JP2909028B2 - A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun. - Google Patents

A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun.

Info

Publication number
JP2909028B2
JP2909028B2 JP8277281A JP27728196A JP2909028B2 JP 2909028 B2 JP2909028 B2 JP 2909028B2 JP 8277281 A JP8277281 A JP 8277281A JP 27728196 A JP27728196 A JP 27728196A JP 2909028 B2 JP2909028 B2 JP 2909028B2
Authority
JP
Japan
Prior art keywords
weight
mixed
properties
composite
rayon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8277281A
Other languages
Japanese (ja)
Other versions
JPH09209225A (en
Inventor
信秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEGARANIN KK
Original Assignee
JEGARANIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEGARANIN KK filed Critical JEGARANIN KK
Priority to JP8277281A priority Critical patent/JP2909028B2/en
Publication of JPH09209225A publication Critical patent/JPH09209225A/en
Application granted granted Critical
Publication of JP2909028B2 publication Critical patent/JP2909028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Radiation-Therapy Devices (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抗菌性、脱臭性お
よび防虫性を有すると共に、遠赤外線放射特性を有する
複合レーヨンと牛乳蛋白繊維とを混紡または交撚して紡
糸する加工糸の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a process for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties and far infrared radiation characteristics and a milk protein fiber are mixed or twisted and spun. It is about.

【0002】[0002]

【従来の技術】従来、牛乳蛋白から得られた牛乳蛋白繊
維は広く用いられているが、抗菌性、脱臭性および防虫
性を有すると共に、遠赤外線放射特性を有するレーヨン
は存在していなかった。
2. Description of the Related Art Hitherto, milk protein fibers obtained from milk protein have been widely used, but there has been no rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation characteristics.

【0003】[0003]

【発明が解決しようとする課題】本発明は、抗菌性、脱
臭性および防虫性を有すると共に、遠赤外線放射特性を
有する複合レーヨンを製造すると共に、該レーヨンと従
来公知の牛乳蛋白繊維とを混紡または交撚して紡糸する
ことより、前記複合レーヨンと牛乳蛋白繊維の両者の特
性の相乗効果を期待できる加工糸を得ることを課題とす
る。
SUMMARY OF THE INVENTION The present invention is to produce a composite rayon having antibacterial properties, deodorizing properties and insect repellency and far-infrared radiation characteristics, and to blend the rayon with a conventionally known milk protein fiber. Another object of the present invention is to obtain a processed yarn capable of expecting a synergistic effect of the properties of both the composite rayon and the milk protein fiber by spinning by twisting.

【0004】[0004]

【課題を解決するための手段】本発明は、粒径5μm以
下の蛇紋石微粉末を基材とすると共に、該基材が20〜
80重量%に対して、粒径5μm以下の硅石の微粉末を
混合材として、該混合材を10〜40重量%の割合で前
記基材に添加混合すると共に、更に粒径5μm以下の酸
化亜鉛の微粉末を助材として、該助材を10〜40重量
%の割合で前記基材に添加混合して、混合機および粉砕
機に順次複数回に亘って投入して、前記基材と混合材お
よび助材とを混合攪拌および粉砕して均一に混合し、然
る後200〜500℃の仮焼温度で焼成機により焼成し
て得られた複合セラミックスを、レーヨン製造工程中の
混合工程において、ビスコースを投入した混合機に5〜
10重量%投入するか、または脱泡工程において、ビス
コースを投入した紡糸タンクに5〜10重量%投入し
て、前記ビスコースに複合セラミックスを添加混入して
得られた複合レーヨン65〜85重量%に対して、牛乳
蛋白繊維15〜35重量%を混紡または交撚して紡糸す
るという手段、粒径5μm以下の蛇紋石微粉末を基材と
すると共に、該基材が20〜80重量%に対して、粒径
5μm以下の硅石の微粉末を混合材として、該混合材を
10〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の電気石の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに複合セ
ラミックスを添加混入して得られた複合レーヨン50〜
70重量%に対して、牛乳蛋白繊維30〜50重量%を
混紡または交撚して紡糸するという手段、粒径5μm以
下の蛇紋石微粉末を基材とすると共に、該基材が10〜
40重量%に対して、粒径5μm以下の酸化亜鉛の微粉
末を混合材として、該混合材を10〜40重量%の割合
で前記基材に添加混合すると共に、更に粒径5μm以下
のゼオライトの微粉末を助材として、該助材を20〜8
0重量%の割合で前記基材に添加混合して、混合機およ
び粉砕機に順次複数回に亘って投入して、前記基材と混
合材および助材とを混合攪拌および粉砕して均一に混合
し、然る後200〜500℃の仮焼温度で焼成機により
焼成して得られた複合セラミックスを、レーヨン製造工
程中の混合工程において、ビスコースを投入した混合機
に5〜10重量%投入するか、または脱泡工程におい
て、ビスコースを投入した紡糸タンクに5〜10重量%
投入して、前記ビスコースに複合セラミックスを添加混
入して得られた複合レーヨン30〜50重量%に対し
て、牛乳蛋白繊維50〜70重量%を混紡または交撚し
て紡糸するという手段、粒径5μm以下の蛇紋石微粉末
を基材とすると共に、該基材が10〜40重量%に対し
て、粒径5μm以下の酸化亜鉛の微粉末を混合材とし
て、該混合材を10〜40重量%の割合で前記基材に添
加混合すると共に、更に粒径5μm以下の酸化カルシウ
ムの微粉末を助材として、該助材を20〜80重量%の
割合で前記基材に添加混合して、混合機および粉砕機に
順次複数回に亘って投入して、前記基材と混合材および
助材とを混合攪拌および粉砕して均一に混合し、然る後
200〜500℃の仮焼温度で焼成機により焼成して得
られた複合セラミックスを、レーヨン製造工程中の混合
工程において、ビスコースを投入した混合機に5〜10
重量%投入するか、または脱泡工程において、ビスコー
スを投入した紡糸タンクに5〜10重量%投入して、前
記ビスコースに複合セラミックスを添加混入して得られ
た複合レーヨン15〜35重量%に対して、牛乳蛋白繊
維65〜85重量%を混紡または交撚して紡糸するとい
う手段、のいずれかを採用することにより、上記課題を
解決した。
According to the present invention, a serpentine fine powder having a particle size of 5 μm or less is used as a base material, and the base material is composed of 20 to 50 μm.
80% by weight of fine silica powder having a particle size of 5 μm or less is used as a mixed material, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. The fine powder is used as an auxiliary material, and the auxiliary material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and the mixture is put into a mixer and a crusher several times sequentially to mix with the base material. The mixed ceramic obtained by sintering and mixing the material and the auxiliary material with a sintering machine at a calcining temperature of 200 to 500 ° C. is then mixed in a rayon manufacturing process. , 5 to the viscose mixer
10% by weight, or 5 to 10% by weight in a spinning tank charged with viscose in the defoaming step, and 65 to 85% by weight of composite rayon obtained by adding and mixing a composite ceramic into the viscose. % To 15% by weight of a milk protein fiber, and spinning by blending or twisting. The base material is a serpentine fine powder having a particle size of 5 μm or less, and the base material is 20 to 80% by weight. On the other hand, a fine powder of silica stone having a particle size of 5 μm or less is used as a mixed material, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and the mixture is added to a mixer and a pulverizer sequentially several times, so that the base material, the mixture material and the auxiliary material are mixed. Mix and stir and grind the ingredients Then, in the mixing step of the rayon production process, the composite ceramic obtained by firing at a calcining temperature of 200 to 500 ° C. in a mixing step in a rayon manufacturing process is charged with 5 to 10% by weight into a mixing machine charged with viscose. Alternatively, in the defoaming step, 5 to 10% by weight is charged into a spinning tank into which viscose is charged, and a composite rayon 50 to 50% obtained by adding and mixing a composite ceramic into the viscose.
A method in which 30 to 50% by weight of milk protein fiber is mixed or twisted and spun with 70% by weight, and a serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A zinc oxide fine powder having a particle size of 5 μm or less is used as a mixed material with respect to 40% by weight, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and a zeolite having a particle size of 5 μm or less is further added. 20 to 8 fine powder of
The mixture was added to the base material at a ratio of 0% by weight, and the mixture was put into a mixer and a pulverizer sequentially several times. The composite ceramics obtained by mixing and then calcining at a calcining temperature of 200 to 500 ° C. by a calciner is mixed in a viscose-mixed machine in a mixing step in a rayon production process by 5 to 10% by weight. In the charging or defoaming step, 5 to 10% by weight is added to the spinning tank charged with viscose.
Means for mixing and spinning by mixing or twisting 50 to 70% by weight of milk protein fiber with respect to 30 to 50% by weight of composite rayon obtained by adding and mixing the composite ceramics into the viscose. The base material is a serpentine fine powder having a diameter of 5 μm or less. The base material is 10 to 40% by weight, and the zinc oxide fine powder having a particle size of 5 μm or less is used as a mixed material. % By weight and further mixed with the base material at a ratio of 20 to 80% by weight, further using a fine powder of calcium oxide having a particle size of 5 μm or less as an auxiliary material. , Into a mixer and a pulverizer in succession a plurality of times, and mix and stir and pulverize the base material and the admixture and auxiliary materials, and then uniformly calcine the mixture at a temperature of 200 to 500 ° C. Ceramics obtained by firing with a firing machine , In the mixing step in the rayon manufacturing process, the mixer was charged with viscose 5-10
5% to 10% by weight in a spinning tank charged with viscose in a defoaming step, and 15 to 35% by weight of a composite rayon obtained by adding and mixing a composite ceramic into the viscose. On the other hand, the above-mentioned problem has been solved by adopting any one of means of spinning by mixing or twisting 65 to 85% by weight of milk protein fiber.

【0005】[0005]

【発明の実施の形態】先ず本発明者は、単一成分のセラ
ミックスにつき、夫々抗菌率と脱臭率および遠赤外線放
射率につき個々に測定し、抗菌率または脱臭率並びに遠
赤外線放射率において優れたものを抽出すると共に、前
記各セラミックスを基材、混合材および助材のいずれか
として採用してこれを一定比率で混合攪拌し、然る後仮
焼して抗菌性および脱臭性を有すると共に、遠赤外線放
射特性を有し、更に防虫性をも有する複合セラミックス
を製造し、そして該複合セラミックスをレーヨン製造工
程中においてビスコースに添加混入することにより、本
発明の素材となる抗菌性、脱臭性および防虫性を有する
と共に、遠赤外線放射特性を有する複合レーヨンを完成
した。
BEST MODE FOR CARRYING OUT THE INVENTION First, the present inventor individually measured the antibacterial rate, deodorizing rate and far-infrared emissivity of a single-component ceramic, respectively, and found that it was excellent in antibacterial rate or deodorizing rate and far-infrared emissivity. While extracting the thing, each of the ceramics is adopted as one of the base material, the mixture material and the auxiliary material and mixed and stirred at a constant ratio, and then calcined to have antibacterial properties and deodorizing properties, By producing a composite ceramic having far-infrared radiation characteristics and also having insect repellency, and adding the composite ceramic to viscose during the rayon production process, the antibacterial property and deodorizing property of the material of the present invention are obtained. In addition, a composite rayon having insect repellency and far-infrared radiation characteristics was completed.

【0006】本発明の素材となる抗菌性、脱臭性および
防虫性を有すると共に、遠赤外線放射特性を有する複合
セラミックスを構成する単一成分のセラミックスの抗菌
率と脱臭率および平均放射率を測定したところ、表1、
表2に示す測定値を得た。
The antibacterial, deodorizing, and average emissivities of the single component ceramics constituting the composite ceramics having far-infrared radiation properties while having antibacterial properties, deodorizing properties, and insect repellency, which are the materials of the present invention, were measured. However, Table 1,
The measured values shown in Table 2 were obtained.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】表1の結果から、蛇紋石が大腸菌に対して
86%、ブドウ状球菌に対して96%の抗菌率を有する
と共に、臭気の発生源であるアンモニアに対して95
%、硫化水素に対して90%の脱臭率を有し、硅石は硫
化水素に対して100%、アンモニアに対しては93%
の脱臭率を有するが、抗菌性はほとんどなく、酸化亜鉛
は硫化水素に対して100%の脱臭率を有するが、アン
モニアに対してはほとんど脱臭性がなく、抗菌性もほと
んどなく、また、電気石は大腸菌に対して87%、ブド
ウ状球菌に対して83%の抗菌率を有するが、アンモニ
アや硫化水素に対しては中程度の脱臭性しかなく、ゼオ
ライトはアンモニアに対しては90%、硫化水素に対し
て80%の脱臭率を有するが、抗菌性はほとんどなく、
酸化カルシウムはアンモニアや硫化水素に対して80%
の脱臭率を有し、大腸菌に対して85%、ブドウ状球菌
に対して95%の高い抗菌率を有していることが判っ
た。更に、表2の結果より前記各セラミックスとも遠赤
外線放射率が85〜96%で高いことが判った。
From the results in Table 1, it can be seen that serpentine has an antibacterial rate of 86% against Escherichia coli and 96% against staphylococci, and 95% against ammonia which is an odor source.
%, Deodorization rate of 90% for hydrogen sulfide, silica stone is 100% for hydrogen sulfide, 93% for ammonia
Has a deodorizing rate of almost 100%, but has almost no antibacterial property. Zinc oxide has a deodorizing rate of 100% for hydrogen sulfide, but has little deodorizing property for ammonia, little antibacterial property, and electric power. Stone has an antibacterial rate of 87% against Escherichia coli and 83% against staphylococci, but has only moderate deodorizing properties against ammonia and hydrogen sulfide, and zeolite has 90% against ammonia, It has a deodorization rate of 80% against hydrogen sulfide, but has almost no antibacterial properties.
Calcium oxide is 80% of ammonia and hydrogen sulfide
It was found to have a high antibacterial rate of 85% against Escherichia coli and 95% against Staphylococcus. Further, from the results in Table 2, it was found that the far-infrared emissivity of each of the ceramics was high at 85 to 96%.

【0010】上記の結果より、本発明者は大腸菌とブド
ウ状球菌のいずれに対しても高い抗菌率を有すると共
に、アンモニアや硫化水素に対しても高い脱臭率を有
し、且つ放射率が比較的高い蛇紋石を本発明に使用する
複合セラミックスの基材として採用し、この基材となる
蛇紋石に、混合材として硅石または酸化亜鉛を添加混合
し、更に助材として、酸化亜鉛(混合材として酸化亜鉛
を用いた場合は除外する)、電気石、ゼオライト、酸化
カルシウムのいずれかを前記基材に添加混合することに
よって、抗菌性、脱臭性および防虫性を有すると共に、
遠赤外線を放射する複合セラミックスが得られると考
え、前記各セラミックスをその各配合比率を種々変えて
抗菌率、脱臭率、ノミやダニ等の衛生害虫に対する防虫
性を示す忌避率および遠赤外線放射率について測定し
た。
From the above results, the present inventor has a high antibacterial activity against both Escherichia coli and staphylococci, a high deodorizing activity against ammonia and hydrogen sulfide, and a comparative emissivity. High serpentine is used as the base material of the composite ceramics used in the present invention, and the serpentine base material is mixed with silica or zinc oxide as a mixture, and zinc oxide (mixed material) Excluding the case where zinc oxide is used as)), tourmaline, zeolite, and calcium oxide are added to and mixed with the base material, thereby having antibacterial properties, deodorizing properties and insect repellency,
Considering that composite ceramics that emit far-infrared rays can be obtained, antibacterial rate, deodorization rate, repellent rate showing insect repellency against sanitary pests such as fleas and ticks, and far-infrared emissivity by variously changing the mixing ratio of each of the above ceramics Was measured.

【0011】前記測定の結果、基材が蛇紋石、混合材が
硅石、助材が酸化亜鉛の場合、それぞれ蛇紋石20〜8
0重量%、硅石10〜40重量%、酸化亜鉛10〜40
重量%とするのが好ましく、特に好ましくは蛇紋石50
重量%、硅石25重量%、酸化亜鉛25重量%とするこ
とが推奨され、また、基材が蛇紋石、混合材が硅石、助
材が電気石の場合、それぞれ蛇紋石20〜80重量%、
硅石10〜40重量%、電気石10〜40重量%とする
のが好ましく、特に好ましくは蛇紋石50重量%、硅石
25重量%、電気石25重量%とすることが推奨され、
更に、基材が蛇紋石、混合材が酸化亜鉛、助材がゼオラ
イトの場合、それぞれ蛇紋石10〜40重量%、酸化亜
鉛10〜40重量%、ゼオライト20〜80重量%とす
るのが好ましく、特に好ましくは蛇紋石25重量%、酸
化亜鉛25重量%、ゼオライト50重量%とすることが
推奨され、また更に、基材が蛇紋石、混合材が酸化亜
鉛、助材が酸化カルシウムの場合、それぞれ蛇紋石10
〜40重量%、酸化亜鉛10〜40重量%、酸化カルシ
ウム20〜80重量%とするのが好ましく、特に好まし
くは蛇紋石25重量%、酸化亜鉛25重量%、酸化カル
シウム50重量%とすることが推奨されることが判っ
た。
As a result of the measurement, when the base material is serpentine, the mixed material is silica stone, and the auxiliary material is zinc oxide,
0% by weight, 10-40% by weight of silica stone, 10-40% of zinc oxide
%, Particularly preferably 50% serpentine.
% By weight, 25% by weight of silica stone and 25% by weight of zinc oxide. When the base material is serpentine, the mixed material is silica stone, and the auxiliary material is tourmaline, the serpentine is 20 to 80% by weight, respectively.
It is preferable to use 10 to 40% by weight of silica stone and 10 to 40% by weight of tourmaline, and it is particularly preferable to use 50% by weight of serpentine, 25% by weight of silica stone, and 25% by weight of tourmaline.
Further, when the base material is serpentine, the mixed material is zinc oxide, and the auxiliary material is zeolite, the serpentine is preferably 10 to 40% by weight, zinc oxide 10 to 40% by weight, and zeolite 20 to 80% by weight, respectively. It is particularly preferable to use 25% by weight of serpentine, 25% by weight of zinc oxide and 50% by weight of zeolite. Further, when the base material is serpentine, the mixture is zinc oxide, and the auxiliary material is calcium oxide, Serpentine 10
Preferably, the content is set to 40 to 40% by weight, 10 to 40% by weight of zinc oxide, and 20 to 80% by weight of calcium oxide, and particularly preferably 25% by weight of serpentine, 25% by weight of zinc oxide, and 50% by weight of calcium oxide. It turned out to be recommended.

【0012】そして、本発明で採用する複合セラミック
スを構成する単一成分のセラミックスである蛇紋石、硅
石、酸化亜鉛、電気石、ゼオライト、酸化カルシウムを
夫々表3に示す好ましい混合率により混合して製造され
た複合セラミックスの遠赤外線放射率、忌避率、抗菌率
および脱臭率を測定した結果を表4に示す。なお、表4
における記号1〜4は表3の記号1〜4と対応してい
る。
The single-component ceramics constituting the composite ceramics used in the present invention, such as serpentine, silica, zinc oxide, tourmaline, zeolite, and calcium oxide, are mixed at the preferable mixing ratios shown in Table 3, respectively. Table 4 shows the results of measuring the far-infrared emissivity, repellency, antibacterial rate, and deodorization rate of the manufactured composite ceramics. Table 4
The symbols 1 to 4 in Table 1 correspond to the symbols 1 to 4 in Table 3.

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】前記表4の結果から、いずれの複合セラミ
ックスも、その複合セラミックスを構成する各単一成分
の各セラミックスの相乗効果により抗菌率および脱臭率
において高い数値が出て、抗菌性および脱臭性において
優れていると共に、遠赤外線放射特性および衛生害虫に
対する防虫性を示す忌避効果においても優れていること
が判った。
From the results shown in Table 4 above, all the composite ceramics showed high values in the antibacterial and deodorizing rates due to the synergistic effect of the ceramics of each single component constituting the composite ceramics. It was also found to be excellent in far-infrared radiation characteristics and repellent effect showing insect repellency to sanitary insect pests.

【0016】以下本発明に採用する抗菌性、脱臭性およ
び防虫性を有すると共に、遠赤外線放射特性を有する複
合セラミックスの製造方法について更に詳細に説明す
る。前記複合セラミックスを構成する各単一成分の各セ
ラミックスの粒径は、5μm以下の微粉末を使用する必
要があり、そしてこれら各セラミックスを混合すると、
各セラミックスの比重、水分、湿度等の物理的特性が夫
々異なると共に、これら原材料である前記各セラミック
スは粒径が5μm以下の微粉末であるため、凝集化が安
易に作用して、前記各セラミックスを均一に混合するこ
とは極めて容易ではない。
Hereinafter, a method for producing a composite ceramic having antibacterial properties, deodorizing properties and insect repellency and far-infrared radiation characteristics employed in the present invention will be described in more detail. The particle size of each ceramic of each single component constituting the composite ceramics needs to use fine powder of 5 μm or less, and when these ceramics are mixed,
Each ceramic has different physical properties such as specific gravity, moisture, humidity, etc., and each of the ceramics as a raw material is a fine powder having a particle size of 5 μm or less. Is not very easy to mix.

【0017】そこで本発明者は、表3に示すような好ま
しい混合率により前記基材と混合材および助材とを夫々
所定比率で混合機に投入して混合攪拌した後、その混合
物を粉砕機に投入して粉砕し、そして更に、前記粉砕し
たものを再び混合機に投入して混合攪拌し、その後また
粉砕機に投入して粉砕するという工程を順次約30分間
繰返すという手段を採用することにより、基材と混合材
および助材とが均一に混合された複合セラミックスを製
造することができた。
The inventor of the present invention introduced the base material, the mixed material and the auxiliary material at predetermined ratios into a mixer at a predetermined mixing ratio as shown in Table 3 and mixed and stirred the mixture. To pulverize the mixture, and further, re-pour the pulverized substance into the mixer again, mix and stir, and then repeat the step of successively supplying the pulverized material to the pulverizer for about 30 minutes. As a result, a composite ceramic in which the base material, the mixed material, and the auxiliary material were uniformly mixed could be manufactured.

【0018】そして、前記均一に混合された複合セラミ
ックスの化学特性の安定化を図るため、複合セラミック
スを200〜500℃の仮焼温度で焼成機により焼成し
て、抗菌性、脱臭性および防虫性とを有すると共に、遠
赤外線放射特性を有する複合セラミックスとするのであ
る。
In order to stabilize the chemical properties of the uniformly mixed composite ceramics, the composite ceramics are fired at a calcining temperature of 200 to 500 ° C. by a firing machine to provide antibacterial, deodorizing and insect repellent properties. And a composite ceramic having far-infrared radiation characteristics.

【0019】なお、前記複合セラミックスの材料である
各セラミックスの水素イオン濃度は、表5に示すように
アルカリ性状を呈している。また、前記各セラミックス
より成る複合セラミックスも表6に示すようにアルカリ
性状を呈している。なお、表6における記号1〜4は表
3の記号1〜4と対応している。
The hydrogen ion concentration of each of the ceramics as the material of the composite ceramics has an alkaline property as shown in Table 5. Also, the composite ceramics composed of each of the above ceramics has an alkaline property as shown in Table 6. Symbols 1 to 4 in Table 6 correspond to symbols 1 to 4 in Table 3.

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【表6】 [Table 6]

【0022】表5記載の水素イオン濃度を有する各セラ
ミックスを複合した本発明に採用される複合セラミック
スの水素イオン濃度は、前記のように200℃〜500
℃で焼成されているので、表6に示すように非常に安定
してアルカリ性状を呈し、水素イオン濃度の経時変化が
ない。更に、これら複合セラミックスは仮焼によって結
晶化されて、電界エネルギー(陽イオン)を発生する機
能を有する複合セラミックスになる。前記複合セラミッ
クスがアルカリ性状を呈するのは、その焼成加工中に不
純物がガス化されるので、単一成分のセラミックスより
もアルカリ性に移行するからである。
The hydrogen ion concentration of the composite ceramics employed in the present invention in which each ceramic having the hydrogen ion concentration shown in Table 5 is composited is 200 ° C. to 500 ° C. as described above.
Since it is calcined at ° C., as shown in Table 6, it exhibits an extremely stable alkaline property, and the hydrogen ion concentration does not change with time. Further, these composite ceramics are crystallized by calcination to become composite ceramics having a function of generating electric field energy (cation). The reason why the composite ceramic exhibits an alkaline property is that impurities are gasified during the sintering process, so that the composite ceramic becomes more alkaline than a single component ceramic.

【0023】前記表4〜表6から前記製造方法によって
得られた複合セラミックスは、陽イオンを有する複合セ
ラミックスであり、アルカリ域の水素イオンになり、1
年以上という長時間に亘って経時変化がなく安定してい
て、脱臭機構は分解作用であるという特性を有し、その
結果前記製造方法によって得られた複合セラミックス
は、遠赤外線放射特性を有する外に、抗菌性、脱臭性お
よび防虫性を兼ね備えていることが判る。
From Tables 4 to 6, the composite ceramics obtained by the above-described production method is a composite ceramic having a cation, and becomes hydrogen ions in an alkaline region.
It is stable for a long time of not less than one year without change over time, and has a property that the deodorizing mechanism is a decomposing action. As a result, the composite ceramics obtained by the above-described manufacturing method has a far infrared radiation characteristic. In addition, it can be seen that it has both antibacterial property, deodorizing property and insect repellent property.

【0024】一般的に生菌の表層(壁)は陰イオンであ
って、そのため中性領域(pH7.0〜7.5)でしか
生息が不可能であるが、前記製造方法によって得られた
複合化された複合セラミックスの最大の特性として陽イ
オンを発生するので、陰イオンである菌体の表層(壁)
が、前記複合セラミックスの陽イオンによって破壊され
ると同時に、菌体蛋白質が変成して、呼吸困難となり死
滅するのである。
Generally, the surface layer (wall) of living bacteria is an anion, and therefore can only live in the neutral region (pH 7.0 to 7.5). The biggest characteristic of the composite ceramics is that it generates cations as the greatest property, so the surface layer (wall) of bacterial cells that are anions
However, at the same time as being destroyed by the cations of the composite ceramics, the bacterial protein is denatured and becomes difficult to breathe.

【0025】更に、硫化水素およびアンモニア等に対す
る脱臭作用は、物理的吸着または化学的吸着等の一般的
作用ではなく、分解作用のため飽和状態にならないの
で、抗菌力と同様に、脱臭力を半恒久的に有すると共
に、毒性をも有していないのである。
Furthermore, the deodorizing action on hydrogen sulfide and ammonia is not a general action such as physical adsorption or chemical adsorption, but does not become saturated due to decomposition action. It is permanent and has no toxicity.

【0026】本発明の素材となる複合セラミックスの粒
子の粒径は、レーヨンの生産に支障のない程度に充分小
さいことが好ましい。比較的太いレーヨンの場合は粒径
5〜15μm程度のものの利用も可能であるが、通常は
0.1〜5μm程度のもの、特に0.2〜1.5μm程
度のものが好適である。逆に粒径が0.1μm以下の場
合は粒子の凝集が起り易く、不都合なことが多い。
It is preferable that the particle size of the composite ceramic particles used as the material of the present invention is sufficiently small so as not to hinder the production of rayon. In the case of relatively thick rayon, those having a particle size of about 5 to 15 μm can be used, but usually those having a particle size of about 0.1 to 5 μm, particularly about 0.2 to 1.5 μm are suitable. Conversely, when the particle size is 0.1 μm or less, aggregation of the particles is likely to occur, which is often inconvenient.

【0027】前記製造方法により製造された複合セラミ
ックスを、公知のレーヨンの製造工程中の、ビスコース
の品質を一定、均一にするため混合機に入れて混合する
混合工程において、前記混合機に好ましくは5〜10重
量%、特に好ましくは8重量%の比率で投入して、該複
合セラミックスをビスコースに添加混入する。
In the mixing step of mixing and mixing the composite ceramics manufactured by the above manufacturing method in a known rayon manufacturing process in order to make the quality of viscose constant and uniform, the mixing is preferably performed by the mixing machine. Is added at a ratio of 5 to 10% by weight, particularly preferably 8% by weight, and the composite ceramic is added to and mixed with viscose.

【0028】または、前記複合セラミックスの混合工程
における添加混入に代えて、混合工程、濾過工程の後、
ビスコースを紡糸タンクに入れて脱泡する脱泡工程にお
いて、前記紡糸タンクに好ましくは5〜10重量%、特
に好ましくは8重量%の比率で複合セラミックスを投入
して、該複合セラミックスをビスコースに添加混入して
もよい。
Alternatively, instead of adding and mixing in the mixing step of the composite ceramics, after the mixing step and the filtration step,
In the defoaming step of putting the viscose into the spinning tank and defoaming, the composite ceramic is charged into the spinning tank at a ratio of preferably 5 to 10% by weight, particularly preferably 8% by weight. May be added.

【0029】そして、前記工程においてビスコースに複
合セラミックスを添加混入した後は、公知のレーヨン製
造工程により本発明の素材となる複合レーヨンを製造す
る。
After adding and mixing the composite ceramics into the viscose in the above process, a composite rayon as a material of the present invention is manufactured by a known rayon manufacturing process.

【0030】前記特に好ましい混合率によって得られた
表3の記号1〜4に示す複合セラミックスをセルロース
に添加混入して得られた本発明の素材となる複合レーヨ
ンにつき、抗菌率、脱臭率、忌避率および遠赤外線放射
率についてテストしたところ、表7に示す結果が得られ
た。表7の記号1〜4は表3の記号1〜4と対応してお
り、表3の混合率により製造された複合セラミックスを
用いた複合レーヨンを示している。
With respect to the composite rayon as the material of the present invention obtained by adding and mixing the composite ceramics indicated by the symbols 1 to 4 in Table 3 obtained with the above particularly preferable mixing ratio to cellulose, the antibacterial rate, the deodorizing rate, and the repellency are avoided. Tests for emissivity and far-infrared emissivity gave the results shown in Table 7. Symbols 1 to 4 in Table 7 correspond to symbols 1 to 4 in Table 3 and indicate a composite rayon using the composite ceramics manufactured according to the mixing ratios in Table 3.

【0031】[0031]

【表7】 [Table 7]

【0032】本発明に用いられる複合セラミックスは遠
赤外線放射特性を有するが、混合するセラミックスの種
類を異にして製造された複合セラミックスを用いて製造
した本発明の素材となる複合レーヨンと汎用レーヨンの
遠赤外線放射率を測定したところ、図1に示すように、
本発明の素材となる複合レーヨンの遠赤外線放射率が、
波長5μm前後より20μmにかけて80%以上と汎用
レーヨンに比して極めて高いことが判った。図中の記号
1〜4は表3の記号1〜4と対応しており、好ましい混
合率により製造された各複合セラミックスを夫々添加混
入した複合レーヨンを示している。また、本発明の素材
となる前記各複合レーヨンの水素イオン濃度を測定した
ところ、いずれもpH7.0〜7.8で中性であった。
Although the composite ceramics used in the present invention has far-infrared radiation characteristics, the composite rayon and the general-purpose rayon as the material of the present invention manufactured using the composite ceramics manufactured by using different types of ceramics to be mixed are used. When the far-infrared emissivity was measured, as shown in FIG.
The far-infrared emissivity of the composite rayon that is the material of the present invention is
It was found to be 80% or more from a wavelength around 5 μm to 20 μm, which is extremely higher than that of general-purpose rayon. Symbols 1 to 4 in the figure correspond to symbols 1 to 4 in Table 3, and indicate composite rayon to which each of the composite ceramics manufactured at a preferable mixing ratio is added and mixed. When the hydrogen ion concentration of each of the composite rayon used as the material of the present invention was measured, all were neutral at pH 7.0 to 7.8.

【0033】前記表7および図1に示すように、本発明
の素材となる複合レーヨンは、93〜95%の放射率を
有すると共に、89〜93.5%の抗菌率、87〜9
5.4%の脱臭率を有し、更に衛生害虫に対する忌避率
も92〜94%と極めて高く、汎用のレーヨンにはない
抗菌性、脱臭性、防虫性および遠赤外線放射特性が付与
されていることが判った。
As shown in Table 7 and FIG. 1, the composite rayon used as the material of the present invention has an emissivity of 93 to 95%, an antibacterial rate of 89 to 93.5%, and 87 to 9%.
It has a deodorization rate of 5.4% and an extremely high repellency against sanitary insect pests of 92 to 94%, providing antibacterial, deodorant, insect repellent and far-infrared radiation properties not available in general-purpose rayon. It turns out.

【0034】次に、前記製造方法によって得られた抗菌
性、脱臭性および防虫性を有すると共に、遠赤外線放射
特性を有する複合レーヨンと混紡または交撚して紡糸す
る牛乳蛋白繊維は既に一般に広く使用されている。この
牛乳蛋白繊維は、好ましくは、東洋紡績株式会社が商品
名「ミルクアートシノン」として販売しているものを使
用することが推奨される。前記牛乳蛋白繊維は、牛乳蛋
白を素材として用いているので、特に吸水拡散性に優
れ、保温性もよく、更に乾燥速度が速いという効果を有
することが知られている。
Next, the milk protein fiber obtained by the above-mentioned production method, which is spun by mixing or twisting with a composite rayon having antibacterial properties, deodorizing properties and insect repellency and far-infrared radiation properties, has already been widely used. Have been. As the milk protein fiber, it is recommended to use what is sold by Toyobo Co., Ltd. under the trade name "Milk Art Chinon". Since the milk protein fiber uses milk protein as a raw material, it is known that the milk protein fiber has particularly excellent effects of water absorption and diffusion, good heat retention, and a high drying rate.

【0035】本発明は、前記特性を有する複合レーヨン
と牛乳蛋白繊維とを所定比率で、従来一般に用いられて
いる混紡方法または交撚方法により紡糸して加工糸を得
るのであるが、表3に示す好ましい配合比率により製造
された複合レーヨン1〜4と牛乳蛋白繊維とは夫々次の
ような混合比率にして混紡または交撚して紡糸すること
が推奨される。すなわち、表3の記号1で示す複合セラ
ミックスを使用した複合レーヨン65〜85重量%、好
ましくは75重量%に対して、牛乳蛋白繊維15〜35
重量%、好ましくは25重量%の混合比率で混紡または
交撚して紡糸し加工糸Aを製造するか、または表3の記
号2で示す複合セラミックスを使用した複合レーヨン5
0〜70重量%、好ましくは60重量%に対して、牛乳
蛋白繊維30〜50重量%、好ましくは40重量%の混
合比率で混紡または交撚して紡糸し加工糸Bを製造する
か、あるいは表3の記号3で示す複合セラミックスを使
用した複合レーヨン30〜50重量%、好ましくは40
重量%に対して、牛乳蛋白繊維50〜70重量%、好ま
しくは60重量%の混合比率で混紡または交撚して紡糸
し加工糸Cを製造するか、更に表3の記号4で示す複合
セラミックスを使用した複合レーヨン15〜35重量
%、好ましくは25重量%に対して、牛乳蛋白繊維65
〜85重量%、好ましくは75重量%の混合比率で混紡
または交撚して紡糸し加工糸Dを製造する。
According to the present invention, processed rayon is obtained by spinning a composite rayon having the above-mentioned properties and milk protein fiber at a predetermined ratio by a conventionally used blending method or twisting method. It is recommended that the composite rayon 1 to 4 and the milk protein fiber produced according to the preferred compounding ratios shown below be mixed and / or twisted and spun in the following mixing ratios. That is, milk protein fiber 15-35% based on 65-85% by weight, preferably 75% by weight of composite rayon using the composite ceramics indicated by symbol 1 in Table 3.
% By weight, preferably 25% by weight, to produce a processed yarn A by blending or twisting, or a composite rayon 5 using a composite ceramic indicated by symbol 2 in Table 3.
0 to 70% by weight, preferably 60% by weight, of a milk protein fiber of 30 to 50% by weight, preferably 40% by weight, is blended or twisted to produce a processed yarn B, or 30 to 50% by weight, preferably 40% by weight of composite rayon using the composite ceramics indicated by symbol 3 in Table 3
To produce a processed yarn C by blending or twisting at a mixing ratio of 50 to 70% by weight, preferably 60% by weight, of milk protein fiber with respect to the weight%, or a composite ceramic indicated by symbol 4 in Table 3. 15 to 35% by weight, preferably 25% by weight of composite rayon using
The mixed yarn or the twisting is performed at a mixing ratio of 混合 85% by weight, preferably 75% by weight to produce a processed yarn D.

【0036】そして、表8に示す複合レーヨンと牛乳蛋
白繊維の好ましい混合比率で混紡または交撚して紡糸さ
れた加工糸A〜Dの特性を表9で示す。
Table 9 shows the characteristics of the processed yarns A to D spun by mixing or twisting the composite rayon and the milk protein fiber in a preferable mixing ratio shown in Table 8.

【0037】[0037]

【表8】 [Table 8]

【0038】[0038]

【表9】 [Table 9]

【0039】また、図2は表8,9の加工糸A〜Dと牛
乳蛋白繊維との乾燥速度を示す比較図であり、また図3
は前記表8,9の加工糸A〜Dと牛乳蛋白繊維との接触
温冷感を示す比較表である。
FIG. 2 is a comparison diagram showing the drying rates of the processed yarns A to D and milk protein fibers in Tables 8 and 9, and FIG.
Is a comparison table showing the thermal sensation of contact between the processed yarns A to D of Tables 8 and 9 and the milk protein fiber.

【0040】前記表9、図2および図3で示すように、
本発明製造方法によって得られた加工糸は93〜94%
の遠赤外線放射率を有すると共に、89〜93%の抗菌
率および89〜92%の脱臭率を有し、また90〜92
%の忌避率を有する。更に、牛乳蛋白繊維に比して乾燥
速度も速く、且つ接触温冷感が高いという優れた効果を
有することが判った。これは抗菌性、脱臭性および防虫
性を有すると共に、遠赤外線放射特性を有する複合レー
ヨンの特性と、牛乳蛋白繊維の有する特性との相乗効果
である。すなわち、乾燥速度および接触温冷感について
は前記複合レーヨンが有している遠赤外線作用によって
その効果を上げている。更に、牛乳蛋白繊維には存在し
ない抗菌性、脱臭性および防虫性が付与される。
As shown in Table 9 and FIGS. 2 and 3,
93-94% of the processed yarn obtained by the production method of the present invention
Of 89-93%, 89-92% of deodorization, and 90-92%.
% Repellency. Further, it has been found that it has an excellent effect that the drying speed is faster and the contact temperature / cooling sensation is higher than that of the milk protein fiber. This is a synergistic effect between the properties of the composite rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation properties, and the properties of milk protein fibers. That is, the effects of the drying speed and the contact thermal sensation are enhanced by the far-infrared ray action of the composite rayon. Furthermore, antibacterial properties, deodorizing properties, and insect repellency, which do not exist in milk protein fibers, are imparted.

【0041】前記本発明製造方法により得られた加工糸
を木綿、その他の繊維と混紡した下着、肌着を着用する
と、体温で遠赤外線の放射効率が高まり、それにより皮
膚表面温度を昇温させる効果があり、そして遠赤外線の
放射により生体水が活性化されて血流も促進されるの
で、疲労回復等の効果があり、更に乾燥速度および保温
性にも優れている。また、本発明製造方法の素材となる
複合レーヨンはpH7.0〜7.8の中性であるため、
人体に被着する下着、肌着の素材として最適である。
When underwear and underwear in which the processed yarn obtained by the production method of the present invention is blended with cotton and other fibers are worn, the radiation efficiency of far-infrared rays at body temperature is increased, thereby increasing the skin surface temperature. Since the body water is activated by the radiation of far-infrared rays and the blood flow is promoted, there is an effect of recovery from fatigue and the like, and further, the drying speed and the heat retention are excellent. In addition, since the composite rayon used as the material of the production method of the present invention has a neutral pH of 7.0 to 7.8,
Ideal as a material for underwear and underwear to be applied to the human body.

【0042】[0042]

【発明の効果】本発明製造方法の一方の素材となる複合
レーヨンを構成する抗菌性および脱臭性を有する複合セ
ラミックスが、アルカリ性状を呈し、且つ水素イオン濃
度の経時変化がなく、陽イオンを発生して一般生菌を死
滅させて抗菌性を有すると共に、硫化水素およびアンモ
ニアを分解して脱臭性をも有し、その抗菌性と脱臭性は
恒久的にその作用を有し、且つ他方の素材となる牛乳蛋
白繊維は乾燥速度が速く、接触温冷感が高く保温性に優
れているため、本発明製造方法によって得られた加工糸
は前記複合セラミックスにより抗菌性および脱臭性を合
わせ保有し、木綿または合成繊維と混紡することによ
り、特に病院に於けるシーツ、ふとんカバーやその他、
布巾、靴下等に使用され、その用途は極めて広い。ま
た、本発明製造方法によって得られた加工糸は遠赤外線
放射特性を有すると共に、乾燥速度が速く、保温性も有
しているので、該加工糸を木綿等と混紡した下着や肌着
として利用することにより、皮膚表面温度を昇温させて
保温性を高めると共に、血流を促進させるという効果が
ある。更に、本発明製造方法によって得られた加工糸は
ノミやダニ等衛生害虫に対する忌避率が高く、衛生害虫
が寄りつかず防虫性を有するという優れた効果を有す
る。
The composite ceramics having antibacterial and deodorizing properties constituting the composite rayon, which is one of the materials of the production method of the present invention, has an alkaline property, does not change with time in the hydrogen ion concentration, and generates cations. It has the antibacterial properties by killing general viable bacteria to decompose hydrogen sulfide and ammonia and has deodorizing properties. Its antibacterial properties and deodorizing properties have the effect permanently, and the other material Milk protein fiber becomes a high drying rate, high contact warmth and cold sensation and excellent heat retention, the processed yarn obtained by the production method of the present invention possesses both antibacterial and deodorant properties by the composite ceramics, By blending with cotton or synthetic fiber, especially in hospital sheets, futon covers and others,
It is used for cloths, socks, etc., and its use is extremely wide. In addition, the processed yarn obtained by the production method of the present invention has far-infrared radiation characteristics, has a high drying speed, and has heat retention, so that the processed yarn is used as underwear or underwear mixed with cotton or the like. This has the effect of increasing the temperature of the skin surface to increase the heat retention and promoting blood flow. Further, the processed yarn obtained by the production method of the present invention has a high repellency against sanitary pests such as fleas and ticks, and has an excellent effect of preventing insects from sticking to sanitary pests.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明製造方法の素材となる複合レーヨンと汎
用のレーヨンの放射率を示す分布図である。
FIG. 1 is a distribution diagram showing the emissivity of a composite rayon and a general-purpose rayon which are used as materials in the production method of the present invention.

【図2】本発明製造方法によって得られた加工糸と牛乳
蛋白繊維の乾燥速度の比較表である。
FIG. 2 is a comparison table of drying rates of processed yarn and milk protein fiber obtained by the production method of the present invention.

【図3】本発明製造方法によって得られた加工糸と牛乳
蛋白繊維の接触温冷感の比較表である。
FIG. 3 is a comparison table of the contact thermal sensation between the processed yarn and the milk protein fiber obtained by the production method of the present invention.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の酸化亜鉛の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに複合セ
ラミックスを添加混入して得られた複合レーヨン65〜
85重量%に対して、牛乳蛋白繊維15〜35重量%を
混紡または交撚して紡糸することを特徴とする抗菌性、
脱臭性および防虫性を有すると共に、遠赤外線放射特性
を有する複合レーヨンと牛乳蛋白繊維とを混紡または交
撚して紡糸する加工糸の製造方法。
1. A serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
The mixture is added to the base at a ratio of 0 to 40% by weight, and further, a fine powder of zinc oxide having a particle size of 5 μm or less is used as an auxiliary, and the auxiliary is added to the substrate at a ratio of 10 to 40% by weight. After mixing, the mixture is put into a mixer and a pulverizer a plurality of times in succession, and the base material and the mixture material and the auxiliary material are mixed and stirred and pulverized so as to be uniformly mixed. In the mixing step in the rayon production process, the composite ceramics obtained by firing at the firing temperature at the calcining temperature is charged into a mixer into which viscose has been charged in an amount of 5 to 10% by weight, or in the defoaming step, 5 to 10% by weight is put into the spinning tank into which the course is put, and the composite rayon 65 to 65 obtained by adding and mixing the composite ceramics into the viscose is used.
An antibacterial property characterized by mixing or spinning 15 to 35% by weight of milk protein fiber with respect to 85% by weight.
A method for producing a processed yarn in which a composite rayon having deodorizing properties and insect repellency and far-infrared radiation characteristics and a milk protein fiber are mixed or twisted and spun.
【請求項2】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の電気石の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに複合セ
ラミックスを添加混入して得られた複合レーヨン50〜
70重量%に対して、牛乳蛋白繊維30〜50重量%を
混紡または交撚して紡糸することを特徴とする抗菌性、
脱臭性および防虫性を有すると共に、遠赤外線放射特性
を有する複合レーヨンと牛乳蛋白繊維とを混紡または交
撚して紡糸する加工糸の製造方法。
2. Serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
0-40% by weight is added to and mixed with the base material, and further, fine powder of tourmaline having a particle size of 5 μm or less is used as an auxiliary material, and the auxiliary material is added to the base material at a ratio of 10-40% by weight. After mixing, the mixture is put into a mixer and a pulverizer a plurality of times in succession, and the base material and the mixture material and the auxiliary material are mixed and stirred and pulverized so as to be uniformly mixed. In the mixing step in the rayon production process, the composite ceramics obtained by firing at the firing temperature at the calcining temperature is charged into a mixer into which viscose has been charged in an amount of 5 to 10% by weight, or in the defoaming step, 5 to 10% by weight is added to the spinning tank in which the course is charged, and the composite rayon 50 to 50% obtained by adding and mixing the composite ceramic to the viscose.
An antibacterial property characterized in that 30 to 50% by weight of milk protein fiber is spun by blending or twisting with respect to 70% by weight,
A method for producing a processed yarn in which a composite rayon having deodorizing properties and insect repellency and far-infrared radiation characteristics and a milk protein fiber are mixed or twisted and spun.
【請求項3】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が10〜40重量%に対して、粒径5
μm以下の酸化亜鉛の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下のゼオライトの微粉末を助材
として、該助材を20〜80重量%の割合で前記基材に
添加混合して、混合機および粉砕機に順次複数回に亘っ
て投入して、前記基材と混合材および助材とを混合攪拌
および粉砕して均一に混合し、然る後200〜500℃
の仮焼温度で焼成機により焼成して得られた複合セラミ
ックスを、レーヨン製造工程中の混合工程において、ビ
スコースを投入した混合機に5〜10重量%投入する
か、または脱泡工程において、ビスコースを投入した紡
糸タンクに5〜10重量%投入して、前記ビスコースに
複合セラミックスを添加混入して得られた複合レーヨン
30〜50重量%に対して、牛乳蛋白繊維50〜70重
量%を混紡または交撚して紡糸することを特徴とする抗
菌性、脱臭性および防虫性を有すると共に、遠赤外線放
射特性を有する複合レーヨンと牛乳蛋白繊維とを混紡ま
たは交撚して紡糸する加工糸の製造方法。
3. A base material comprising a fine serpentine powder having a particle size of 5 μm or less, and a base material having a particle size of 5 to 40% by weight.
A fine powder of zinc oxide having a particle size of 5 μm or less is used as an auxiliary material, and a fine powder of zeolite having a particle size of 5 μm or less is further mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixture is put into a mixer and a pulverizer several times in order. Crush and mix uniformly, then 200-500 ° C
In the mixing step in the rayon production process, the composite ceramics obtained by firing at a calcining temperature of 5 to 10% by weight is charged into a viscose-loaded mixer, or in the defoaming step, 5 to 10% by weight is added to the spinning tank containing viscose, and 50 to 70% by weight of milk protein fiber is added to 30 to 50% by weight of composite rayon obtained by adding and mixing the composite ceramics into the viscose. A mixed rayon having antibacterial properties, deodorization properties and insect repellency, and a composite rayon having far-infrared radiation properties and a milk protein fiber, which is spun by spinning by blending or twisting. Manufacturing method.
【請求項4】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が10〜40重量%に対して、粒径5
μm以下の酸化亜鉛の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下の酸化カルシウムの微粉末を
助材として、該助材を20〜80重量%の割合で前記基
材に添加混合して、混合機および粉砕機に順次複数回に
亘って投入して、前記基材と混合材および助材とを混合
攪拌および粉砕して均一に混合し、然る後200〜50
0℃の仮焼温度で焼成機により焼成して得られた複合セ
ラミックスを、レーヨン製造工程中の混合工程におい
て、ビスコースを投入した混合機に5〜10重量%投入
するか、または脱泡工程において、ビスコースを投入し
た紡糸タンクに5〜10重量%投入して、前記ビスコー
スに複合セラミックスを添加混入して得られた複合レー
ヨン15〜35重量%に対して、牛乳蛋白繊維65〜8
5重量%を混紡または交撚して紡糸することを特徴とす
る抗菌性、脱臭性および防虫性を有すると共に、遠赤外
線放射特性を有する複合レーヨンと牛乳蛋白繊維とを混
紡または交撚して紡糸する加工糸の製造方法。
4. A base material comprising a fine serpentine powder having a particle size of 5 μm or less, and a base material having a particle size of 5 to 40% by weight.
A fine powder of zinc oxide having a particle size of 5 μm or less is used as a mixture, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixed material and the auxiliary material are mixed and stirred with the mixer and the crusher several times sequentially. And pulverize and mix uniformly, then 200-50
In a mixing step in the rayon production process, the composite ceramics obtained by firing at a calcining temperature of 0 ° C. by a firing machine is charged at 5 to 10% by weight into a viscose-loaded mixer, or a defoaming step. , 5 to 10% by weight of the viscose is added to the spinning tank, and 15 to 35% by weight of the composite rayon obtained by adding and mixing the composite ceramics into the viscose, and the milk protein fibers 65 to 8 are added.
Spinning by blending or twisting a composite rayon and milk protein fiber having antibacterial properties, deodorizing properties and insect repellent properties, characterized in that 5% by weight is blended or twisted and then spun. Manufacturing method of processed yarn.
JP8277281A 1995-11-27 1996-09-27 A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun. Expired - Fee Related JP2909028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8277281A JP2909028B2 (en) 1995-11-27 1996-09-27 A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33102795 1995-11-27
JP7-331027 1995-11-27
JP8277281A JP2909028B2 (en) 1995-11-27 1996-09-27 A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun.

Publications (2)

Publication Number Publication Date
JPH09209225A JPH09209225A (en) 1997-08-12
JP2909028B2 true JP2909028B2 (en) 1999-06-23

Family

ID=26552326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8277281A Expired - Fee Related JP2909028B2 (en) 1995-11-27 1996-09-27 A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun.

Country Status (1)

Country Link
JP (1) JP2909028B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507100C (en) * 2006-06-29 2009-07-01 福建众和股份有限公司 Calamine viscose fiber and preparation method and application thereof
KR100882120B1 (en) * 2008-07-08 2009-02-06 김희수 Spun fabric with cupro yarn and milk yarn
CN102505304A (en) * 2011-10-31 2012-06-20 苏州创宇织造有限公司 High-grade pure natural thermal underwear fabric
CN103243435A (en) * 2013-05-21 2013-08-14 海安县鑫荣纺织有限责任公司 Blended yarn of cotton fiber, sisal fiber and milk protein fiber
CN103255525A (en) * 2013-05-30 2013-08-21 浙江百德纺织有限公司 Milk fiber semi-worsted blended yarn
CN104328556B (en) * 2014-10-14 2016-07-13 浙江百德纺织有限公司 A kind of antibacterial blended yarn and preparation method thereof
CN104553172A (en) * 2015-01-05 2015-04-29 芜湖环瑞汽车内饰件有限公司 Activated carbon-EVA composite emulsion coated polypropylene-based non-woven sound absorbing material for automobile interior decoration
CN105124773A (en) * 2015-08-25 2015-12-09 沈汇明 Production process for high-quality healthy socks
CN106987949A (en) * 2017-05-24 2017-07-28 海安县恒业制丝有限公司 The production method of far IR fibre/bamboo fibre/silk/cotton blended yarn
CN110629340A (en) * 2019-08-26 2019-12-31 宁波大千纺织品有限公司 Seaweed carbon fiber far infrared moisture absorption multifunctional fabric and preparation method thereof

Also Published As

Publication number Publication date
JPH09209225A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP2909028B2 (en) A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun.
JP4175558B2 (en) Far-infrared radiation material
CN105821503A (en) Pearl antifungal fiber containing multiple amino acids and microelement and preparing method thereof
JP2022009122A (en) Agricultural material and method for growing plant
KR100361928B1 (en) Fiber manufacturing method
JP2836020B2 (en) Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun.
WO2003056075A1 (en) Multi-functional fiber containing natural magma-stone and manufacturing process for the same
JP2579600B2 (en) Method for producing rayon having antibacterial properties and deodorizing properties and having far-infrared radiation characteristics
KR100267350B1 (en) Process for preparing illite synthetic cotton
JP2876309B2 (en) Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics
JP3550106B2 (en) Composite fiber structure
JP2879024B2 (en) A method for producing rayon having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
KR930008252B1 (en) Preparation of polypropylene filament non-woven fabric having superior antibacterial deodorant and infrared ray radial property
KR101451335B1 (en) An anti-bacteria functional healthful pillow and a manufacturing method theirof
JPH02104731A (en) Far infrared-radiating fiber yarn
KR20130034308A (en) Manufacturing process of a functional fiber containing high-dispersed mineral powders
JPH10167803A (en) Composite ceramics having antibacterial, deodorizing, antimold and mothproof properties as well as far infrared ray radiating characteristic and its production
JPH03295848A (en) Composite ceramics having deodorizing and antibacterial ability and its manufacture
CN102058898B (en) Powder with antibacterial and haemostatic effects and preparation method and applications thereof
JPH081007B2 (en) Method for producing fiber having deodorizing property and antibacterial property
JPH03215266A (en) Composite ceramics having deodorizing and antibacterial properties and its preparation
JP2822321B2 (en) Composite ceramics having anti-bacterial, deodorizing, mold-proofing and insect-proofing properties while having far-infrared radiation characteristics, and method for producing the same
JP2873212B2 (en) Bed pat
KR20030047294A (en) Method of making bedclothes emitting an anion
JPH1136189A (en) Japanese paper having far infrared radiation characteristic, antimicrobial, deodorizing, mildewproof and insect repellent property and further antistatic property and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees