のマグネシア15〜25重量%を
混合材として前記基材および助材に添加して、混合機お
よび粉砕機に順次複数回に亘って投入して、前記基材、
助材および混合材を混合攪拌および粉砕して均一に混合
し、然る後200〜500℃の仮焼温度で焼成機により
焼成して得られた複合セラミックス3〜15重量%を塗
料に添加して混合攪拌するという手段、粒径15μm以
下の蛇紋石20〜30重量%および炭素5〜15重量%
を基材とすると共に、これら基材に対して助材として粒
径15μm以下のチタン15〜25重量%を添加し、更
に酸化カルシウム20〜30重量%およびシリカ15〜
25重量%を混合材として前記基材および助材に添加し
て、混合機および粉砕機に順次複数回に亘って投入し
て、前記基材、助材および混合材を混合攪拌および粉砕
して均一に混合し、然る後200〜500℃の仮焼温度
で焼成機により焼成して得られた複合セラミックス3〜
15重量%を塗料に添加して混合攪拌するという手段、
粒径15μm以下の蛇紋石5〜15重量%および炭素1
5〜25重量%を基材とすると共に、これら基材に対し
て助材として粒径15μm以下のチタン15〜25重量
%を添加し、更に粒径15μm以下のマグネシア20〜
30重量%および酸化亜鉛20〜30重量%を混合材と
して前記基材および助材に添加して、混合機および粉砕
機に順次複数回に亘って投入して、前記基材、助材およ
び混合材を混合攪拌および粉砕して均一に混合し、然る
後200〜500℃の仮焼温度で焼成機により焼成して
得られた複合セラミックス3〜15重量%を塗料に添加
して混合攪拌するという手段、粒径15μm以下の蛇紋
石20〜30重量%および炭素5〜15重量%を基材と
すると共に、これら基材に対して助材として粒径15μ
m以下のチタン5〜15重量%を添加し、更に粒径15
μm以下の酸化カルシウム5〜15重量%、マグネシア
5〜15重量%、酸化亜鉛20〜30重量%およびシリ
カ5〜15重量%を混合材として前記基材および助材に
添加して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材、助材および混合材を混合攪拌および
粉砕して均一に混合し、然る後200〜500℃の仮焼
温度で焼成機により焼成して得られた複合セラミックス
3〜15重量%を塗料に添加して混合攪拌するという手
段、粒径15μm以下の蛇紋石20〜30重量%および
炭素5〜15重量%を基材とすると共に、これら基材に
対して助材として粒径15μm以下のチタン15〜25
重量%を添加し、更に粒径15μm以下のマグネシア2
0〜30重量%およびシリカ15〜25重量%を混合材
として前記基材および助材に添加して、混合機および粉
砕機に順次複数回に亘って投入して、前記基材、助材お
よび混合材を混合攪拌および粉砕して均一に混合し、然
る後200〜500℃の仮焼温度で焼成機により焼成し
て得られた複合セラミックス3〜15重量%を塗料に添
加して混合攪拌するという手段、粒径15μm以下の蛇
紋石40〜60重量%および炭素5〜15重量%を基材
とすると共に、これら基材に対して助材として粒径15
μm以下のチタン15〜25重量%を添加し、更に粒径
15μm以下のマグネシア15〜25重量%を混合材と
して前記基材および助材に添加して、混合機および粉砕
機に順次複数回に亘って投入して、前記基材、助材およ
び混合材を混合攪拌および粉砕して均一に混合し、然る
後200〜500℃の仮焼温度で焼成機により焼成して
得られた複合セラミックス3〜15重量%および分散剤
0.1〜0.5mg/lを塗料に添加して混合攪拌する
という手段、粒径15μm以下の蛇紋石20〜30重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に酸化カルシウム20〜3
0重量%およびシリカ15〜25重量%を混合材として
前記基材および助材に添加して、混合機および粉砕機に
順次複数回に亘って投入して、前記基材、助材および混
合材を混合攪拌および粉砕して均一に混合し、然る後2
00〜500℃の仮焼温度で焼成機により焼成して得ら
れた複合セラミックス3〜15重量%および分散剤0.
1〜0.5mg/lを塗料に添加して混合攪拌するとい
う手段、粒径15μm以下の蛇紋石5〜15重量%およ
び炭素15〜25重量%を基材とすると共に、これら基
材に対して助材として粒径15μm以下のチタン15〜
25重量%を添加し、更に粒径15μm以下のマグネシ
ア20〜30重量%および酸化亜鉛20〜30重量%を
混合材として前記基材および助材に添加して、混合機お
よび粉砕機に順次複数回に亘って投入して、前記基材、
助材および混合材を混合攪拌および粉砕して均一に混合
し、然る後200〜500℃の仮焼温度で焼成機により
焼成して得られた複合セラミックス3〜15重量%およ
び分散剤0.1〜0.5mg/lを塗料に添加して混合
攪拌するという手段、粒径15μm以下の蛇紋石20〜
30重量%および炭素5〜15重量%を基材とすると共
に、これら基材に対して助材として粒径15μm以下の
チタン5〜15重量%を添加し、更に粒径15μm以下
の酸化カルシウム5〜15重量%、マグネシア5〜15
重量%、酸化亜鉛20〜30重量%およびシリカ5〜1
5重量%を混合材として前記基材および助材に添加し
て、混合機および粉砕機に順次複数回に亘って投入し
て、前記基材、助材および混合材を混合攪拌および粉砕
して均一に混合し、然る後200〜500℃の仮焼温度
で焼成機により焼成して得られた複合セラミックス3〜
15重量%および分散剤0.1〜0.5mg/lを塗料
に添加して混合攪拌するという手段、粒径15μm以下
の蛇紋石20〜30重量%および炭素5〜15重量%を
基材とすると共に、これら基材に対して助材として粒径
15μm以下のチタン15〜25重量%を添加し、更に
粒径15μm以下のマグネシア20〜30重量%および
シリカ15〜25重量%を混合材として前記基材および
助材に添加して、混合機および粉砕機に順次複数回に亘
って投入して、前記基材、助材および混合材を混合攪拌
および粉砕して均一に混合し、然る後200〜500℃
の仮焼温度で焼成機により焼成して得られた複合セラミ
ックス3〜15重量%および分散剤0.1〜0.5mg
/lを塗料に添加して混合攪拌するという手段、のいず
れかを採用することにより、上記課題を解決した。
According to the present invention, a particle size of 15 μm is provided.
The following serpentine 40 to 60% by weight and 5 to 15% by weight of carbon are used as base materials, and 15 to 25% by weight of titanium having a particle size of 15 μm or less is added to these base materials as an aid,
Further, 15 to 25% by weight of magnesia having a particle size of 15 μm or less is added to the base material and the auxiliary material as a mixed material, and the mixture is sequentially added to a mixer and a pulverizer a plurality of times.
The auxiliary material and the mixed material are uniformly mixed by mixing, stirring and pulverizing, and then 3 to 15% by weight of a composite ceramic obtained by firing with a firing machine at a calcining temperature of 200 to 500 ° C. is added to the paint. Mixing and stirring, serpentine having a particle size of 15 μm or less 20 to 30% by weight and carbon 5 to 15% by weight
And 15 to 25% by weight of titanium having a particle size of 15 μm or less as an auxiliary material, and 20 to 30% by weight of calcium oxide and 15 to 25% by weight of silica.
25% by weight is added as a mixed material to the base material and the auxiliary material, and the mixture is added to the mixer and the pulverizer sequentially several times to mix, stir and pulverize the base material, the auxiliary material and the mixed material. The composite ceramics 3 to 3 obtained by mixing uniformly and then firing by a firing machine at a calcination temperature of 200 to 500 ° C.
Means of adding 15% by weight to the paint and mixing and stirring;
5 to 15% by weight of serpentine having a particle size of 15 μm or less and carbon 1
5 to 25% by weight of a base material, 15 to 25% by weight of titanium having a particle size of 15 μm or less are added to these base materials as an auxiliary material,
30% by weight and 20-30% by weight of zinc oxide are added to the base material and the auxiliary material as a mixed material, and the mixture is added to a mixer and a pulverizer several times in order, so that the base material, the auxiliary material and the mixed material are mixed. The materials are mixed, stirred and pulverized so as to be uniformly mixed, and then 3 to 15% by weight of a composite ceramic obtained by firing with a firing machine at a calcining temperature of 200 to 500 ° C. is added to the paint and mixed and stirred. The base material is composed of 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon.
5 to 15% by weight of titanium having a particle diameter of 15 m or less.
5 to 15% by weight of calcium oxide of 5 μm or less, 5 to 15% by weight of magnesia, 20 to 30% by weight of zinc oxide and 5 to 15% by weight of silica are added to the base material and the auxiliary material as a mixture, and The base material, the auxiliary material and the mixed material are put into the pulverizer a plurality of times sequentially, and the base material, the auxiliary material and the mixed material are mixed, stirred, pulverized, and uniformly mixed, and then calcined at a calcining temperature of 200 to 500 ° C. Means of adding 3 to 15% by weight of the obtained composite ceramics to the paint and mixing and stirring the mixture, using 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon as a base material, Titanium 15 to 25 having a particle size of 15 μm or less as an auxiliary material for these substrates.
% Of magnesia 2 having a particle size of 15 μm or less.
0 to 30% by weight and 15 to 25% by weight of silica are added as a mixed material to the base material and the auxiliary material, and the mixture is added to the mixer and the pulverizer several times sequentially, so that the base material, the auxiliary material and The mixed material is mixed and stirred and pulverized so as to be uniformly mixed, and then 3 to 15% by weight of a composite ceramic obtained by firing at a calcining temperature of 200 to 500 ° C. by a firing machine is added to the paint and mixed and stirred. The base material is composed of 40 to 60% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon.
15 to 25% by weight of titanium having a particle size of not more than 15 μm, and 15 to 25% by weight of magnesia having a particle size of not more than 15 μm are added to the base material and the auxiliary material as a mixture, and the mixture is sequentially fed to a mixer and a pulverizer several times. And the above-mentioned base material, auxiliary material and mixed material are mixed, stirred and pulverized, uniformly mixed, and then fired by a firing machine at a calcining temperature of 200 to 500 ° C. Means of adding 3 to 15% by weight and a dispersant of 0.1 to 0.5 mg / l to the paint and mixing and stirring, based on 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon And a titanium 1 having a particle size of 15 μm or less
5 to 25% by weight, and calcium oxide 20 to 3
0% by weight and 15 to 25% by weight of silica are added to the base material and the auxiliary material as a mixed material, and the mixture is added to a mixer and a pulverizer sequentially several times to obtain the base material, the auxiliary material and the mixed material. Is mixed and stirred and crushed to mix uniformly, and then 2
3 to 15% by weight of a composite ceramic obtained by calcining at a calcining temperature of 00 to 500 ° C. by a calciner,
A means of adding 1 to 0.5 mg / l to the paint and mixing and stirring; a base material comprising 5 to 15% by weight of serpentine having a particle size of 15 μm or less and 15 to 25% by weight of carbon; Titanium with a particle size of 15 μm or less
25% by weight, and 20 to 30% by weight of magnesia having a particle size of 15 μm or less and 20 to 30% by weight of zinc oxide are added to the base material and the auxiliary material as a mixture. The substrate,
The auxiliary material and the mixed material are uniformly mixed by stirring and pulverizing, and thereafter, 3 to 15% by weight of a composite ceramic obtained by firing at a calcining temperature of 200 to 500 ° C and a dispersing agent. Means of adding 1 to 0.5 mg / l to the paint and mixing and stirring, serpentine having a particle size of 15 μm or less
30% by weight and 5 to 15% by weight of carbon as a base material, and 5 to 15% by weight of titanium having a particle size of 15 μm or less are added to these base materials as an auxiliary material. ~ 15% by weight, magnesia 5 ~ 15
Wt%, zinc oxide 20-30 wt% and silica 5-1
5% by weight is added to the base material and the auxiliary material as a mixed material, and the mixture is added to the mixer and the pulverizer several times sequentially to mix, stir and pulverize the base material, the auxiliary material and the mixed material. The composite ceramics 3 to 3 obtained by mixing uniformly and then firing by a firing machine at a calcination temperature of 200 to 500 ° C.
A means of adding 15% by weight and a dispersant of 0.1 to 0.5 mg / l to a paint and mixing and stirring; 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon as a base material At the same time, 15 to 25% by weight of titanium having a particle size of 15 μm or less is added to these base materials as an auxiliary material, and 20 to 30% by weight of magnesia having a particle size of 15 μm or less and 15 to 25% by weight of silica are mixed. It is added to the base material and the auxiliary material, and is sequentially charged into the mixer and the pulverizer a plurality of times, and the base material, the auxiliary material and the mixed material are mixed, stirred, pulverized, and uniformly mixed. After 200-500 ° C
3 to 15% by weight of a composite ceramic obtained by firing with a firing machine at a calcining temperature of 0.1 to 0.5 mg of a dispersant
The above problem was solved by adopting any one of means of adding / l to the paint and mixing and stirring.

【0006】[0006]

【発明の実施の形態】本発明者は、単一成分のセラミッ
クスにつき、夫々遠赤外線放射率、抗菌率、脱臭率、防
カビ性を示す防カビ抵抗、ノミやダニ等の衛生害虫に対
する防虫性を示す忌避率を個々に測定すると共に、更に
数種のセラミックスにつき固有の電気抵抗を示す比抵抗
について測定し、遠赤外線放射率、抗菌率、脱臭率、防
カビ抵抗および忌避率のいずれか数種類の項目において
優れたセラミックスと、前記項目の外、更に比抵抗が小
さく、導電性において優れたセラミックスを複数種類一
定比率で混合攪拌し、然る後仮焼して遠赤外線放射特
性、抗菌性、脱臭性、防カビ性、防虫性を有すると共
に、静電気防止効果において優れた複合セラミックスを
製造し、そして該複合セラミックスを塗料に添加して混
合攪拌することにより、遠赤外線放射特性、抗菌性、脱
臭性、防カビ性および防虫性を有すると共に、静電気防
止効果を有する塗料を完成した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present invention has proposed that a single-component ceramic has a far-infrared ray emissivity, an antibacterial rate, a deodorizing rate, a fungicide resistance showing fungicide properties, and an insect repellent property against sanitary pests such as fleas and mites. In addition to measuring the repellency rate individually indicating the specific resistance of several types of ceramics, further measure the specific resistance, indicating the far-infrared emissivity, antibacterial rate, deodorization rate, mold resistance and repellency rate. In the item of excellent ceramics, and in addition to the above items, a mixture of a plurality of ceramics having low specific resistance and excellent in conductivity at a constant ratio, mixed and stirred at a constant ratio, and then calcined, far-infrared radiation properties, antibacterial properties, By producing a composite ceramic having deodorizing, anti-mold and insect-proof properties, and having an excellent antistatic effect, and adding the composite ceramic to a paint and mixing and stirring. Far-infrared radiation properties, antibacterial, deodorizing, which has antifungal properties and insecticidal and completed the coatings with antistatic effect.

【0007】本発明に使用される遠赤外線放射特性、抗
菌性、脱臭性、防カビ性、防虫性を有すると共に、静電
気防止効果を有する複合セラミックスを構成する単一成
分のセラミックスの平均放射率、抗菌率、脱臭率、防カ
ビ抵抗、忌避率、比抵抗および水素イオン濃度を測定し
たところ、表1に示す測定値を得た。なお、前記防カビ
抵抗はJIS Z 2911によって測定した。
[0007] The average emissivity of the single component ceramics constituting the composite ceramics having far-infrared radiation properties, antibacterial properties, deodorization properties, fungicidal properties, insect repellency and antistatic effects used in the present invention, When the antibacterial rate, the deodorizing rate, the antifungal resistance, the repellent rate, the specific resistance and the hydrogen ion concentration were measured, the measured values shown in Table 1 were obtained. The mold resistance was measured according to JIS Z 2911.

【0008】[0008]

【表1】 [Table 1]

【0009】表1の測定結果から、炭素が96%の極め
て高い遠赤外線放射率を有し、そしてシリカが94%、
チタンが93%、蛇紋石が90%、マグネシアが89
%、酸化亜鉛が87%、最低の酸化カルシウムでも84
%という高い遠赤外線放射率を有すると共に、いずれも
水素イオン濃度はアルカリ域にあることが判った。ま
た、蛇紋石はブドウ状球菌に対して97%、大腸菌に対
して94%と高い抗菌率を有すると共に、硫化水素に対
して90%、アンモニアに対して89%と高い脱臭率を
有し、また酸化カルシウムはブドウ状球菌に対して90
%、大腸菌に対して89%と高い抗菌率を有するが、硫
化水素に対して67%、アンモニアに対して63%の中
程度の脱臭率しかなく、更にマグネシアはブドウ状球菌
に対して97%、大腸菌に対して96%の高い抗菌率を
有するが、硫化水素に対して75%、アンモニアに対し
て65%の中程度の脱臭率しかなく、更にまた酸化亜鉛
は、硫化水素に対して88%、アンモニアに対して85
%の高い脱臭率を有するが、ブドウ状球菌に対して40
%、大腸菌に対して35%の低い抗菌率しかなく、また
更にシリカはアンモニアに対して97%、硫化水素に対
して96%の脱臭率を有するが、大腸菌およびブドウ状
球菌に対する抗菌率はいずれも0%であり、そしてチタ
ンおよび炭素はいずれも抗菌率、脱臭率ともに0%で抗
菌性および脱臭性がないことが判った。
From the measurements in Table 1, the carbon has a very high infrared emissivity of 96% and the silica has 94%
93% titanium, 90% serpentine, 89 magnesia
%, 87% zinc oxide, 84 with minimum calcium oxide
%, And the hydrogen ion concentration was found to be in the alkaline region in all cases. In addition, serpentine has a high antibacterial rate of 97% against staphylococci and 94% against Escherichia coli, and has a high deodorization rate of 90% against hydrogen sulfide and 89% against ammonia, Calcium oxide is 90% against staphylococci.
%, 89% against Escherichia coli, but only moderate deodorization rate of 67% against hydrogen sulfide and 63% against ammonia, and magnesia is 97% against staphylococci. Has a high antibacterial rate of 96% against Escherichia coli, but has only a moderate deodorization rate of 75% against hydrogen sulfide and 65% against ammonia. 85% for ammonia
% Deodorization rate, but 40% against Staphylococcus
%, Low antibacterial rate against Escherichia coli, and silica has a deodorizing rate of 97% against ammonia and 96% against hydrogen sulfide. Was 0%, and both titanium and carbon were 0% in both antibacterial and deodorizing rates, indicating no antibacterial and deodorizing properties.

【0010】防カビ抵抗は蛇紋石が最高値の3を示し、
次いでマグネシアが2で中程度の防カビ性を有するが、
その他のセラミックスはいずれも1で、防カビ性がほと
んどないことが判った。
The anti-mildew resistance of serpentine is 3 which is the highest value.
Next, magnesia is 2 and has a moderate antifungal property,
The other ceramics were all 1 and proved to have little fungicide resistance.

【0011】そして、ノミやダニ等に対する防虫性を示
す忌避率は、蛇紋石が97%で極めて高く、マグネシア
も85%で高いが、シリカは68%、酸化カルシウムは
50%と中程度の忌避率しかなく、酸化亜鉛は30%、
チタンおよび炭素はいずれも20%で低い忌避率しかな
いことが判った。
[0011] The repellent rate of insect repellency against fleas and ticks is extremely high at 97% for serpentine and 85% for magnesia, but is 68% for silica and 50% for calcium oxide. Rate, zinc oxide is 30%,
Both titanium and carbon were found to have low repellency at 20%.

【0012】前記抗菌率、脱臭率、防カビ抵抗および忌
避率において劣っているチタンおよび炭素を本発明に使
用される複合セラミックスの素材として採用するのは、
チタンは光によって他のセラミックスを活性励起させる
という作用を有し、炭素は比抵抗が低く導電性において
は優れているため、両者を混合することにより、炭素は
チタンの活性励起作用によって炭素の特性である導電性
が活性励起されて更に導電率を高くすることができるた
めである。
Titanium and carbon, which are inferior in antibacterial rate, deodorization rate, mold resistance and repellent rate, are employed as the material of the composite ceramic used in the present invention.
Titanium has the effect of actively exciting other ceramics by light, and carbon has a low specific resistance and excellent conductivity, so by mixing both, the carbon becomes the characteristic of carbon due to the active excitation of titanium. This is because the conductivity is actively excited to further increase the conductivity.

【0013】上記の結果より、本発明者は遠赤外線放射
率、抗菌率、脱臭率、防カビ抵抗および忌避率におい
て、高率の数値を示した蛇紋石および遠赤外線放射率が
高く、且つ比抵抗が小さく導電性において優れた炭素を
本発明に使用する複合セラミックスの基材として採用
し、これら基材に助材としてチタンを添加し、更に混合
材として酸化カルシウム、マグネシア、酸化亜鉛および
シリカのうち1〜2種類または4種類を添加して混合攪
拌することによって、遠赤外線放射特性、抗菌性、脱臭
性、防カビ性および防虫性を有すると共に、静電気防止
効果を有する複合セラミックスが得られると考え、前記
各セラミックスをその配合比率を種々変えて複合セラミ
ックスを製造した。
From the above results, the present inventors have found that the serpentine and far-infrared emissivity which showed high values in the far-infrared emissivity, antibacterial rate, deodorization rate, fungicide resistance and repellency were high, and Carbon having low resistance and excellent conductivity is used as the base material of the composite ceramics used in the present invention, titanium is added as an auxiliary material to these base materials, and calcium oxide, magnesia, zinc oxide and silica are further used as a mixture. By mixing and stirring one or two or four of these, a composite ceramic having far-infrared radiation properties, antibacterial properties, deodorizing properties, mold-proofing and insect-proofing properties, and having an antistatic effect can be obtained. Considering this, composite ceramics were manufactured by changing the mixing ratio of each of the above ceramics in various ways.

【0014】すなわち、基材となる蛇紋石40〜60重
量%、好ましくは50重量%および炭素5〜15重量
%、好ましくは10重量%に対して、助材としてチタン
15〜25重量%、好ましくは20重量%、混合材とし
てマグネシア15〜25重量%、好ましくは20重量%
を添加混合して複合セラミックスAを製造し、または基
材となる蛇紋石20〜30重量%、好ましくは25重量
%および炭素5〜15重量%、好ましくは10重量%に
対して、助材としてチタン15〜25重量%、好ましく
は20重量%、混合材として酸化カルシウム20〜30
重量%、好ましくは25重量%およびシリカ15〜25
重量%、好ましくは20重量%を添加混合して複合セラ
ミックスBを製造し、そしてまたは基材となる蛇紋石5
〜15重量%、好ましくは10重量%および炭素15〜
25重量%、好ましくは20重量%に対して、助材とし
てチタン15〜25重量%、好ましくは20重量%、混
合材としてマグネシア20〜30重量%、好ましくは2
5重量および酸化亜鉛20〜30重量%、好ましくは2
5重量%を添加混合して複合セラミックスCを製造し、
更に基材となる蛇紋石20〜30重量%、好ましくは2
5重量%および炭素5〜15重量%、好ましくは10重
量%に対して、助材としてチタン5〜15重量%、好ま
しくは10重量%、混合材として酸化カルシウム5〜1
5重量%、好ましくは10重量%、マグネシア5〜15
重量%、好ましくは10重量%、酸化亜鉛20〜30重
量%、好ましくは25重量%およびシリカ5〜15重量
%、好ましくは10重量%を添加混合して複合セラミッ
クスDを製造し、また更に基材となる蛇紋石20〜30
重量%、好ましくは25重量%および炭素5〜15重量
%、好ましくは10重量%に対して、助材としてチタン
15〜25重量%、好ましくは20重量%、混合材とし
てマグネシア20〜30重量%、好ましくは25重量%
およびシリカ15〜25重量%、好ましくは20重量%
を添加混合して複合セラミックスEを製造した。
That is, titanium is 15 to 25% by weight, preferably 50 to 15% by weight, preferably 10% by weight, and titanium is 15 to 25% by weight, preferably 50 to 60% by weight, preferably 50% by weight and serpentine as a base material. Is 20% by weight, magnesia as a mixture is 15 to 25% by weight, preferably 20% by weight.
Is added and mixed to produce a composite ceramics A, or as a supplement to 20 to 30% by weight, preferably 25% by weight, and 5 to 15% by weight, preferably 10% by weight of carbon as a base material of serpentine. 15-25% by weight, preferably 20% by weight of titanium, 20-30% by weight of calcium oxide as a mixture
%, Preferably 25% by weight and silica 15-25
%, Preferably 20% by weight, to produce a composite ceramics B, and / or a serpentine 5 serving as a substrate.
~ 15 wt%, preferably 10 wt% and carbon 15 ~
For 25% by weight, preferably 20% by weight, 15 to 25% by weight, preferably 20% by weight of titanium as an auxiliary material, and 20 to 30% by weight of magnesia as a mixed material, preferably 2% by weight.
5% by weight and 20-30% by weight of zinc oxide, preferably 2%
5% by weight is added and mixed to produce a composite ceramic C,
Furthermore, 20 to 30% by weight of serpentine serving as a substrate, preferably 2%
For 5% by weight and 5 to 15% by weight, preferably 10% by weight of carbon, 5 to 15% by weight, preferably 10% by weight of titanium as an auxiliary and 5 to 1% by weight of calcium oxide as a mixture.
5% by weight, preferably 10% by weight, magnesia 5 to 15
% By weight, preferably 10% by weight, 20 to 30% by weight, preferably 25% by weight of zinc oxide and 5 to 15% by weight, preferably 10% by weight of silica to produce a composite ceramics D. Serpentine stones 20-30
% By weight, preferably 25% by weight, and 5 to 15% by weight, preferably 10% by weight of carbon, 15 to 25% by weight, preferably 20% by weight of titanium as an auxiliary and 20 to 30% by weight of magnesia as a mixture. , Preferably 25% by weight
And silica 15 to 25% by weight, preferably 20% by weight
Was added and mixed to produce a composite ceramics E.

【0015】そして、本発明で採用する複合セラミック
スを構成する単一成分のセラミックスである蛇紋石、炭
素、チタン、酸化カルシウム、マグネシア、酸化亜鉛お
よびシリカを夫々表2に示す好ましい混合率により混合
して製造された複合セラミックスの遠赤外線放射率、抗
菌率、脱臭率、防カビ抵抗、忌避率、比抵抗および水素
イオン濃度を測定した結果を表3に示す。前記防カビ抵
抗はJIS Z 2911によって測定した。なお、表
3における記号A〜Eは表2の記号A〜Eと対応してい
る。
The single-component ceramics constituting the composite ceramics used in the present invention, ie, serpentine, carbon, titanium, calcium oxide, magnesia, zinc oxide and silica were mixed at the preferable mixing ratios shown in Table 2, respectively. Table 3 shows the results of measuring the far-infrared emissivity, antibacterial rate, deodorizing rate, mold resistance, repellent rate, specific resistance, and hydrogen ion concentration of the composite ceramics manufactured in the above manner. The mold resistance was measured according to JIS Z 2911. The symbols A to E in Table 3 correspond to the symbols A to E in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】前記表3の測定結果から、いずれの複合セ
ラミックスも、その複合セラミックスを構成する各単一
成分の各セラミックスの相乗効果により遠赤外線放射率
が93〜95%、大腸菌に対する抗菌率が95〜97
%、ブドウ状球菌に対する抗菌率が95〜98%、アン
モニアに対する脱臭率が95〜96%、硫化水素に対す
る脱臭率が94〜96%と極めて高く、遠赤外線放射特
性、抗菌性および脱臭性において優れていると共に、防
カビ抵抗が3および忌避率が95〜98%で高く、防カ
ビ性およびノミやダニ等の衛生害虫に対する防虫性を示
す忌避効果においても優れ、更に各複合セラミックスと
も炭素およびチタンが含まれているため、比抵抗が小さ
く導電性において優れていることが判った。
From the measurement results in Table 3 above, all of the composite ceramics have a far-infrared emissivity of 93 to 95% and an antibacterial rate against Escherichia coli of 95 due to the synergistic effect of each single component ceramic constituting the composite ceramic. ~ 97
%, The antibacterial rate against staphylococci is 95-98%, the deodorizing rate against ammonia is 95-96%, the deodorizing rate against hydrogen sulfide is extremely high as 94-96%, and it is excellent in far-infrared radiation properties, antibacterial properties and deodorizing properties. In addition, the antifungal resistance is 3 and the repellent rate is high at 95 to 98%, which is excellent in the antifungal property and the repellent effect showing insect repellency against sanitary pests such as fleas and ticks. , The specific resistance was small and the conductivity was excellent.

【0019】以下本発明に採用する遠赤外線放射特性、
抗菌性、脱臭性を有すると共に、防カビ性、防虫性およ
び導電性を有する複合セラミックスの製造方法について
更に詳細に説明する。前記複合セラミックスを構成する
各単一成分の各セラミックスの粒径は、15μm以下の
微粉末を使用する必要があり、そしてこれら各セラミッ
クスを混合すると、各セラミックスの比重、水分、湿度
等の物理的特性が夫々異なると共に、これら原材料であ
る前記各セラミックスは粒径が15μm以下の微粉末で
あるため、凝集化が安易に作用して、前記各セラミック
スを均一に混合することは極めて容易ではない。
The far-infrared radiation characteristics employed in the present invention are as follows:
A method for producing a composite ceramic having antibacterial properties, deodorizing properties, and fungicidal properties, insect repellency and conductivity will be described in more detail. The particle diameter of each ceramic of each single component constituting the composite ceramics must be fine powder of 15 μm or less, and when these ceramics are mixed, the specific gravity, moisture, humidity, etc. In addition to the different characteristics, each of the ceramics, which are the raw materials, is a fine powder having a particle size of 15 μm or less. Therefore, it is very difficult to uniformly mix the ceramics because agglomeration easily acts.

【0020】そこで本発明者は、表2に示すような好ま
しい混合比率により前記基材、助材および混合材を夫々
所定比率で混合機に投入して混合攪拌した後、その混合
物を粉砕機に投入して粉砕し、そして更に、前記粉砕し
たものを再び混合機に投入して混合攪拌し、その後また
粉砕機に投入して粉砕するという工程を順次約30分間
繰返すという手段を採用することにより、基材、助材お
よび混合材とが均一に混合された複合セラミックスを製
造することができた。
The inventor of the present invention introduced the base material, the auxiliary material, and the mixed material into the mixer at predetermined ratios according to the preferable mixing ratios shown in Table 2 and mixed and stirred the mixture. By throwing in and pulverizing, and further, repeating the process of throwing the ground into the mixer again, mixing and stirring, and then throwing into the mill again and grinding for about 30 minutes. Thus, a composite ceramic in which the base material, the auxiliary material, and the mixed material were uniformly mixed was manufactured.

【0021】そして、前記均一に混合された複合セラミ
ックスの化学特性の安定化を図るため、複合セラミック
スを200〜500℃の仮焼温度で焼成機により焼成し
て、遠赤外線放射特性、抗菌性、脱臭性、防カビ性、防
虫性および静電気防止効果を有する複合セラミックスと
するのである。
In order to stabilize the chemical properties of the uniformly mixed composite ceramics, the composite ceramics is fired by a firing machine at a calcining temperature of 200 to 500 ° C. to obtain far-infrared radiation properties, antibacterial properties, The purpose is to provide a composite ceramic having deodorizing properties, antifungal properties, insect repellency and antistatic effects.

【0022】なお、前記複合セラミックスの材料である
各セラミックスの水素イオン濃度は、表1に示すように
アルカリ性状を呈している。また、前記各セラミックス
より成る複合セラミックスも表3に示すようにアルカリ
性状を呈している。
Incidentally, the hydrogen ion concentration of each ceramic which is a material of the composite ceramics has an alkaline property as shown in Table 1. Further, the composite ceramics composed of each of the above ceramics also has an alkaline property as shown in Table 3.

【0023】表1記載の水素イオン濃度を有する各セラ
ミックスを複合した本発明に採用される複合セラミック
スの水素イオン濃度は、前記のように200℃〜500
℃で焼成されているので、表3に示すように非常に安定
してアルカリ性状を呈し、水素イオン濃度の経時変化が
ない。更に、これら複合セラミックスは仮焼によって結
晶化されて、電界エネルギー(陽イオン)を発生する機
能を有する複合セラミックスになる。前記複合セラミッ
クスがアルカリ性状を呈するのは、その焼成加工中に不
純物がガス化されるので、単一成分のセラミックスより
もアルカリ性に移行するからである。
The hydrogen ion concentration of the composite ceramics employed in the present invention in which each ceramic having the hydrogen ion concentration shown in Table 1 is composited is 200 ° C. to 500 ° C. as described above.
Since it is fired at ℃, it has a very stable alkaline property as shown in Table 3, and there is no change in hydrogen ion concentration with time. Further, these composite ceramics are crystallized by calcination to become composite ceramics having a function of generating electric field energy (cation). The reason why the composite ceramic exhibits an alkaline property is that impurities are gasified during the sintering process, so that the composite ceramic becomes more alkaline than a single component ceramic.

【0024】前記表3から前記製造方法によって得られ
た複合セラミックスは、陽イオンを有する複合セラミッ
クスであり、アルカリ域の水素イオンになり、1年以上
という長時間に亘って経時変化がなく安定していて、脱
臭機構は分解作用であるという特性を有し、その結果前
記製造方法によって得られた複合セラミックスは、遠赤
外線放射特性を有すると共に、抗菌性、脱臭性、防カビ
性および防虫性を兼ね備える外、前記したようにチタン
および炭素が含まれているため、導電性において優れて
おり静電気防止効果を有していることが判る。
From Table 3 above, the composite ceramics obtained by the above-described production method is a composite ceramic having cations, becomes hydrogen ions in an alkaline region, and is stable without a temporal change over a long period of one year or more. The deodorizing mechanism has the property of decomposing action. As a result, the composite ceramics obtained by the production method has far-infrared radiation properties, as well as antibacterial properties, deodorizing properties, fungicidal properties and insect repellency. In addition to having both, as described above, since it contains titanium and carbon, it is understood that it is excellent in conductivity and has an antistatic effect.

【0025】一般的に生菌の表層(壁)は陰イオンであ
って、そのため中性領域(pH7.0〜7.5)でしか
生息が不可能であるが、前記製造方法によって得られた
複合化された複合セラミックスの最大の特性として陽イ
オンを発生するので、陰イオンである菌体の表層(壁)
が、前記複合セラミックスの陽イオンによって破壊され
ると同時に、菌体蛋白質が変成して、呼吸困難となり死
滅するのである。
In general, the surface layer (wall) of living bacteria is an anion, and therefore can only live in the neutral region (pH 7.0 to 7.5). The biggest characteristic of the composite ceramics is that it generates cations as the greatest property, so the surface layer (wall) of bacterial cells that are anions
However, at the same time as being destroyed by the cations of the composite ceramics, the bacterial protein is denatured and becomes difficult to breathe.

【0026】更に、硫化水素およびアンモニア等に対す
る脱臭作用は、物理的吸着または化学的吸着等の一般的
作用ではなく、分解作用のため飽和状態にならないの
で、抗菌力と同様に、脱臭力を半恒久的に有すると共
に、毒性をも有していないのである。
Furthermore, the deodorizing effect on hydrogen sulfide and ammonia is not a general effect such as physical adsorption or chemical adsorption, but does not become saturated due to the decomposing effect. It is permanent and has no toxicity.

【0027】前記複合セラミックスは各セラミックス間
の粒間(異なるセラミックスとの間)に電界エネルギー
(陽イオン)を発生するが、光エネルギーによって励起
されてそのエネルギーが大きくなり、このエネルギーに
よって複合セラミックスが有している陽イオンを発生す
るという固有の特性が励起され、これにより遠赤外線放
射特性、抗菌性、脱臭性、防カビ性、防虫性および導電
性が大きくなり、その作用効果も大きくなる。
The above-mentioned composite ceramics generates electric field energy (cations) between grains between ceramics (between different ceramics), but is excited by light energy to increase the energy. The inherent property of generating cations is excited, thereby increasing far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties, insect-controlling properties, and conductivity, as well as its effects.

【0028】本発明製造方法の素材となる複合セラミッ
クスの粒子の粒径は、塗料の生産に支障のない程度に充
分小さいことが好ましく、粒径5〜15μm程度のもの
の利用も可能であるが、通常は0.1〜5μm程度のも
の、特に0.2〜1.5μm程度のものが好適である。
The particle size of the particles of the composite ceramics used as the raw material of the production method of the present invention is preferably small enough not to hinder the production of paint, and those having a particle size of about 5 to 15 μm can be used. Usually, those having a thickness of about 0.1 to 5 μm, particularly 0.2 to 1.5 μm are suitable.

【0029】そして、塗料に対する前記複合セラミック
スの混合率は、3〜15重量%の範囲が好ましく、5〜
10重量%が特に好ましい。遠赤外線放射率、抗菌率、
脱臭率、防カビ抵抗、忌避率および導電率を高くする点
では、前記複合セラミックスの混合率が高い程好ましい
が、塗料の塗着の点ではその混合率が低いほうが好まし
いことが多い。
The mixing ratio of the composite ceramic to the paint is preferably in the range of 3 to 15% by weight,
10% by weight is particularly preferred. Far-infrared emissivity, antibacterial rate,
The higher the mixing ratio of the composite ceramic is, the better the deodorization rate, the resistance to mold, the repellency, and the conductivity are, but the lower the mixing ratio is, the more often the coating ceramic is applied.

【0030】本発明塗料は、前記製造方法によって得ら
れた粒径15μm以下の複合セラミックス3〜15重量
%を塗料に添加して混合攪拌することにより製造するこ
とができる。なお、前記複合セラミックスを塗料に添加
混合する場合、分散剤は一般的には添加混合する必要は
ないが、本発明塗料の製造時に添加混合すると複合セラ
ミックスの凝集が起こらず製造が容易であり、更に貯
蔵、塗装作業時にも凝集が起こらないので使用すること
が好ましい。使用する分散剤は特に限定する必要はない
が、好ましくはヘキサメタリン酸ソーダ0.1%を0.
1〜0.5mg/l程度使用することが推奨される。
The paint of the present invention can be produced by adding 3 to 15% by weight of a composite ceramic having a particle size of 15 μm or less obtained by the above-mentioned production method to the paint and mixing and stirring. In addition, when the above-mentioned composite ceramics are added to and mixed with the coating material, the dispersant generally does not need to be added and mixed, but when added and mixed at the time of manufacturing the coating material of the present invention, the aggregation of the composite ceramics does not occur and the manufacturing is easy, Further, it is preferable to use it because coagulation does not occur during storage and painting operations. The dispersant to be used is not particularly limited, but is preferably 0.1% sodium hexametaphosphate in 0.1%.
It is recommended to use about 1 to 0.5 mg / l.

【0031】前記本発明製造方法により得られた塗料を
便所、浴室および台所の壁面に塗布した後、遠赤外線放
射率、抗菌率、脱臭率、防カビ抵抗、忌避率、比抵抗お
よび水素イオン濃度についてそれぞれ測定した平均値を
表4〜表6に示す。なお、便所には複合セラミックスA
を7.0重量%を添加混合した塗料、浴室には複合セラ
ミックスCを5.0重量%を添加混合した塗料、台所に
は複合セラミックスEを10重量%を添加混合した塗料
をそれぞれ使用した。なお、いずれの塗料にも分散剤は
不使用であった。
After the paint obtained by the production method of the present invention is applied to the walls of toilets, bathrooms and kitchens, far-infrared ray emissivity, antibacterial rate, deodorization rate, mold resistance, repellency, specific resistance and hydrogen ion concentration Table 4 to Table 6 show the average values measured for the respective samples. In the toilet, composite ceramics A
Was added and mixed in a bathroom, a paint was used in a bathroom in which 5.0% by weight of composite ceramics C was added and mixed, and a kitchen was used in a kitchen in which 10% by weight of composite ceramics E was added and mixed. Note that no dispersant was used in any of the paints.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】前記表4〜表6の測定結果より、いずれも
遠赤外線放射率が92〜94%、大腸菌に対する抗菌率
が95〜96%、ブドウ状球菌に対する抗菌率が96〜
97%、アンモニアに対する脱臭率が94〜95%、硫
化水素に対する脱臭率が94〜95%、防カビ抵抗が最
高値の3および忌避率が94〜97%でいずれも高く、
また、比抵抗は小さく導電性が高く、更に水素イオン濃
度がいずれもアルカリ域にあることが判った。
From the measurement results in Tables 4 to 6, the far infrared ray emissivity is 92 to 94%, the antibacterial rate against Escherichia coli is 95 to 96%, and the antibacterial rate against staphylococci is 96 to 94%.
97%, the deodorization rate for ammonia is 94 to 95%, the deodorization rate for hydrogen sulfide is 94 to 95%, the antifungal resistance is 3, the highest value, and the repellent rate is 94 to 97%.
In addition, it was found that the specific resistance was small, the conductivity was high, and the hydrogen ion concentration was in the alkaline region.

【0036】従って、前記各塗料を便所の壁面に使用し
た場合、臭気の発生がなく、大腸菌、ブドウ状球菌の発
生を阻止し、また前記各塗料を浴室の壁面に使用した場
合、カビおよび臭気の発生がなく、更に前記各塗料を台
所の壁面に使用した場合、ノミやダニ等の衛生害虫を寄
せつけず、飲食物の加工時に発生する食品等の臭いを脱
臭し、更に大腸菌、ブドウ状球菌の発生を阻止すること
が立証され、然も比抵抗が小さく導電性がよいため静電
気防止効果を有することが判った。
Accordingly, when each of the above-mentioned paints is used on the wall of a toilet, no odor is generated and the generation of Escherichia coli and staphylococcus is prevented, and when each of the above-mentioned paints is used on the wall of a bathroom, mold and odor are not produced. In addition, when each of the above paints is used for kitchen walls, it does not attract sanitary pests such as fleas and ticks, deodorizes food and other odors generated during the processing of food and drink, and further produces Escherichia coli and staphylococci. It has been proved that the occurrence of the phenomenon can be prevented, and it has an antistatic effect because the specific resistance is small and the conductivity is good.

【0037】[0037]

【発明の効果】本発明は上述のように、塗料に遠赤外線
放射特性、抗菌性、脱臭性、防カビ性および防虫性を有
すると共に、静電気防止効果を有する複合セラミックス
が添加混合されているため、該塗料を便所、浴室、台所
の壁面に塗布すると、前記便所、浴室、台所等の大腸菌
やブドウ状球菌の発生を阻止し、アンモニアや硫化水素
による悪臭を脱臭すると共に、カビの発生を阻止し、ノ
ミやダニ等の衛生害虫が寄せつけず、然も静電気防止効
果をも有する。
As described above, the present invention is based on the fact that a composite ceramic having far-infrared radiating properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellent properties and an antistatic effect is added to a paint. When the paint is applied to the walls of toilets, bathrooms, and kitchens, it prevents the generation of Escherichia coli and staphylococci in the toilets, bathrooms, kitchens, and the like, deodorizes the odor caused by ammonia and hydrogen sulfide, and prevents the generation of mold. In addition, sanitary pests such as fleas and ticks do not approach, and also have an antistatic effect.

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒径15μm以下の蛇紋石40〜60重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に粒径15μm以下のマグ
ネシア15〜25重量%を混合材として前記基材および
助材に添加して、混合機および粉砕機に順次複数回に亘
って投入して、前記基材、助材および混合材を混合攪拌
および粉砕して均一に混合し、然る後200〜500℃
の仮焼温度で焼成機により焼成して得られた複合セラミ
ックス3〜15重量%を塗料に添加して混合攪拌するこ
とを特徴とする遠赤外線放射特性、抗菌性、脱臭性、防
カビ性および防虫性を有すると共に、静電気防止効果を
有する塗料の製造方法。
1. A base material comprising 40 to 60% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon, and titanium 1 having a particle size of 15 μm or less as an auxiliary material for these base materials.
5 to 25% by weight, and 15 to 25% by weight of magnesia having a particle size of 15 μm or less are added to the base material and the auxiliary material as a mixture, and the mixture is sequentially charged into a mixer and a pulverizer a plurality of times. Then, the base material, the auxiliary material and the mixed material are mixed, stirred and pulverized to be uniformly mixed, and then at 200 to 500 ° C.
3-15% by weight of the composite ceramics obtained by firing with a firing machine at a calcining temperature of 3 to the coating material and mixing and stirring, far-infrared radiation properties, antibacterial properties, deodorization properties, antifungal properties and A method for producing a paint having insect repellency and having an antistatic effect.
【請求項2】粒径15μm以下の蛇紋石20〜30重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に酸化カルシウム20〜3
0重量%およびシリカ15〜25重量%を混合材として
前記基材および助材に添加して、混合機および粉砕機に
順次複数回に亘って投入して、前記基材、助材および混
合材を混合攪拌および粉砕して均一に混合し、然る後2
00〜500℃の仮焼温度で焼成機により焼成して得ら
れた複合セラミックス3〜15重量%を塗料に添加して
混合攪拌することを特徴とする遠赤外線放射特性、抗菌
性、脱臭性、防カビ性および防虫性を有すると共に、静
電気防止効果を有する塗料の製造方法。
2. A base material comprising 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon.
5 to 25% by weight, and calcium oxide 20 to 3
0% by weight and 15 to 25% by weight of silica are added to the base material and the auxiliary material as a mixed material, and the mixture is added to a mixer and a pulverizer sequentially several times to obtain the base material, the auxiliary material and the mixed material. Is mixed and stirred and crushed to mix uniformly, and then 2
3-15% by weight of composite ceramics obtained by calcining at a calcining temperature of 00-500 ° C. by a calciner is added to the paint and mixed and stirred, far-infrared radiation properties, antibacterial properties, deodorant properties, A method for producing a paint having antifungal and insect repellent properties and having an antistatic effect.
【請求項3】粒径15μm以下の蛇紋石5〜15重量%
および炭素15〜25重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に粒径15μm以下のマグ
ネシア20〜30重量%および酸化亜鉛20〜30重量
%を混合材として前記基材および助材に添加して、混合
機および粉砕機に順次複数回に亘って投入して、前記基
材、助材および混合材を混合攪拌および粉砕して均一に
混合し、然る後200〜500℃の仮焼温度で焼成機に
より焼成して得られた複合セラミックス3〜15重量%
を塗料に添加して混合攪拌することを特徴とする遠赤外
線放射特性、抗菌性、脱臭性、防カビ性および防虫性を
有すると共に、静電気防止効果を有する塗料の製造方
法。
3. Serpentine having a particle size of 15 μm or less 5 to 15% by weight.
And 15 to 25% by weight of carbon as a base material, and titanium 1 having a particle size of 15 μm or less
5 to 25% by weight, and 20 to 30% by weight of magnesia having a particle size of 15 μm or less and 20 to 30% by weight of zinc oxide are added to the base material and the auxiliary material as a mixture, and the mixture is added to a mixer and a pulverizer. The base material, the auxiliary material, and the mixed material are mixed and stirred and pulverized to be mixed uniformly, and then calcined at a calcining temperature of 200 to 500 ° C. by a calciner. 3-15% by weight of composite ceramic
A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorization properties, fungicidal properties and insect repellency, and also having an antistatic effect, characterized by adding a compound to a paint and stirring the mixture.
【請求項4】粒径15μm以下の蛇紋石20〜30重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン5
〜15重量%を添加し、更に粒径15μm以下の酸化カ
ルシウム5〜15重量%、マグネシア5〜15重量%、
酸化亜鉛20〜30重量%およびシリカ5〜15重量%
を混合材として前記基材および助材に添加して、混合機
および粉砕機に順次複数回に亘って投入して、前記基
材、助材および混合材を混合攪拌および粉砕して均一に
混合し、然る後200〜500℃の仮焼温度で焼成機に
より焼成して得られた複合セラミックス3〜15重量%
を塗料に添加して混合攪拌することを特徴とする遠赤外
線放射特性、抗菌性、脱臭性、防カビ性および防虫性を
有すると共に、静電気防止効果を有する塗料の製造方
法。
4. A base material comprising 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon, and titanium 5 having a particle size of 15 μm or less as an auxiliary material for these base materials.
To 15% by weight of calcium oxide having a particle size of 15 μm or less, 5 to 15% by weight of magnesia,
20 to 30% by weight of zinc oxide and 5 to 15% by weight of silica
Is added to the base material and the auxiliary material as a mixed material, and the mixture is added to the mixer and the pulverizer sequentially several times, and the base material, the auxiliary material and the mixed material are mixed, stirred, pulverized, and uniformly mixed. Then, 3 to 15% by weight of a composite ceramic obtained by firing at a calcining temperature of 200 to 500 ° C by a firing machine.
A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorization properties, fungicidal properties and insect repellency, and also having an antistatic effect, characterized by adding a compound to a paint and stirring the mixture.
【請求項5】粒径15μm以下の蛇紋石20〜30重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に粒径15μm以下のマグ
ネシア20〜30重量%およびシリカ15〜25重量%
を混合材として前記基材および助材に添加して、混合機
および粉砕機に順次複数回に亘って投入して、前記基
材、助材および混合材を混合攪拌および粉砕して均一に
混合し、然る後200〜500℃の仮焼温度で焼成機に
より焼成して得られた複合セラミックス3〜15重量%
を塗料に添加して混合攪拌することを特徴とする遠赤外
線放射特性、抗菌性、脱臭性、防カビ性および防虫性を
有すると共に、静電気防止効果を有する塗料の製造方
法。
5. A base material comprising 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon, and titanium 1 having a particle size of 15 μm or less as an auxiliary material for these base materials.
5 to 25% by weight, and 20 to 30% by weight of magnesia having a particle size of 15 μm or less and 15 to 25% by weight of silica
Is added to the base material and the auxiliary material as a mixed material, and the mixture is added to the mixer and the pulverizer sequentially several times, and the base material, the auxiliary material and the mixed material are mixed, stirred, pulverized, and uniformly mixed. Then, 3 to 15% by weight of a composite ceramic obtained by firing at a calcining temperature of 200 to 500 ° C by a firing machine.
A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorization properties, fungicidal properties and insect repellency, and also having an antistatic effect, characterized by adding a compound to a paint and stirring the mixture.
【請求項6】粒径15μm以下の蛇紋石40〜60重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に粒径15μm以下のマグ
ネシア15〜25重量%を混合材として前記基材および
助材に添加して、混合機および粉砕機に順次複数回に亘
って投入して、前記基材、助材および混合材を混合攪拌
および粉砕して均一に混合し、然る後200〜500℃
の仮焼温度で焼成機により焼成して得られた複合セラミ
ックス3〜15重量%および分散剤0.1〜0.5mg
/lを塗料に添加して混合攪拌することを特徴とする遠
赤外線放射特性、抗菌性、脱臭性、防カビ性および防虫
性を有すると共に、静電気防止効果を有する塗料の製造
方法。
6. A base material comprising 40 to 60% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon, and titanium 1 having a particle size of 15 μm or less as an auxiliary material for these base materials.
5 to 25% by weight, and 15 to 25% by weight of magnesia having a particle size of 15 μm or less are added to the base material and the auxiliary material as a mixture, and the mixture is sequentially charged into a mixer and a pulverizer a plurality of times. Then, the base material, the auxiliary material and the mixed material are mixed, stirred and pulverized to be uniformly mixed, and then at 200 to 500 ° C.
3 to 15% by weight of a composite ceramic obtained by firing with a firing machine at a calcining temperature of 0.1 to 0.5 mg of a dispersant
A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, antifungal properties and insect repellency, and having an antistatic effect, characterized by adding / l to a paint and mixing and stirring.
【請求項7】粒径15μm以下の蛇紋石20〜30重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に酸化カルシウム20〜3
0重量%およびシリカ15〜25重量%を混合材として
前記基材および助材に添加して、混合機および粉砕機に
順次複数回に亘って投入して、前記基材、助材および混
合材を混合攪拌および粉砕して均一に混合し、然る後2
00〜500℃の仮焼温度で焼成機により焼成して得ら
れた複合セラミックス3〜15重量%および分散剤0.
1〜0.5mg/lを塗料に添加して混合攪拌すること
を特徴とする遠赤外線放射特性、抗菌性、脱臭性、防カ
ビ性および防虫性を有すると共に、静電気防止効果を有
する塗料の製造方法。
7. A base material comprising 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon.
5 to 25% by weight, and calcium oxide 20 to 3
0% by weight and 15 to 25% by weight of silica are added to the base material and the auxiliary material as a mixed material, and the mixture is added to a mixer and a pulverizer sequentially several times to obtain the base material, the auxiliary material and the mixed material. Is mixed and stirred and crushed to mix uniformly, and then 2
3 to 15% by weight of a composite ceramic obtained by calcining at a calcining temperature of 00 to 500 ° C. by a calciner,
Production of paints having far-infrared radiation properties, antibacterial properties, deodorant properties, fungicidal properties and insect repellency, which are characterized by adding 1 to 0.5 mg / l to the paints and mixing and stirring, and having an antistatic effect. Method.
【請求項8】粒径15μm以下の蛇紋石5〜15重量%
および炭素15〜25重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン1
5〜25重量%を添加し、更に粒径15μm以下のマグ
ネシア20〜30重量%および酸化亜鉛20〜30重量
%を混合材として前記基材および助材に添加して、混合
機および粉砕機に順次複数回に亘って投入して、前記基
材、助材および混合材を混合攪拌および粉砕して均一に
混合し、然る後200〜500℃の仮焼温度で焼成機に
より焼成して得られた複合セラミックス3〜15重量%
および分散剤0.1〜0.5mg/lを塗料に添加して
混合攪拌することを特徴とする遠赤外線放射特性、抗菌
性、脱臭性、防カビ性および防虫性を有すると共に、静
電気防止効果を有する塗料の製造方法。
8. Serpentine having a particle size of 15 μm or less 5 to 15% by weight.
And 15 to 25% by weight of carbon as a base material, and titanium 1 having a particle size of 15 μm or less
5 to 25% by weight, and 20 to 30% by weight of magnesia having a particle size of 15 μm or less and 20 to 30% by weight of zinc oxide are added to the base material and the auxiliary material as a mixture, and the mixture is added to a mixer and a pulverizer. The base material, the auxiliary material, and the mixed material are mixed and stirred and pulverized to be mixed uniformly, and then calcined at a calcining temperature of 200 to 500 ° C. by a calciner. 3-15% by weight of composite ceramic
And far-infrared radiation, antibacterial, deodorizing, antifungal and insect repellent properties, characterized in that 0.1 to 0.5 mg / l of a dispersant is added to the paint and mixed and stirred, and also has an antistatic effect. A method for producing a paint having:
【請求項9】粒径15μm以下の蛇紋石20〜30重量
%および炭素5〜15重量%を基材とすると共に、これ
ら基材に対して助材として粒径15μm以下のチタン5
〜15重量%を添加し、更に粒径15μm以下の酸化カ
ルシウム5〜15重量%、マグネシア5〜15重量%、
酸化亜鉛20〜30重量%およびシリカ5〜15重量%
を混合材として前記基材および助材に添加して、混合機
および粉砕機に順次複数回に亘って投入して、前記基
材、助材および混合材を混合攪拌および粉砕して均一に
混合し、然る後200〜500℃の仮焼温度で焼成機に
より焼成して得られた複合セラミックス3〜15重量%
および分散剤0.1〜0.5mg/lを塗料に添加して
混合攪拌することを特徴とする遠赤外線放射特性、抗菌
性、脱臭性、防カビ性および防虫性を有すると共に、静
電気防止効果を有する塗料の製造方法。
9. A base material comprising 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon, and titanium 5 having a particle size of 15 μm or less as an auxiliary material for these base materials.
To 15% by weight of calcium oxide having a particle size of 15 μm or less, 5 to 15% by weight of magnesia,
20 to 30% by weight of zinc oxide and 5 to 15% by weight of silica
Is added to the base material and the auxiliary material as a mixed material, and the mixture is added to the mixer and the pulverizer sequentially several times, and the base material, the auxiliary material and the mixed material are mixed, stirred, pulverized, and uniformly mixed. Then, 3 to 15% by weight of a composite ceramic obtained by firing at a calcining temperature of 200 to 500 ° C by a firing machine.
And far-infrared radiation, antibacterial, deodorizing, antifungal and insect repellent properties, characterized in that 0.1 to 0.5 mg / l of a dispersant is added to the paint and mixed and stirred, and also has an antistatic effect. A method for producing a paint having:
【請求項10】粒径15μm以下の蛇紋石20〜30重
量%および炭素5〜15重量%を基材とすると共に、こ
れら基材に対して助材として粒径15μm以下のチタン
15〜25重量%を添加し、更に粒径15μm以下のマ
グネシア20〜30重量%およびシリカ15〜25重量
%を混合材として前記基材および助材に添加して、混合
機および粉砕機に順次複数回に亘って投入して、前記基
材、助材および混合材を混合攪拌および粉砕して均一に
混合し、然る後200〜500℃の仮焼温度で焼成機に
より焼成して得られた複合セラミックス3〜15重量%
および分散剤0.1〜0.5mg/lを塗料に添加して
混合攪拌することを特徴とする遠赤外線放射特性、抗菌
性、脱臭性、防カビ性および防虫性を有すると共に、静
電気防止効果を有する塗料の製造方法。
10. A base material comprising 20 to 30% by weight of serpentine having a particle size of 15 μm or less and 5 to 15% by weight of carbon, and 15 to 25% by weight of titanium having a particle size of 15 μm or less as an aid to these base materials. %, And 20 to 30% by weight of magnesia having a particle size of 15 μm or less and 15 to 25% by weight of silica are added to the base material and the auxiliary material as a mixture, and the mixture is sequentially fed to the mixer and the pulverizer several times. The composite ceramics 3 obtained by mixing, stirring, and pulverizing the base material, the auxiliary material, and the mixed material to uniformly mix the mixture, and then calcining the calcined material at a calcining temperature of 200 to 500 ° C. ~ 15% by weight
And far-infrared radiation, antibacterial, deodorizing, antifungal and insect repellent properties, characterized in that 0.1 to 0.5 mg / l of a dispersant is added to the paint and mixed and stirred, and also has an antistatic effect. A method for producing a paint having:
JP9149963A 1997-05-26 1997-05-26 A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect Expired - Lifetime JP2920123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9149963A JP2920123B2 (en) 1997-05-26 1997-05-26 A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149963A JP2920123B2 (en) 1997-05-26 1997-05-26 A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect

Publications (2)

Publication Number Publication Date
JPH10324825A JPH10324825A (en) 1998-12-08
JP2920123B2 true JP2920123B2 (en) 1999-07-19

Family

ID=15486442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149963A Expired - Lifetime JP2920123B2 (en) 1997-05-26 1997-05-26 A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect

Country Status (1)

Country Link
JP (1) JP2920123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432250B1 (en) * 2002-03-25 2004-05-20 주식회사 뉴멘나노텍 Forming method of anti-frictional coating layer to the contact friction face
CN1293810C (en) * 2004-03-26 2007-01-10 北京化工大学 Loaded nano magnesium oxide as bactericidal material

Also Published As

Publication number Publication date
JPH10324825A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP5354012B2 (en) Silver-based inorganic antibacterial agent, method for producing the same, and antibacterial processed product
JP5092327B2 (en) Silver inorganic antibacterial agent
JP2920123B2 (en) A method for producing a paint having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
JP2004137764A (en) Sand wall-like paint material for negative ion generation construction
KR20040084571A (en) Functional acrylic water paint that radiating an anion and a far infrared rays
JPH09209225A (en) Production of processed yarn spun by blending or twisting milk protein fiber with composite rayon fiber having antimicrobial, deodorizing and insecticidal properties and further having far infrared light radiation characteristic
JPH10167803A (en) Composite ceramics having antibacterial, deodorizing, antimold and mothproof properties as well as far infrared ray radiating characteristic and its production
JP2836020B2 (en) Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun.
JP2822321B2 (en) Composite ceramics having anti-bacterial, deodorizing, mold-proofing and insect-proofing properties while having far-infrared radiation characteristics, and method for producing the same
JPH1143896A (en) Wastern style paper having antistatic effect as well as far-infrared radiation, antimicrobial, deodorant, fungicidal and insecticidal properties and its production
JP2873215B2 (en) Process for producing foamed polyurethane having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties
CN107033692A (en) A kind of construction material of insulation
JP2879024B2 (en) A method for producing rayon having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
JPH1136189A (en) Japanese paper having far infrared radiation characteristic, antimicrobial, deodorizing, mildewproof and insect repellent property and further antistatic property and its production
KR20030054121A (en) Anti-bacteria Wallpaper Comprising Far-Infared Light Radiation Material and Method of Making the Same
JP2873195B2 (en) Wood having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties, and mite-proofing properties, and a method for processing the same
JP2000080008A (en) Inorganic antimicrobial and fungicidal agent, antimicrobial resin composition and antimicrobial resin product
JPH0565188B2 (en)
JPH0860431A (en) Production of rayon having antibacterial, deodorizing as well as far infrared radiating characteristics
JPH075354B2 (en) Deodorizing and antibacterial composite ceramics and method for producing the same
JP2876309B2 (en) Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics
JPS5948401A (en) Agricultural chemical granule having improved disintegration dispersibility
JP2696805B2 (en) Buckwheat hulls having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungus-proofing and mite-proofing properties, and a method for processing the same
JP2873196B2 (en) Wood block having far-infrared radiation properties, antibacterial property, deodorizing property, fungicidal property and insect repellent property, and processing method thereof
JP2794627B2 (en) Bed pat