JP2905208B2 - Polysulfone hollow fiber separation membrane - Google Patents

Polysulfone hollow fiber separation membrane

Info

Publication number
JP2905208B2
JP2905208B2 JP63319387A JP31938788A JP2905208B2 JP 2905208 B2 JP2905208 B2 JP 2905208B2 JP 63319387 A JP63319387 A JP 63319387A JP 31938788 A JP31938788 A JP 31938788A JP 2905208 B2 JP2905208 B2 JP 2905208B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
layer
dense
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63319387A
Other languages
Japanese (ja)
Other versions
JPH02164428A (en
Inventor
正一 土井
克彦 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18109597&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2905208(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP63319387A priority Critical patent/JP2905208B2/en
Publication of JPH02164428A publication Critical patent/JPH02164428A/en
Application granted granted Critical
Publication of JP2905208B2 publication Critical patent/JP2905208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリスルホン系樹脂からなる中空糸状分離
膜に関する。
Description: TECHNICAL FIELD The present invention relates to a hollow fiber separation membrane made of a polysulfone resin.

(従来技術) ポリスルホン系樹脂は、耐熱性、耐薬品性、安全性に
秀れており、これを素材とした中空糸膜は、従来より種
々提案されている。
(Prior Art) Polysulfone resins are excellent in heat resistance, chemical resistance, and safety, and various hollow fiber membranes using the same as materials have been conventionally proposed.

例えば、特開昭58−156018号公報には内表面緻密層、
内側ボイド層、中間層、外側ボイド層、外表面緻密層か
ら成る5層構造を有する中空糸限外濾過膜が開示されて
いる。ここで、緻密層とは、膜の断面において、最も緻
密にポリマーが集合している場所を指す。同公報に開示
される膜は、内外両表面に同程度の緻密さの緻密層が存
在する。
For example, JP-A-58-156018 discloses an inner surface dense layer,
A hollow fiber ultrafiltration membrane having a five-layer structure including an inner void layer, an intermediate layer, an outer void layer, and an outer surface dense layer is disclosed. Here, the dense layer refers to a place where the polymer is most densely gathered in the cross section of the film. The membrane disclosed in the publication has a dense layer of similar density on both the inner and outer surfaces.

すなわち、1つの中空糸膜の断面に2つの限外濾過機
能をもつ層が存在するという特徴をもつ。
That is, it is characterized in that two layers having an ultrafiltration function exist in the cross section of one hollow fiber membrane.

特に同公報に開示される緻密層は、0.01μm程度の小
さなポリマー粒子の集合から成り、粒子の間隙は、内外
表面近傍では、非常に狭く密につまっており、表面から
遠ざかるにつれて、粒子間隔と共に粒子径も大きくな
る。内外両表面は平滑であり、走査型電子顕微鏡では、
その孔の存在は認められず、その孔径は10〜100Åであ
ろうと推定されると記載されている。
In particular, the dense layer disclosed in the same publication is composed of a collection of small polymer particles of about 0.01 μm, and the gaps between the particles are very narrow and dense near the inner and outer surfaces, and as the distance from the surface increases, the gap between the particles increases. The particle size also increases. Both inner and outer surfaces are smooth, and with a scanning electron microscope,
It is stated that the presence of the pore was not observed, and that the pore size was estimated to be 10-100 °.

同公報に開示されている膜は、内外両表面緻密層の緻
密さが同程度であるため、万一内表面に欠陥が生じて
も、外表面の緻密層が溶質の透過を阻止するため、分画
分子量は変わらず、分画の信頼性が高いという特徴を有
する。
The film disclosed in the same publication, since the denseness of the inner and outer surface dense layers is about the same, even if a defect occurs on the inner surface, the dense layer on the outer surface prevents solute permeation, The fractionation molecular weight does not change, and has a feature that the reliability of the fractionation is high.

例えば、この膜の内表面もしくは、外表面を針のよう
なもので傷つけたり、こすったりしても、デキストラン
やタンパク質等の溶質透過阻止率は変わらない場合が多
い。特公昭50−22508号公報に見られるような、内表面
だけに緻密層を有する膜では、内表面に傷をつけると、
溶質透過阻止率が大きく低下してしまうことからすれ
ば、特に医薬用水、注射用水等、絶対に菌、パイロジェ
ン等の混入があってはならない水を膜を用いて製造する
分野では、両面緻密層はきわめて重要な特徴である。さ
らに、一般用途でも分画がシャープになるというメリッ
トを与える。
For example, even if the inner or outer surface of the membrane is damaged or rubbed with a needle-like material, the solute permeation inhibition rate of dextran, protein, and the like often does not change. In a film having a dense layer only on the inner surface as seen in Japanese Patent Publication No. 50-22508, if the inner surface is scratched,
Given that the solute permeation inhibition rate is greatly reduced, especially in the field of manufacturing water using a membrane, which must never contain bacteria, pyrogen, etc. Is a very important feature. Furthermore, there is an advantage that the fractionation becomes sharp even for general use.

その一方、電子顕微鏡的に全く孔が認められないほど
緻密な内外表面緻密層を有する膜は、透水性が上がらな
いだけでなく、高分画分子量の膜が得られないという欠
点を有している。
On the other hand, a membrane having a dense inner and outer surface layer that is so dense that no pores are observed under an electron microscope has the disadvantage that not only does water permeability not increase, but a membrane with a high molecular weight cut off cannot be obtained. I have.

(本発明が解決しようとする問題点) 本発明は、分画の信頼性の高い内外表面両緻密層を有
し、かつ高分画分子量の膜を提供するものである。
(Problems to be Solved by the Present Invention) The present invention is to provide a membrane having a high-fraction molecular weight having both dense layers on the inner and outer surfaces with high reliability of fractionation.

(問題点を解決するための手段) 本発明のポリスルホン系樹脂よりなる中空糸状膜は、
内表面および外表面に平均孔径500Å〜0.5μmの孔を有
し、かつ、中空糸の長さ方向に対する膜の横断面が、
(a)内表面緻密層、(b)内側ボイド層、(c)中間
スポンジ層、(d)外側ボイド層、(e)外表面緻密層
からなる5層構造を有していることを特徴とする。
(Means for Solving the Problems) The hollow fiber membrane made of the polysulfone resin of the present invention comprises:
The inner surface and the outer surface have pores with an average pore diameter of 500 to 0.5 μm, and the cross section of the membrane in the length direction of the hollow fiber is
It has a five-layer structure comprising (a) an inner surface dense layer, (b) an inner void layer, (c) an intermediate sponge layer, (d) an outer void layer, and (e) an outer surface dense layer. I do.

第1図は、本発明における実施例2の膜の電子顕微鏡
による断面写真である。膜断面が、内表面緻密層、内側
ボイド層、中間スポンジ層、外側ボイド層、外表面緻密
層から成る5層構造を示していることがわかる。
FIG. 1 is a cross-sectional photograph of the film of Example 2 of the present invention, taken by an electron microscope. It can be seen that the cross section of the film has a five-layer structure including an inner surface dense layer, an inner void layer, an intermediate sponge layer, an outer void layer, and an outer surface dense layer.

第2図は、同じ膜の外表面の電子顕微鏡写真である
が、直径1000Å程度の孔があることが観察され。
FIG. 2 is an electron micrograph of the outer surface of the same film, in which a hole having a diameter of about 1000 mm was observed.

第3図は、同じ膜の内表面の電子顕微鏡写真である
が、円相当直径1000Å程度の孔があることが観察され
る。
FIG. 3 is an electron micrograph of the inner surface of the same film, and it is observed that there is a hole with a circle equivalent diameter of about 1000 mm.

第2図、第3図に示されるごとく、膜の内外両表面
は、ほぼ同程度の大きさの孔を有している。さらに、そ
の孔は、第1図に示す内外ボイド層、中間層のスポンジ
部分の孔に比べ、十分小さいため、膜断面全体の中で、
内外両表面は最も緻密な構造であり、特開昭58−156018
号公報に開示される膜と同様に、膜に分画の信頼性を与
える。
As shown in FIGS. 2 and 3, both the inner and outer surfaces of the membrane have holes of approximately the same size. Furthermore, the holes are sufficiently smaller than the holes in the inner and outer void layers and the sponge portion of the intermediate layer shown in FIG.
The inner and outer surfaces are the most dense structures, and are disclosed in Japanese Patent Application Laid-Open No. 58-156018.
In the same manner as in the membrane disclosed in Japanese Patent Application Publication, the fractionation reliability is given to the membrane.

本願膜の内外両表面の緻密層は、この目的のためある
程度の厚みを有することが好ましい。ボイド層の先端か
ら表面までは最もうすいところでも、内外共にそれぞれ
膜厚全体の1〜20%、好ましくは3〜10%の厚みを有す
ることが分画の信頼性をより高める上で好ましい。しか
し、15%をこえると、透水性に支障をきたすこともあ
る。
The dense layers on both the inner and outer surfaces of the film of the present invention preferably have a certain thickness for this purpose. It is preferable to have a thickness of 1 to 20%, preferably 3 to 10% of the entire film thickness both inside and outside at the thinnest portion from the tip to the surface of the void layer from the viewpoint of further improving the reliability of fractionation. However, above 15%, water permeability may be impaired.

また、本願では中間スポンジ層で膜の強度を保持し、
内外両ボイド層で膜の透水性を向上させつつ、内外両表
面に孔を形成させているので、高分画分子量でかつ良好
な透水性を有する膜が得られる。中間スポンジ層の厚さ
は、膜厚全体の1〜20%であることが強度、透水性のか
ねあいから好ましい。さらに好ましくは3〜10%であ
る。
Also, in the present application, the strength of the membrane is maintained by the intermediate sponge layer,
Since pores are formed on both the inner and outer surfaces while improving the water permeability of the membrane with both the inner and outer void layers, a membrane having a high molecular weight cut-off and good water permeability can be obtained. The thickness of the intermediate sponge layer is preferably 1 to 20% of the total thickness in view of strength and water permeability. More preferably, it is 3 to 10%.

膜の内外両表面の平均孔径500Å〜0.5μmの孔とは、
走査型電子顕微鏡で観察される孔と同じ面積を有する円
の平均直径が500Åより大きく0.5μm以下の孔をいう。
主に、0.5μmより大きい孔が内外表面にあると強度上
好ましくない。
The pores with an average pore diameter of 500 mm to 0.5 μm on both the inner and outer surfaces of the membrane are:
A hole having the same area as a hole observed by a scanning electron microscope and having an average diameter of more than 500 ° and not more than 0.5 μm.
Mainly, pores larger than 0.5 μm on the inner and outer surfaces are not preferable in strength.

ポリスルホン系樹脂は、以下の式(I)〜(III)の
いずれかで与えられる繰返し単位を有するものである。
The polysulfone-based resin has a repeating unit represented by any of the following formulas (I) to (III).

これらのポリマーは、耐熱・耐PH性に秀れており、医
用分野において不可欠な蒸気滅菌にも対応できるという
特徴を有している。
These polymers are excellent in heat resistance and PH resistance, and have a feature that they can be applied to steam sterilization which is indispensable in the medical field.

次に本発明のポリスルホン系中空糸膜の製造方法の一
例について述べる。
Next, an example of the method for producing the polysulfone-based hollow fiber membrane of the present invention will be described.

本発明では、ポリマーを溶解した紡糸原液を環状ノズ
ルから吐出し、中空を走行させた後、凝固浴で凝固させ
て中空糸状膜をつくる乾湿式紡糸法が好ましく用いられ
る。この乾湿式紡糸法による膜の製造方法では、ポリス
ルホン系樹脂、溶媒、非溶媒から成る紡糸原液を環状ノ
ズルから凝固浴へ押しだし、中空糸状膜とする過程にお
いて、 (i)ポリマー濃度が10〜30重量%であること (ii)非溶媒/(溶媒+非溶媒)の重量比が、相溶限界
における重量比の50〜90%であること かつ、 (iii)内部凝固液として40〜90重量%のグリコール類
水溶液を用いること を特徴とする。
In the present invention, a dry-wet spinning method is preferably used in which a spinning solution in which a polymer has been dissolved is discharged from an annular nozzle, the hollow spinning solution is run, and then coagulated in a coagulation bath to form a hollow fiber membrane. In the method for producing a membrane by the dry-wet spinning method, in the process of extruding a spinning solution comprising a polysulfone resin, a solvent, and a non-solvent from an annular nozzle into a coagulation bath to form a hollow fiber membrane, (i) a polymer concentration of 10 to 30; (Ii) The weight ratio of non-solvent / (solvent + non-solvent) is 50 to 90% of the weight ratio at the compatibility limit, and (iii) 40 to 90% by weight as the internal coagulation liquid Characterized by using an aqueous solution of glycols.

この方法における原液中の溶媒としては、Nメチル2
ピロリドン、ジメチルアセトアミド、ジメチルホルムア
ミド等非プロトン性極性有機溶媒が好ましく用いられ
る。また、原液中の非溶剤として、ポリエチレングリコ
ール、ポリプロピレングリコール等のグリコール類、電
解質、ポリビニルピロリドン等を用いることができる
が、グリコール類が紡糸性の点から好ましく、また良好
な膜を提供する。
As the solvent in the stock solution in this method, N-methyl-2
Aprotic polar organic solvents such as pyrrolidone, dimethylacetamide and dimethylformamide are preferably used. As the non-solvent in the stock solution, glycols such as polyethylene glycol and polypropylene glycol, electrolytes, polyvinylpyrrolidone and the like can be used, but glycols are preferable from the viewpoint of spinnability and provide a good film.

原液中のポリマー濃度は10〜30重量%、好ましくは15
〜25重量%である。この値は、得られる中空糸膜の強度
と特に関係がある。
The polymer concentration in the stock solution is 10-30% by weight, preferably 15%
~ 25% by weight. This value is particularly related to the strength of the obtained hollow fiber membrane.

溶媒/非溶媒の重量比は、比溶媒/(溶媒+非溶媒)
の重量比が、相溶限界における重量比の50〜90%の範囲
内の値をとるように設定する。
Solvent / non-solvent weight ratio is specific solvent / (solvent + non-solvent)
Is set so as to take a value within the range of 50 to 90% of the weight ratio at the compatibility limit.

相溶限界とは、ポリマー溶液が均一な溶液となり得
ず、相分離する点のいとをいう。一般に温度の関数でも
あるので、紡糸温度における相溶限界を求める必要があ
る。50%未満では、原液粘度が低くて紡糸性が悪かった
り、得られる中空糸膜の断面が5層構造にならなかった
りする。90%より多い場合には、得られる中空糸膜の断
面が、やはり5層構造とならないことが多い。
The compatibility limit refers to the point where the polymer solution cannot be a uniform solution and undergoes phase separation. Since it is generally a function of temperature, it is necessary to determine the compatibility limit at the spinning temperature. If it is less than 50%, the stock solution viscosity is low and spinnability is poor, or the cross section of the obtained hollow fiber membrane does not have a five-layer structure. When it is more than 90%, the cross section of the obtained hollow fiber membrane often does not have a five-layer structure.

内部凝固液に用いるグリコール類は、エチレングリコ
ール、ジエチレングリコール、トリエチレングリコー
ル、テトラエチレングリコール、平均分子量200〜600の
ポリエチレングリコール、プロピレングリコール、ジプ
ロピレングリコール、トリプロピレングリコールのう
ち、少なくとも一種であることが好ましい。高分子量グ
リコールは融点が高く、高分子量になるにしたがって水
溶性も低下してゆくため、特に内部凝固液中のグリコー
ル濃度が高くなるときは、紡糸安定性を得ることが難し
くなることがある。
The glycol used for the internal coagulation liquid may be at least one of ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol having an average molecular weight of 200 to 600, propylene glycol, dipropylene glycol, and tripropylene glycol. preferable. Since the high molecular weight glycol has a high melting point and the water solubility decreases as the molecular weight increases, it may be difficult to obtain spinning stability, particularly when the glycol concentration in the internal coagulation liquid is high.

この中では、テトラエチレングリコールが紡糸安定
性、膜の性能の可変性から最も好ましい。
Among them, tetraethylene glycol is most preferred from the viewpoint of spinning stability and variability in membrane performance.

内部凝固液の組成は、グリコール類が40〜90重量%の
水溶液であることが好ましい。
The composition of the internal coagulation liquid is preferably an aqueous solution containing 40 to 90% by weight of glycols.

40重量%未満では、中空糸膜内外表面の孔の大きさの
バランスを保つことが難しく、内表面の孔が小さくなり
やすい。
If the amount is less than 40% by weight, it is difficult to maintain a balance between the pore sizes on the inner and outer surfaces of the hollow fiber membrane, and the pores on the inner surface tend to be small.

一方、90重量%以上では、透水量が、急減する場合が
ある。また、内表面の孔が外表面に比べて著しく大きく
なってしまう場合があり、好ましくない。
On the other hand, if it is 90% by weight or more, the water permeability may decrease rapidly. Further, the pores on the inner surface may be significantly larger than the outer surface, which is not preferable.

(発明の効果) 本発明の中空糸膜は、分離膜の必須要件である分画の
信頼性を、内外両表面に同程度の緻密さをもつ緻密層に
より与えるという、従来の5層構造膜の特徴を活かした
まま、その欠点であった低透過能力及び小分画分子量を
大巾に改善することができ、分画の信頼性を特に重視す
る医薬、病院用水分野での純水の大量造水や、医療用有
価物の精製等に多大な貢献をすることが期待出来る。
(Effect of the Invention) The hollow fiber membrane of the present invention is a conventional five-layer membrane in which the reliability of fractionation, which is an essential requirement of a separation membrane, is provided by a dense layer having the same degree of density on both the inner and outer surfaces. The low permeation capacity and small fraction molecular weight, which were the drawbacks, can be greatly improved while taking advantage of the features of It can be expected to make a great contribution to fresh water production and purification of medical valuables.

以下、本発明を実施例により、具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to Examples.

なお、膜の物性は、透水量、破裂強度、デキストラン
の透過阻止率(分画分子量の大きさを表わす)で示し
た。
The physical properties of the membrane were shown by the amount of water permeation, bursting strength, and dextran permeation inhibition rate (representing the size of the molecular weight cut off).

また、走査型電子顕微鏡で膜の断面、内表面、外表面
を観察した。
The cross section, inner surface, and outer surface of the film were observed with a scanning electron microscope.

各物性の測定法を下記に示す。 The measuring method of each physical property is shown below.

透水量 中空糸膜を長さ20cmに切り、片端から、温度25℃の純
水を注入し、他端からエアぬきをした後封止し、平均圧
力1atmで内圧濾過し、濾水量を計測し、単位時間、単位
膜内表面積あたりの透水量を算出する。
Permeability A hollow fiber membrane was cut to a length of 20 cm, pure water at a temperature of 25 ° C was injected from one end, air was removed from the other end, and the membrane was sealed.The internal pressure was filtered at an average pressure of 1 atm, and the amount of filtered water was measured. Calculate the amount of water permeation per unit time, per unit membrane surface area.

破裂強度 中空糸膜を20cmに切り、両端開口部より、窒素を1kg/
cm2/secの昇圧速度で注入し、中空糸膜が破裂したとき
の圧力を破裂強度とする。
Burst strength Cut the hollow fiber membrane to 20 cm, and feed nitrogen 1 kg /
The injection is performed at a pressure increase rate of cm 2 / sec, and the pressure at which the hollow fiber membrane ruptures is defined as the burst strength.

デキストランの透過阻止率 分子量約70000のデキストラン(ファルマシア製デキ
ストランT−70)の5重量%水溶液を25℃の純水で調製
する。
Permeation inhibition rate of dextran A 5% by weight aqueous solution of dextran (dextran T-70 manufactured by Pharmacia) having a molecular weight of about 70,000 is prepared in pure water at 25 ° C.

中空糸膜を長さ20cmに切り、中空部に上記水溶液を、
中空糸膜内流速が1m/sec、平均濾過圧力が1atmで流れる
ように供給する。濾液のデキストラン濃度をデジタル屈
折計((株)アタゴ製)DBX−50で経時的に読みとる。
Cut the hollow fiber membrane to a length of 20 cm, the aqueous solution in the hollow portion,
It is supplied so that the flow rate in the hollow fiber membrane is 1 m / sec and the average filtration pressure is 1 atm. The dextran concentration of the filtrate is read with a digital refractometer (manufactured by Atago Co., Ltd.) DBX-50 over time.

濾液のデキストラン濃度の最高値Cpmaxと原水溶液濃
度Coより、阻止率Rは、下記の式より求められる。
From the maximum value Cpmax of the dextran concentration of the filtrate and the raw aqueous solution concentration Co, the rejection R can be obtained by the following equation.

Rが小さいほど、分画分子量は高い。 The smaller the R, the higher the molecular weight cutoff.

実施例1〜4、比較例1,2 ポリスルホン(U.C.C.製Udel−P3500)19重量部、N
−メチル−2−ピロリドン(三菱化成(株)製)53重量
部、テトラエチレングリコール(東京化成(株)製)28
重量部から成る均一なポリマー溶液を得た。
Examples 1 to 4, Comparative Examples 1 and 2 19 parts by weight of polysulfone (Udel-P3500 manufactured by UCC), N
-Methyl-2-pyrrolidone (Mitsubishi Chemical Co., Ltd.) 53 parts by weight, tetraethylene glycol (Tokyo Chemical Co., Ltd.) 28
A homogeneous polymer solution consisting of parts by weight was obtained.

この紡糸原液を、中空糸製造用の環状ノズルから押し
だし、空気中を3cm走行させた後、凝固浴にて凝固さ
せ、中空糸膜を得た。
The spinning solution was extruded from an annular nozzle for producing a hollow fiber, allowed to run in the air for 3 cm, and then coagulated in a coagulation bath to obtain a hollow fiber membrane.

このとき、内部凝固液として、水またはテトラエチレ
ングリコール30〜90重量%水溶液を、凝固浴として水を
用いた。
At this time, water or a 30 to 90% by weight aqueous solution of tetraethylene glycol was used as an internal coagulating liquid, and water was used as a coagulating bath.

紡糸温度は30℃であった。 The spinning temperature was 30 ° C.

結果を第1表に示した。 The results are shown in Table 1.

ポリスルホン/N−メチル−2−ピロリドン/テトラエ
チレングリコール系の30℃における相溶限界は、ポリス
ルホン20重量部のときは、非溶媒/(溶媒+非溶媒)の
値で0.50である。実施例1〜4の原液中の値は、0.35で
あり相溶限界の70%であった。
When the polysulfone / N-methyl-2-pyrrolidone / tetraethylene glycol system has a compatibility limit at 30 ° C. of 20 parts by weight of polysulfone, the nonsolvent / (solvent + nonsolvent) value is 0.50. The value in the stock solutions of Examples 1 to 4 was 0.35, which was 70% of the compatibility limit.

実施例2の膜の内表面を24Gの注射針で長さ1cmほど傷
つけて、評価を行なったところ、デキストラン阻止率
は、35%であった。
The inner surface of the membrane of Example 2 was scratched with a 24G injection needle to a length of about 1 cm and evaluated, and the dextran rejection was 35%.

一方、比較例1の膜で同様の評価を行なうと、デキス
トラン阻止率は、41%に低下していた。
On the other hand, when the same evaluation was performed on the film of Comparative Example 1, the dextran rejection was reduced to 41%.

比較例3 ポリスルホン(U.C.C.製Udel−P3500)17重量部、N
−メチル−2−ピロリドン(三菱化成(株)製)58重量
部、テトラエチレングリコール(東京化成(株)製)25
重量部から成る均一なポリマー溶液を得た。
Comparative Example 3 17 parts by weight of polysulfone (Udel-P3500 manufactured by UCC), N
58 parts by weight of methyl-2-pyrrolidone (manufactured by Mitsubishi Kasei) and 25 of tetraethylene glycol (manufactured by Tokyo Kasei)
A homogeneous polymer solution consisting of parts by weight was obtained.

この紡糸原液を、中空糸製造用の環状ノズルから押し
だし、空気中を3cm走行させた後、凝固浴にて凝固さ
せ、外径1080μm、内径59.0μmの中空糸状膜を得た。
This spinning stock solution was extruded from a hollow nozzle for producing a hollow fiber, allowed to travel 3 cm in the air, and then coagulated in a coagulation bath to obtain a hollow fiber membrane having an outer diameter of 1080 μm and an inner diameter of 59.0 μm.

このとき、内部凝固液として、水を、凝固浴として水
を用いた。
At this time, water was used as the internal coagulating liquid, and water was used as the coagulating bath.

紡糸温度は50℃であった。 The spinning temperature was 50 ° C.

この膜は、透水量が0.65〔m3/hr・m2・atm〕と実施例
1,2に匹敵する程高いが、デキストランT−70の阻止率
は65%と高く、分画分子量は小さいと考えられる。
This film is carried water permeability is 0.65 [m 3 / hr · m 2 · atm ] Examples
Although it is as high as 1 and 2, the inhibition of dextran T-70 is as high as 65%, and the molecular weight cut off is considered to be small.

この膜の電子顕微鏡観察では、膜の内外表面には100
Åに達するような孔は認められず、また、断面は5層構
造であり、特開昭58−156018号公報に開示される膜であ
る。
Electron microscopic observation of this film showed that 100
No pore reaching Å was recognized, and the cross section was a five-layer structure, which is a membrane disclosed in Japanese Patent Application Laid-Open No. 58-156018.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例2の中空糸の断面構造を示す約170倍
の写真である。 第2図は、実施例2の中空糸の外表面の構造を示す約50
00倍の写真である。 第3図は、実施例2の中空糸の内表面の構造を示す約50
00倍の写真である。
FIG. 1 is a photograph of about 170 times showing the cross-sectional structure of the hollow fiber of Example 2. FIG. 2 shows the structure of the outer surface of the hollow fiber of Example 2 of about 50%.
It is a 00x photograph. FIG. 3 shows the structure of the inner surface of the hollow fiber of Example 2 which is approximately 50 mm.
It is a 00x photograph.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08J 9/28 101 C08J 9/28 101 (56)参考文献 特開 昭58−156018(JP,A) 特開 昭60−45358(JP,A) 特開 昭63−218213(JP,A) 特開 昭62−152508(JP,A) 特開 昭61−164602(JP,A) 特開 平2−21930(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 71/68 D01F 6/76 D01D 5/24 B01D 69/08 C08J 9/28 ────────────────────────────────────────────────── (5) Int.Cl. 6 Identification symbol FI C08J 9/28 101 C08J 9/28 101 (56) References JP-A-58-156018 (JP, A) JP-A-60-45358 (JP, A) JP-A-63-218213 (JP, A) JP-A-62-152508 (JP, A) JP-A-61-164602 (JP, A) JP-A-2-21930 (JP, A) ( 58) Field surveyed (Int.Cl. 6 , DB name) B01D 71/68 D01F 6/76 D01D 5/24 B01D 69/08 C08J 9/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリスルホン系樹脂よりなる中空糸状膜で
あって、内表面および外表面に平均孔径500Å〜0.5μm
の孔を有し、かつ、中空糸の長さ方向に対する膜の横断
面が、(a)内表面緻密層、(b)内側ボイド層、
(c)中間スポンジ層、(d)外側ボイド層、(e)外
表面緻密層からなる5層構造を有していることを特徴と
するポリスルホン系中空糸状分離膜
1. A hollow fiber membrane made of a polysulfone resin, having an inner surface and an outer surface having an average pore size of 500 to 0.5 μm.
And the cross section of the membrane in the length direction of the hollow fiber is (a) a dense inner surface layer, (b) an inner void layer,
A polysulfone-based hollow fiber separation membrane having a five-layer structure comprising (c) an intermediate sponge layer, (d) an outer void layer, and (e) a dense outer surface layer.
JP63319387A 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane Expired - Fee Related JP2905208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319387A JP2905208B2 (en) 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63319387A JP2905208B2 (en) 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane

Publications (2)

Publication Number Publication Date
JPH02164428A JPH02164428A (en) 1990-06-25
JP2905208B2 true JP2905208B2 (en) 1999-06-14

Family

ID=18109597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319387A Expired - Fee Related JP2905208B2 (en) 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane

Country Status (1)

Country Link
JP (1) JP2905208B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046779A1 (en) * 2006-10-18 2008-04-24 Gambro Lundia Ab Hollow fiber membrane and method for manufacturing thereof
CN109310956B (en) * 2016-06-17 2021-10-29 旭化成株式会社 Porous film and method for producing porous film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156018A (en) * 1982-01-29 1983-09-16 Asahi Chem Ind Co Ltd Polysulfone resin hollow fiber
JPS6045358A (en) * 1983-08-22 1985-03-11 住友ベークライト株式会社 Serum separating membrane and its preparation

Also Published As

Publication number Publication date
JPH02164428A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
JP3232117B2 (en) Polysulfone porous hollow fiber
US4822489A (en) Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
WO1997022405A1 (en) Hollow fiber type filtration membrane
JP2905208B2 (en) Polysulfone hollow fiber separation membrane
JPH0569571B2 (en)
JP3212313B2 (en) Hollow fiber blood purification membrane and method for producing the same
JPH0323647B2 (en)
KR100602429B1 (en) A polysulfone typed hollow fiber membrane, and a process of preparing for the same
JPH0445830A (en) Production of conjugate hollow-fiber membrane
JPS6336805B2 (en)
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP3431622B1 (en) High-performance plasma purification membrane
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
KR100200040B1 (en) Sponge-like polysulphone hollow fibre membrane and manufacturing method thereof
JPS59209611A (en) Hollow yarn like membrane and preparation thereof
JP2000107577A (en) Production of permselective hollow fiber membranes
JPH0698283B2 (en) Semipermeable membrane and manufacturing method thereof
JPS6045358A (en) Serum separating membrane and its preparation
JP3316145B2 (en) Permselective hollow fiber membrane and method for producing the same
JPH0221930A (en) Polysulfone-based hollow yarn membrane
JPH0712421B2 (en) Method for producing hollow fiber membrane made of polysulfone
JP3205267B2 (en) Method for producing selectively permeable hollow fiber membrane
JPH04180824A (en) Porous hollow yarn membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees